
§ 7. Fixed-length (almost lossless) compression. Slepian-Wolf problem.

7.1 Fixed-length code, almost lossless

Coding paradigm:

Compressor
f ∶ X→{0,1}k

Decompressor
g∶ {0,1}k→X∪{e}

X X ∪ {e}{0,1}k

Note: If we want g ○ f = 1X , then k ≥ log2 ∣X ∣. But, the transmission link is erroneous anyway...
and it turns out that by tolerating a little error probability ε, we gain a lot in terms of code length!

Indeed, the key idea is to allow errors: Instead
consider only lossless decompression for a subset

( ( )) = ∈ X

g f x

S ⊂ X

of insisting on g f x x for all x ,
:

( ( ))
⎪
⎧⎪x x

e x

∈ S

and the probability of error:

⎨

P

⎪⎪⎩ ∈/ S

compressor-dec

[g(f(X

=

Definition 7.1. A ompr

))

e

≠X] = P g f X e .

ssor pair

[

f

(

, g

(

is

))

called

= ]

a k, ε -code if:

f ∶ X → {

∶ { }

0

→

,1

(

k

) ( )

g 0,1 k

}

X ∪ {e

such that g

}

(f(x)) ∈ {x, e} and P [g(f(X)) = e] ≤ ε.

Fundamental limit:
ε∗(X,k) ≜ inf

The following result connects the respectiv
compression and variable-length lossless compression

{ε ∶ ∃(k, ε -code for X

e fundamen

)

tal limits

}

of fixed-length almost lossless
(Lecture 6):

Theorem 7.1 (Fundamental limit of error probabiliy).

ε∗(X,k) = P [l(f∗(X)) ≥ k] = 1 − sum of 2k − 1 largest masses of X.

Proof. The proof is essentially tautological. Note 1 2 2k 1 2k 1. Let 2k

1 most likely realizations of X
+ + ⋯ + − = − S = { −

}. Then

ε∗(X,k

Optimal codes:

) = P [X ∈/ S] = P [l(f∗(X)) ≥ k] .
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• Variable-length: f∗ encodes the 2k−1 symbols with the highest probabilities to φ, 0, 1, 00, . . . , 1k−1 .

• Fixed-length: The
(

optimal
)

compressor f maps the elements of S into 00 . . . 00 , . . . , 11 . . . 10
and the rest

(

to 11 . . . 11 . The decompressor g decodes perfectly except for ou

{

tputting e upon

}

receipt of 11 . . .11

( ) ( )

).

Note: In Definition 7.1 we require that the errors are always detectable, i.e., g f x x or e.
Alternatively, we can drop this requirement and allow undetectable errors, in which case we can of
course do better since we have more freedom in designing codes. It turns out that

(

w

(

e do

)) =

not gain
much by this relaxation. Indeed, if we define

ε̃∗(X,k) = inf{P [g(f(X X f 0,1 k, g 0,1 k e ,

then ε̃∗(X,k) = −

∑ ( )

1 sum
≜

of
{

2
∶

k largest
( ( )) =

mass

)) ≠

es of

] ∶

X.

∶ X

This

→ {

follows

}

immediately

∶ { } →

from

X ∪ {

} ∣ ∣ ≤

P
2

}}

g

∈C PX x where C
[ (f X X

x x g f x x satisfies C k, because f takes no more than 2k values.
Compared
∗(

to Theorem 7.1, we see that ε̃ X, k and ε̃ X, k do not differ much. In

(

particul

)) = ]

ar,

=

ε X, k + 1) ≤ ε̃∗(X,k) ≤ ε∗(X,k .

∗( ) ∗

Corollary 7.1 (Shannon). Let

( )

)

Sn be i.i.d. Then

lim ε Sn
0 R H S

,nR
n

∗
→∞

( ) = {
1 R

> ( )

<H(S

lim ε Sn, nH S
n

)

∗
→∞

( ( ) +
√
nV (S)γ) = 1 −Φ(γ).

where Φ(⋅) is the CDF of N (0, 1), H(S) = E log 1
PS(S) – entropy, V (S) = Var log 1 –PS(S) varentropy

is assumed to be finite.

