
§ 6. Variable-length Lossless Compression

The principal engineering goal of compression is to represent a given sequence a1, a2, . . . , an produced
by a source as a sequence of bits of minimal possible length. Of course, reducing the number of bits
is generally impossible, unless the source imposes certain restrictions. That is if only a small subset
of all sequences actually occur in practice. Is it so for real world sources?

As a simple demonstration, one may take two English novels and compute empirical frequencies
of each letter. It will turn out to be the same for both novels (approximately). Thus, we can see
that there is some underlying structure in English texts restricting possible output sequences. The
structure goes beyond empirical frequencies of course, as further experimentation (involving digrams,
word frequencies etc) may reveal. Thus, the main reason for the possibility of data compression is
the experimental (empirical) law: real-world sources produce very restricted sets of sequences.

How do we model these restrictions? Further experimentation (with language, music, images)
reveals that frequently, the structure may be well described if we assume that sequences are generated
probabilistically. This is one of the main contributions of Shannon: another empirical law states
that real-world sources may be described probabilistically with increasing precision starting from i.i.d.,
1-st order Markov, 2-nd order Markov etc. Note that sometimes one needs to find an appropriate
basis in which this “law” holds – this is the case of images (i.e. rasterized sequence of pixels won’t
appear to have local probabilistic laws, because of forgetting the 2-D constraints; wavelets and local
Fourier transform provide much better bases).1

So our initial investigation will be about representing one random variable X ∼ PX in terms of
bits efficiently. Types of compression:

• Lossy
X →W → ˆ ˆX s.t. E[(X −X)2] ≤ distortion.

• Lossless
P (X ≠ X̂) = 0. variable-length code, uniquely decodable codes, prefix codes, Huffman codes

• Almost lossless
P (X ≠ X̂

V

) ε. fixed-length codes

6.1 ariable-length,

≤

lossless, optimal compressor

Coding paradigm:

Compressor
f ∶ X→{0,1}∗

Decompressor
g∶ {0,1}∗→X

X X{0,1}∗

1Of course, one should not take these “laws” too far. In regards to language modeling, (finite-state) Markov
assumption is too simplistic to truly generate all proper sentences, cf. Chomsky [Cho56].

63

Remark 6.1.

• Codeword: f(x) ∈ {0,1}∗; Codebook: {f(x) ∶ x

• Since 0, 1 , 0, 1, 00, 01, . . . is countable, lossless

∈ X} ⊂ {0,1}∗

{ }∗ = {∅ } compression is only possible for discrete
R.V.;

• if we want g ○ f = 1 (lossless), then f must be injective;

• relabel X such that

X

X = N = {1,2, . . .} and order the pmf decreasingly: PX(i

Length

) ≥ PX(i + 1).

function:
l ∶ {0,1}∗ → N

e.g., l(01001
ctiv

) 5.
Obje es:

=

Find the best compressor f to minimize

E[l

sup

(f(X

l

))]

(f(X

median l f

))

X

It turns out that there is a compressor f that minimizes
ide

())

all together!
Main a: Assign longer codewords

∗

to less lik

(

ely symbols, and reserve the shorter codewords
for more probable symbols.

Aside: It is useful to introduce the partial order of stochastic dominance: For real-valued RV X
st.

and Y , we say Y stoc

if P
of

≤ t

≤

[Y] ≤ P [X t
Y pointwise. In particular,

supremum, etc.

≤]

hastically

for all t ∈

dominates (or, is stochastically

≤

larger than) X, denoted by X Y ,
st.

R. In other words, X Y iff the CDF of X is larger than the CDF
if X is dominated by Y stochastically, so are their means, medians,

Theorem 6.1 (optimal f∗). Consider the compressor f∗ defined by

Then

1. length of codeword:
l(f∗(i)) = ⌊log2 i

2. l

⌋

(f∗(X)) is stochastically the smallest: for any lossless f ,

l(
st.

f∗(X)) ≤ l(f(X

i.e., for any k, P

))

[l(f(X)) ≤ k] ≤ P[l(f∗(X)) ≤ k].

64

Proof. Note that

∣Ak∣ ≜ ∣{x ∶ l(f(x)) ≤ ∑
k

k∣ ≤
=

2i = 2k+1 − 1 = ∣{x ∶ l f
i 0

(∗

where the inequality is because of f is lossless and A exceeds the

(x)) ≤ k∣ ≜ ∣Ak
∗∣.

k total number of binary strings
of length less than k. Then

∣ ∣

P[l(f(X)) ≤ k] = ∑
∈

PX x PX x P l f∗ X k ,
x Ak x A∗

k

since ∣A ∣ ≤ ∣A∗∣ and A∗ contains all 2k 1

() ≤ ∑
∈

() = [(()) ≤]

k k k
+ − 1 most likely symbols.

The following lemma is useful in bounding the expected code length of f∗. It says if the random
variable is integer-valued, then its entropy can be controlled using its mean.

Lemma 6.1. For any Z ∈ N s.t. E[Z] <∞, H(Z) ≤ E[Z]h(1
E[,Z] where h is the binary entropy

function.

Theorem 6.2 (Optimal average code length: exact expression)

)

. Suppose

(⋅)

X
PX 2 Then

E l f

∈

(

N (

)

and PX 1) ≥

[(∗

Proof. Recall that expectation of U Z

(X))] = ∑
∞

P
=

.
k 1

[X ≥ 2k

))]

can be written as

]

[(∗(=

E U k 1 P U k . Then by
Theorem 6.1, E l f X E log

∈ +
P

[] = ∑ [≥]

[⌊ 2X⌋] = ∑k≥1 [⌊log2X⌋ ≥ k] = ∑k
≥

≥1 P [log2X ≥ k].

Theorem 6.3 (Optimal average code length v.s. entropy).

H(X) bits − log2[e(H(X) + 1)] ≤ E[l(f∗(X))] ≤H(X) bits

Note: Theorem 6.3 is the first example of a coding theo
[

rem, which relates the fundamental
E l(f∗

limit
X (operational quantity) to the entropy H X (information measure).

Proof.

(

Define

))]

L

()

(X l f X .

(

RHS:
) ≤

observ
≤

e that
log2m log

)

2

= ∗

L m 1

(()))

LHS:

() ≤ /

(/

since
(

the
))

pmf are ordered
[(

decreasingly
)] ≤ (

by assumption, PX m 1 m, so
PX m , take exp., E L X H X).

H(X) =H(X,L) =H(X L H L

≤ [] + (
1

E L h

∣) + ()

1 +E[L]
) (1 +E[L]) (Lemma 6.1)

= E[L] + log2(1 +E[L]) +E[L] log(1 +
1

≤ +

E L

E[L] + log2(1 E[L log

[]
)

]) + 2 e (x log

E L log e 1 H X (by RHS)

(1 + 1/x) ≤ log e,∀x > 0)

where we hav

≤

e used

[] +

H

((+ (

(X ∣L = k) ≤ k kbits

)))

, since given l(f∗(X))) = k, X has at most 2 choices.

65

Note: (Memoryless source) If X = Sn is an i.i.d. sequence, then

nH S E l f∗ Sn nH S logn O 1 .

For iid sources, the exact beha

(

vior

) ≥

is

[

found

((

in

))]

[SV11

≥

, Theorem

() −

4]

+

as:

()

E[`(f∗(n))] =
1

S nH(S) − logn +O(1
2

) ,

unless the source is uniform (in which case it is nH S O 1 .
Theorem 6.3 relates the mean of l

() + ()

(f∗(X)) ≤ k to that of log 1
2 (enPX(X) tropy). The next result

relates their CDFs.

Theorem 6.4 (Code length distribution of f∗). ∀τ > 0, k ∈ Z+,

P [
1

log2 PX(X)
≤ k] ≤ P [l(f∗(X)) ≤ k] ≤ P [log2

1
k

PX(X)
≤ + τ] + 2−τ+1

Proof. LHS: easy, use PX(m) ≤ 1
log

) log
1

/m. Then similarly as in Theorem 6.3, L(m = ⌊ 2m⌋ log2m

2

≤ ≤

PX(m) . Hence L(X) ≤ log2
1

PX(X) a.s.