Proof. Combine Theorem 7.1 with Theorem 6.1.

Theorem 7.2 (Converse).

ε∗(X,k) ≥ ε̃∗(X,k) ≥ P [
1

log2 PX(X)
> k + τ] − 2−τ , ∀τ > 0.

Proof. Identical to the converse of Theorem 6.4. Let C = {x ∶ g(f(x)) = x}. Then ∣C ∣ ≤ 2k and

P [X ∈ C] ≤ P [log2
1 kPX(X) ≤ + τ] + P [X ∈ C, log 1

2 PX(X) > k + τ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤2−τ

Two achievability bounds

Theorem 7.3.

ε∗(X,k) ≤ P [
1

log2 k (7.1)
PX X

and there exists a compressor-decompressor pair that achieves

( )
≥

the

]

upper bound.

Proof. Construction: use those 2k − 1 symbols with the highest probabilities.
This is essentially

(

the
) ≤

same as the lower bound in Theorem 6.3 from Lecture 6. Note that the
mth largest mass PX m 1

m . Therefore

ε∗(X,k) = ∑
m≥2k

PX(m) =∑1{m≥2k}PX(m) ≤∑1
{ 1
PX (m)

≥2k}
PX(m) = E1

{log2
1

.
k

PX (X)
≥ }
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Theorem 7.4.

ε∗(X,k) ≤ P [
1

log2 k τ 2 τ , τ 0 (7.2)
PX(X

that

)
>

achieves

− ] + −

and there exists a compressor-decompressor pair the upp

∀

er

>

bound.

Note: In fact, Theorem 7.3 is always stronger than Theorem 7.4. Still, we present the proof of
Theorem 7.4 and the technology behind it – random coding – a powerful technique for proving
existence (achievability) which we heavily rely on in this course. To see that Theorem 7.3 gives
a better bound, note that even the first term in (7.2) exceeds (7.1). Nevertheless, the method of
proof for this weaker bound will be useful for generalizations.

Proof. Construction: random coding (Shannon’s magic). For a given compressor f , the optimal
decompressor which minimizes the error probability is the maximum a posteriori (MAP) decoder,
i.e.,

g∗(w) = argmaxPX
x

∣f(X)(x

which can be hard to analyze. Instead, let us consider

∣w) = argmax x ,
x∶f

follo

(x)=
PX

w

the wing (sub

( )

optimal) decompressor g:

⎧⎪
( ) =

⎪⎪
⎨

x, ∃! x ∈ X s.t. f(x) 1

g w

= w and log

⎪

2

⎪⎪⎩

kPX(x
p

) ≤ τ,

(exists unique high- robability x that is mapp

−

ed to w)
e, o.w.

Denote f(x) = cx and the codebook C = {cx ∶ x ∈ X} ⊂ {0, 1}k. It is instructive to think of as a
hashing table.

Error probability analysis: There are two ways to make an error ⇒ apply union bound. Before

C

proceeding, define

J(x,C) ≜ {x′ ∈ X ∶ cx′ =
1

cx, x
′ ≠ x, log2 k

PX(x′

of

)
< τ

to be the set high-probability inputs whose hashes collide with that

−

of

}

x. Then we have the
following estimate for probability of error:

P [g(f(X)) = e] = P [{
1

log2 PX(X)
≥ k − τ} ∪ {J(X,C) ≠ ∅}]

≤ P [log2
1

k τ P J X, φ
PX X

The first term does not
C

depend on the codebo

(

ok

)
≥ − ] + [ ( C) ≠ ]

C, while the second term does. The idea now
is to randomize over and sho

−
w that when we average over all possible choices of codebook, the

second term is smaller than 2 τ . Therefore
C

there exists at least one codebook that achieves the
desired bound. Specifically, let us consider
independently of X. Equivalently, since
rows correspond to codewords, we choose

C

which is uniformly distributed over all codebooks and
can be represented by a ∣X ∣ × k binary matrix, whose

each entry to be independent fair coin flips.
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Averaging the error probability (over C and over X), we have