RHS: (truncation)

P [L ≤ k] = P [L ≤ k, log2
1

PX(X)
≤ k + τ] + P [L ≤ k, log2

1
k

PX(X)
> + τ]

≤ P [
1

log2 PX(X)
≤ k + τ] + ∑

x∈X
PX(x)1{l(f∗(x))≤k}1{PX(x)≤2−k−τ}

≤ P [log2
1

k
PX(X)

≤ + τ] + (2k+1 − 1) ⋅ 2−k−τ

So far our discussion
(

applies
a random process S1, S2, . . .)

to an arbitrary random variable X. Next we consider the source as
and introduce blocklength. We apply our results to X Sn: the first

n symbols. The following corollary states that the limiting behavior of l
=

(f∗(Sn)) and log 1
PSn(Sn)

always coincide.

Corollary 6.1. Let (S1, S2, . . .) be some random process and U be some random variable. Then

1

n
log2

1
Ð
D

PSn(Sn)
→U ⇔

1

n
l(f∗(Sn))

D
Ð→U (6.1)

and
1

√
n

(log2
1

PSn(Sn)
−H(Sn))

D
Ð→V ⇔

1
√

D
l f∗ Sn H Sn V (6.2)

n

Proof. The proof is simply logic. First recall: convergence in distribution

((()) −

is equiv

())

alen

Ð→

t to convergence
D

of CDF at any continuity point. UnÐ→U ⇔ P [Un ≤ u]→ P [U ≤ u]

√

for all u at which point the CDF
of U is continuous (i.e., not an atom of U).

Apply Theorem 6.4 with k = un and τ = n:

P [
1

n
log2

1

PX(X)
≤ u] ≤ P [

1 1
l

n
(f∗(X)) ≤ u] ≤ P [

n
log2

1

PX(X)
≤ u +

1
√
n
] + 2−

√
n+1.

66

Apply Theorem 6.4 with k =H(Sn) +
√
nu and τ = n1/4:

P [
1

√
n

(log
1

PSn(Sn)
−H(Sn)) ≤ u] ≤ P [

l(f∗(Sn)) −H(Sn)
√
n

≤ u]

≤ P [
1

√
n

(log
1 1

H
PSn(Sn)

− (Sn)) ≤ u + n−1/4] + 2−n
/4+1

Remark 6.2 (Memoryless source). Now let us consider Sn that are i.i.d. Then log 1

∑
P nS (Sn

n
i

) =

=1 log 1
PS(Si) .

1. By the Law of Large Numbers (LLN), we know that 1
n log 1

PSn(Sn)
P
Ð→E log 1 H S .PS S

Therefore in (6.1) the limiting distribution U is degenerate, i.e., U
() = ()

= H(S), and we have
1
n l(f

∗(Sn))
P
Ð→E log 1 vP (H

S S) = (S). [Note: con ergence in distribution to a constant conver-

gence in probability to a constant]

⇔

2. By the Central Limit Theorem (CLT), if V (S) ≜ Var [log 1
PS(S)] <∞,2 then we know that V

in (6.2) is Gaussian, i.e.,

1
√
nV (S)

(log
1

PSn(Sn

Consequently, we have the following Gaussian

)

appro

− nH(S))Ð
D
→N (0,1).

ximation for the probability law of the
optimal code length

1
√

()
(l(f∗(Sn)) − nH(S))Ð

D
→N (0,1

nV S
),

or, in shorthand,

l(f∗(Sn)) ∼ nH(S) +
√
nV (S)N (0,1) in distribution.

Gaussian approximation tells us the speed of 1 l f Sn to entropy and give us a goodn
approximation at

(∗
finite
(

n. In the next section w
(

e

∗

apply our bounds to approximate the
distribution of ` f Sn in a concrete example:

())

6.1.1 Compressing iid

))

ternary source

Consider the source outputing n ternary letters each independent and distributed as

PX = [.445 .445 .11

F

] .

or iid source it can be shown

E[(f∗(Xn))] =
1

` nH(X) −
2

log(2πeV n) +O(1) ,

where we denoted the varentropy of X by

V (X) ≜ Var [log
1

.
PX(X)

]

2V is often known as the varentropy of S.

67

The Gaussian approximation to `(f∗(X)) is defined as

nH(X) −
1

2
log 2πeV n +

√
nV Z ,

where Z ∼ N (0,1).
On Fig. 6.1, 6.2, 6.3 we plot the distribution of the length of the optimal compressor for different

values of n and compare with the Gaussian approximation.
Upper/lower bounds on the expectation:

H(Xn) − log(H(Xn) + 1) − log e ≤ E[`(f∗(Xn))] ≤H

differen

(Xn

Here are the numbers for t n

)

n = 20 21.5 ≤ 24.3 ≤

= ≤ ≤

27.8
n
=

100 130.4 134.4 139.
n 500 684.1 ≤ 689.2 ≤

0
695.0

In all cases above E[`(f∗(X))] is close to a midpoint between the two.

68

Optimal compression: CDF, n = 20, P
X
 = [0.445 0.445 0.110]

P

Rate

P

69

1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55
0

0.01

0.02

0.03

0.04

0.05

0.06

Optimal compression: PMF, n = 100, P = [0.445 0.445 0.110]
X

P

Rate

True PMF
Gaussian approximation

Figure 6.2: CDF and PMF, Gaussian is shifted to the true E[`(f∗(X))]

70

1.3 1.35 1.4 1.45 1.5 1.55
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Optimal compression: CDF, n = 500, P = [0.445 0.445 0.110]
X

P

Rate

True CDF
Lower bound
Upper bound
Gaussian approximation

1.3 1.35 1.4 1.45 1.5 1.55
0

0.005

0.01

0.015

0.02

0.025

0.03

Optimal compression: PMF, n = 500, P = [0.445 0.445 0.110]
X

P

Rate

True PMF
Gaussian approximation

Figure 6.3: CDF and PMF of optimal compressor

71

6.2 Uniquely decodable codes, prefix codes and Huffman codes

Huffman

code

all lossless codes

uniquely decodable codes

prefix codes

We have studied f∗, which ac
∗

hieves the stochastically smallest code length among all variable-
length compressors. Note that f is obtained by ordering the pmf and assigning shorter codewords to
more likely symbols. In this section we focus on a specific class of compressors with good properties
which lead to low complexity and short delay when decoding from a stream of compressed bits.
This part is more combinatorial in nature.

We start with a few definition. Let A+ = ⋃n≥1A
n denotes all non-empty finite-length strings

consisting of symbols from alphabet

Definition 6.1 (Extension
f(a1, . . . , an) = (f(a1) (

of a code). The extension of f 0,1 is f 0,1 where
, . . . , f an)) is defined

A

by concatenating
∶ A → {

∶ A→ { }

the bits.

∗ + ∗

Definition
+

6.2
∗

(Uniquely decodable codes). f 0,1 uniquely

}

de

∶ A →

∗ is codable if

{

its extension

}

f 0,1 is injective.

Definition 6.3 (Prefix codes). f
(e.g.,

∶ A

010

→ {

is a

}

prefix of 0101).

Example:

∶ A→ {0, 1}∗ is a prefix code3 if no codeword is a prefix of another

• f(a) = 0, f(b) = 1, f(c) = 10 – not uniquely decodable, since f(ba) = f(c) = 10.

• f

• f

(a) = 0, f(b

a 0, f b

) = 10, f c 11 – uniquely decodable and prefix.

() = () = 01, f

() =

(c
as 0 appears, we know

)

that
= 011, f(d

las
) 0111 – uniquely decodable but not prefix, since as long

the t
=

codeword has terminated.

Remark 6.3.

1. Prefix codes are uniquely decodable.

3Also known as prefix-free/comma-free/instantaneous code.

72

2. Similar to prefix-free codes, one can define suffix-free codes. Those are also uniquely decodable
(one should start decoding in reverse direction).

3. By definition
∶ X →

, an
{

y uniquely
}+

decodable code does not have the empty string as a codeword.
Hence f 0,1 in both Definition 6.2 and Definition 6.3.

4. Unique decodability means that one can decode from a stream of bits without ambiguity, but
one might need to look ahead in order to decide the termination of a codeword. (Think of the
last example). In contrast, prefix codes allow the decoder to decode instantaneously without
looking ahead.