EC[P [J
⎡

(X,C) ≠ φ]] = EC,X
⎢
⎢
⎢
⎣
1
{∃x′≠X ∶log 1

2 PX (x′)
<k−τ,cx′=cX}

⎤
⎥
⎥
⎥
⎦

≤ EC,X
⎡
⎢
⎢
⎢
⎣
∑
x′≠X

1
{log2

1 c
P

<
1

X (x′)
k−τ} { x′=cX}

⎤
⎥
⎥

2

⎥
(union bound)

= −kEX [
x

∑ (
≠

1 x
X

{PX ′ −

′
)>2 k+τ

⎦

}]

≤ 2−k

x

∑
′

{ ( )> }

≤ 2 k2k
∈X

1 P x′ 2−k+τX

− −τ = 2−τ .

Note: Why the proof works: Compressor f(x) =

∈ { }

cx, hashing x to a random k-bit string
cx 0,1 k.

∈ X

high-probability x ⇔ log 1
2 k τ P x 2 k τ

X .PX x

Therefore the cardinality of high-probabilit

− +
( )

y x’s is at most 2k τ 2k number of strings. Hence
the chance of collision is small.

≤ − ⇔ ( ) ≥
−

Note: The random coding argument is a canonical example of prob

≪

abilistic

=

method : To prove the
existence of something with certain property, we construct a probability distribution (randomize)
and show that on average the property is satisfied. Hence there exists at least one realization with
the desired property. The downside of this argument is that it is not constructive, i.e., does not give
us an algorithm to find the object.
Note: This is a subtle point: Notice that in the proof we choose the random codebook to be uniform
over all possible codebooks. In other words, C cx x consists of iid k-bit strings. In fact,
in the proof we only need pairwise independence,
should we care about this? In fact, having access

= {

i.e.,
to external

∶

cx

∈ X}

It is more desirable to use less randomness in the random co

⊥⊥ cx′ for any x ≠ x′ (Why?). Now, why
randomness is also a lot of resources.

ding argument. Indeed, if we use zero
randomness, then it is a deterministic construction, which is the best situation! Using pairwise
independ

∣X ∣

ent codebook requires significantly less randomness than complete random coding which
needs k bits. To see this intuitively, note that one can use 2 independent random bits to generate
3 random bits that is pairwise independent but not mutually independent, e.g., {b1, b2, b1 ⊕ b2 .
This observation is related to linear compression studied in the next section, where the codeword
we generated are not iid, but related through a linear mapping.

}

Remark 7.1 (AEP for memoryless sources). Consider iid Sn. By WLLN,

1

n
log

1 P
H S . (7.3)

PSn Sn

For any δ

( )
Ð→ ( )

> 0, define the set

T δn = {sn ∶ ∣
1

n
log

1

PSn(sn)
−H(S)∣ ≤ δ} .
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As a consequence of (7.3),

1. P [Sn ∈ T δn]→ 1 as n

2.

→∞.

T δ n n
n 2(H(S)+δ) .

In other

∣ ∣

w

≤

ords, Sn is

≪

con

∣S

cen

∣

trated on the set T δn which is exponentially smaller than the whole
space. In almost compression we can simply encode this set losslessly. Although this is different
than the optimal encoding, Corollary 7.1 indicates that in the large-n limit the optimal compressor
is no better.

The propert
∈

y (7.3) is often referred as the Asymptotic Equipartition Pr
that for any sn T δn, its likelihood is concentrated around PSn(s

n) ∈ 2−(H(S

sequences.

)±
op (AEP). Note
δ)

erty
n, called δ-typical
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Next we study fixed-blocklength code, fundamental limit of error probability ε∗(X,k) for the
following coding paradigms:

• Linear Compression

• Compression with Side Information

– side info available at both sides

– side info available only at decompressor

– multi-terminal compressor, single decompressor

7.2 Linear Compression

From Shannon’s theorem:

ε∗ X,nR 0 or 1 R H S

Our goal is to find compressor

(

with

)

structures.

Ð→

The simplest

≶

one

( )

can think of is probably linear
operation, which is also highly desired for its simplicity (low complexity). But of course, we have to
be on a vector space where we can define linear operations. In this part, we assume X Sn, where
each coordinate takes values in a finite field (Galois Field), i.e., Si Fq, where q is the cardinality of
Fq. This is only possible if q p

∈

= n for some prime p and n ∈ N. So Fq

=

= Fpn .