5. Prefix code ↔ binary tree (codewords are leaves) ↔ strategy to ask “yes/no” questions

Theorem 6.5 (Kraft-McMillan).

1. Let f ∶ A → {0,1
inequality

}∗ be uniquely decodable. Set la l f a . Then f satisfies the Kraft

∑
∈A

2 l

= (())

a

− a ≤ 1. (6.3)

2. Conversely, for any set of code length {

=

la ∶ a ∈ A}

(())

satisfying (6.3), there exists a prefix code f ,
such that la l f a .

Note: The consequence of Theorem 6.5 is that as far as compression efficiency is concerned, we can
forget about uniquely decodable codes that are not prefix codes.

Proof. We prove the Kraft inequality for prefix codes and uniquely decodable codes separately.
The purpose for doing a separate proof for prefix codes is to illustrate the powerful technique of
probabilistic method. The idea is from [AS08, Exercise 1.8, p. 12].

Let f be a prefix code. Let us construct a probability space such that the LHS of (6.3) is the
probability of some event, which cannot exceed one. To this end, consider the following scenario:
Generate independent Bern(1 bits. Stop if a codeword has been written, otherwise continue. This2

process terminates with probability l
a 2 a . The summation makes sense because the events that

a given codeword is written are

)

mutually
∑ ∈A

exclusiv

−

e, thanks to the prefix condition.
Now let f be a uniquely decodable code. The proof uses generating function as a device for

counting.
=

(The analogy in coding theory
() =

is

∑

the weigh
=

t

∑

enumerator function.) First
Then L max ∈A l is finite. Let G z zla L l

a a f a l 0Al f z , where Al f
of codewords of length l in f . For k 1, define fk k 0, 1 as the symbol-b

A

of f . Then G z zl f
k ak

∈A

la

=

la k kL
1 kfk ak k a a z

()
∗

Gf z

(

l 0

)

assume is finite.
denotes the number

() = ∑ ∈A
(())

≥

k

∶ A

= ∑ 1
⋯∑ +⋯+

→ { }

= [()] = ∑

y-symbol extension

= Al(f
k)zl

() ≤ (/) =

. By unique

decodability of fk is lossless. Hence k l

∑

f , k

− = (/) ≤

Al f

(

2

)

.
/

Therefore

→ A

we have Gf 1 2 Gfk 1 2 kL

for all k
A

.
′
Then a∈A 2 la Gf 1 2 limk

subset ⊂ A, repeating the same argumen
→∞ kL 1 k 1. If is countably infinite, for any finite

′
t gives a

(/) ≤

arbitrariness of .
∑ ∈A′ 2

−la 1. The proof is complete by the

Conversely, given a set of code lengths l

≤

la
a a s.t. a 2 1, construct a prefix code f

as follows: First

A

relabel A to N and assume that l i 1 lk
1 l2 For eac

−

h i, ai k 1 2 1 by Kraft
inequality. Thus we define the codeword f i

{ ∶

0,

∈

1

A} ∑ ≤

≤ ≤
∈A

∗ as the first li bits in
≜

the binary

− −

expansion of
ai. Prov

≥

e that f is a prefix
− ≤

co
−
de by contradiction: Suppose for some j i, f i

∑

is

=

the prefix

<

of f j ,
since l l . Then a a 2 li li li 1 li

j i j i . But aj a

(

i

) ∈ { }

> () ()

− = 2− + 2− + + . . . > 2− , which is a contradiction.

Open problems:

73

1. Find a probabilistic proof of Kraft inequality for uniquely decodable codes.

2. There is a conjecture of Ahslwede that for any sets of lengths for which ∑ 2−la ≤ 3
4 there exists

a fix-free code (i.e. one which is simultaneously prefix-free and suffix-free). So far, existence
has only been shown when the Kraft sum is ≤ 5 , cf. [Yek04].8

In view of Theorem 6.5, the optimal average code length among all prefix (or uniquely decodable)
codes is given by the following optimization problem

L∗(X) ≜ min P
a

∑
∈A

X(a)la (6.4)

s.t. 2 la 1
a

−

la

∑
∈A

≤

∈ N

This is an integer programming (IP) problem, which in general is hard to solve computationally.
It is remarkable that this particular IP problem can be solved in near-linear time, thanks to the
Huffman