Definition 7.2 (Galois Field). F is a finite set with operations , where

• a b

+ ⋅)

+ associative and commutative

(

• a b associative and commutative

• 0,

⋅

1 ∈ F s.t. 0 + a = 1 a a.

• ∀a,∃ − a, s.t. a + (−a

⋅ =

) = 0

• ∀a ≠ 0,∃a−1, s.t. a−1a = 1

• distributive: a ⋅ (b

Example:

+ c) = (a ⋅ b) + (a ⋅ c)

• Fp Z pZ, where p is prime

• F 2
4

=

= {0

/

,1, x, x + 1}
[ ]

with addition and multiplication as polynomials mod x + x + 1) over
F2 x .

(

Linear Compression Prob

∈

lem: x ∈ Fnq , w = Hx where H ∶ Fnq → Fk
×

q is linear represented by a

matrix H Fk n
q .

⎡
⎢
⎢
w1

wk

⎥
⎤
⎥

⎡
⎢

⎢
⎢ ⋮ ⎥

⎥
=
⎢
⎢
⎢

h11

⋮

. . . h1n x1

⎢
⎣ ⎦

⎥
⎣
⎢ hk1 . . . hk

⋮

n

⎤
⎥
⎡

⎥
⎢

⎥
⎢
⎢

x
⋮

n

⎤
⎥
⎥
⎥

Compression is achieved if k ≤ n, i.e., H is a fat matrix. Of

⎥
⎥⎢
⎢

course,

⎥
⎥

we have to tolerate some error
(almost lossless). Otherwise, lossless compression is only p

⎦

os

⎣

sible

⎦

with k ≥ n, which not interesting.
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Theorem n

H ∶ →

7.5 (Achievability). Let X Fq be a random vector. τ 0, linear compressor

Fnq Fkq and decompressor g

∈ ∀ > ∃

∶ Fkq

P g HX

→ Fnq ∪ {e}, s.t.

[ ( ) ≠X] ≤ P [
1

logq k
PX(X)

> − τ] + q−τ

Proof. Fix τ . As pointed in the proof of Shannon’s random coding theorem (Theorem 7.4), given
the compressor H, the optimal decompressor is the MAP decoder, i.e., g w argmaxx Hx w PX x ,
which outputs the most likely symbol that is compatible with the codeword received. Instead, let us
consider the following (suboptimal) decoder for its ease of analysis:

( ) = ∶ = ( )

g w

⎧⎪⎪x

e

∃

otherwise

!x ∈ Fnq ∶ w =Hx, x − h.p.

where we used the short-hand:

( ) =
⎪
⎨

⎩
⎪

x − h.p. (high probability) ⇔
1

logq ( )
< k − τ ⇔ P k+τ

X(x) ≥ q− .
PX x

Note that this decoder is the same as in the proof of Theorem 7.4. The proof is also mostly the
same, except now hash collisions occur under the linear map H. By union bound,

P [g(f( )) =
1

X e] ≤ P [logq PX(x)
> k − τ] + P [∃x′ − h.p. ∶ x′ /=X,Hx′ =HX]

(union bound) ≤ P [logq
1

k
PX(x)

> − τ] +∑PX
x

(x)
x

′
′

Now we use random coding to average the second term over all

− ′=
Hx

h.p.,x

∑
/

1{Hx
x

possible choices

=

of H.

}

Specifically,
choose H as a matrix independent of X where each entry is iid and uniform on Fq. For distinct x0

and x1, the collision probability is

PH[Hx1 =Hx0] = P

=

H

P

[Hx2 = 0

H H1 x2

]

[ ]

2 x

0

(

⋅ =

x x1 0 0
k iid

≜

rows

− ≠ )

where H1 is the first row of the matrix H, and each row of H is indep

(

endent.

)

This is the probability
that Hi is in the orthogonal complement of x2. On Fn

−
q , the orthogonal complement of a given

non-zero
− / =

vector
/

has cardinality qn 1. So the probabilit
/

y for the first row to lie in this subspace is
qn 1 qn 1 q, hence the collision probability 1 qk. Averaging over H gives

E k
H
x

∑ 1
h.p.,x x

{Hx′ =Hx} = P
x

′ ′ ′ ′ − k−τ −k −τ
′− ′=/ ′

Thus the bound holds.