)

algorithm. Before describing the construction of Huffman codes, let us give boun to
L∗(

ds
X in terms of entropy:

Theorem 6.6.
H(X) ≤ L∗(X) ≤H(X) + 1bit. (6.5)

Proof. “≤” Consider the following length assignment l = ⌈log 1
a 2 PX(a)⌉,

4 which satisfies Kraft since

∑a∈A 2−la ≤ ∑a∈A PX(a) = 1. By Theorem 6.5, there exists a prefix code f such that l(f(a)) =

⌈log2
1

≥

andPX(a)⌉ El f X H X 1.

“ ” We give tw

(

o

(

pro

))

of

≤

s for

(

the

) +

converse. One of the commonly used ideas to deal with
combinatorial optimization is relaxation. Our first idea is to drop the integer constraints in (6.4)
and relax it into the following optimization problem, which obviously provides a lower bound

L∗(X) ≜ min
a

∑
∈A
PX(a

s.t. 2 la

)la (6.6)

a

− 1 (6.7)

This is a nice convex programming problem,

∑
∈A

since

≤

the objective function is affine and the feasible set
is convex. Solving

=

(6.6) by Lagrange multipliers (Exercise!) yields the minimum is equal to H(X
(achieved at l 1

a log2

)

PX(a)).
Another proof is the following: For any f satisfying Kraft inequality, define a probability measure

Q(a) = 2−la

∑a∈A 2−la
. Then

El(f(X)) −H(X) = D(P ∥Q) − log
a

∑
∈A

2−la

≥ 0

Next we describe the Huffman code, which achieves the optimum in (6.4). In view of the fact
that prefix codes and binary trees are one-to-
binary tree bottom-up: Given a pmf {PX()

one, the main idea of Huffman code is to build the
a ∶ a ∈ A},

4Such a code is called a Shannon code.

74

1. Choose the two least-probable symbols in the alphabet

2. Delete the two symbols and add a new symbol (with combined weights). Add the new symbol
as the parent node of the previous two symbols in the binary tree.

The algorithm terminates in ∣A∣ − 1 steps. Given the binary tree, the code assignment can be
obtained
(∣A∣

b
∣A

y assigning 0/1 to the branches. Therefore the time complexity is O (sorted pmf) or
O log (unsorted pmf).
Example:

∣)

A = {a, b, c, d, e}, PX = {0.25,0.25,0.2,0.15,0.15

(∣A∣)

}.
Huffman tree:

0.45

b c

0 1
0.55

0.3

ed

0 1
a

0 1

0

codebook:

1
f(a) = 00

f(b) =

() =

10

f c 11

f(d) = 010

f(e) = 011

Theorem 6.7 (Optimality of Huffman codes). The Huffman code achieves the minimal average
code length (6.4) among all prefix (or uniquely decodable) codes.

Proof. [CT06, Sec. 5.8].

Remark 6.4 (Drawbacks of Huffman codes).

1. Does not exploit memory. Solution: block Huffman coding. Shannon’s original idea from
1948 paper: in compressing English text, instead of dealing with letters and exploiting the
nonequiprobability of the English alphabet, working with pairs of letters to achieve more
compression (more generally, n-grams). Indeed, compressing the block S1, . . . , Sn using its
Huffman code achieves H S1, . . . , Sn within one bit, but the complexit

(

y is n!
)

2. Non-universal (constructing

(

the Huffman

)

code needs to know the source distribution).

∣A∣

This
brings us the question: Is it possible to design universal compressor which achieves entropy
for a class of source distributions? And what is the price to pay? – Homework!

There are much more elegant solutions, e.g.,

1. Arithmetic coding: sequential encoding, linear complexity in compressing (S1, . . . , Sn) (see
later).

2. Lempel-Ziv algorithm: low-complexity, universal, provably optimal in a very strong sense.

To sum up: Comparison of average code length (in bits):

H(X) − log2[e(H(X) + 1)] ≤ E[l(f∗(X))] ≤H(X) ≤ E[l(fHuffman(X))] ≤H(X) + 1.

75

MIT OpenCourseWare
https://ocw.mit.edu

6.441 Information Theory
Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