− /
x

h.p.,x

∑
=

H H ∶ x − h.p., x
x

[ =/ x}∣q ≤ q
′

=Hx] = ∣{x q = q

Notes:

1. Compared to Theorem 7.4, which is obtained by randomizing over all possible compressors,
Theorem 7.5 is obtained by randomizing over only linear compressors, and the bound we
obtained is identical. Therefore restricting on linear compression almost does not lose anything.
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2. Note that in this case it is not possible to make all errors detectable.

3. Can we loosen the requirement on Fq to instead be a commutative ring? In general, no, since
zero divisors in the commutativ

/

e ring ruin the key proof item of low collision probability in
the random hashing. E.g. in Z 6Z

P

⎡
⎢
⎢

1

H

⎡
⎢

0
⎥
⎤ ⎤

0
0
⎥
⎥

6−k
⎢
⎢
⎡

⎥ ⎢
⎢
⎡ 2

but P H

⎤
⎥
⎥

⎤

⎢
⎢

⎥

⎢
⎢ ⎥

⎢

0

=
⎥
= ⎢

⎥
⎥
⎥
⎥ ⎢

⋮
⎥ ⎢

⎢
⎥

⎢
⎢

⎢ ⎢

0
⋮ ⎥
⎥ =

⎥
⎥ = −

⎢
⎢

⎢

k

3 2 0 in Z 6Z.

⎦
⎥
⎥

⎦
⎥
⎥

⎥

since 0 2

⎣
⎢ ⎢

⎢ ⎢
⎣

⎥
⎥

0

⎥
⎥

3 ,

⎣ ⎣
⎢

⎦ ⎦

7.3 Compression

⋅ = ⋅ =

with

/

Side Information at both compressor and
decompressor

Compressor Decompressor
X X ∪ {e}{0,1}k

Y

Definition 7.3 (Compression wih Side Information). Given PXY ,

• f

• g

∶ X

0,

×

1

Y

k

→ {0,1}k

• P

∶ e

[g

{ } ×Y → X ∪ { }

(f(X,Y ,Y X ε

• Fundamental

)

Limit:

) ≠ ]

ε

<

∗

Note: The side information Y

(X ∣Y, k) = inf{ε ∶ ∃(k, ε) − S.I. code

need not be discrete. The source

}

=

X is, of course, discrete.
Note that conditioned on Y y, the problem reduces to compression without side information

where the source X is distributed according to PX
and decompressor, they can use the best code tailored
in Definition 7.1, the optimal probability of error for

∣Y =y. Since Y is known to both the compressor
for this distribution. Recall ε X, k defined

∗( )

compressing X using k bits, whic

∗

h can also be
denoted by ε PX , k . Then we have the following relationship

( )

ε∗(X ∣Y, k) = Ey∼PY [ε
∗(PX ∣Y

whic

=y, k)],

h allows us to apply various bounds developed before.

Theorem 7.6.

P [
1

log
PX ∣Y (X ∣Y )

> k + τ] − 2−τ ≤ ε∗(X ∣Y, k) ≤ P [log2
1

PX ∣Y (X ∣Y )
> k − τ] + 2−τ , ∀τ > 0
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Corollary 7.2. (X,Y ) = (Sn, Tn) where (S1, T1), (S2, T2

lim

), . . . are iid pairs ∼ PST

n→∞
ε∗(Sn∣Tn, nR)

⎪
⎧⎪

= ⎨
⎪⎪

0 R H

1

> (S∣T

R

)

<H(S∣T )

Proof. Using the converse Theorem 7.2 and achiev

⎩

ability Theorem 7.4 (or Theorem 7.3) for com-
pression without side information, we have

P [
1

log
PX ∣Y (X ∣y)

> k + τ ∣Y = y] − 2−τ ≤ ε∗(PX ∣Y =y, k) ≤ P [log
1

PX ∣Y (X ∣y)
> k∣Y = y]

By taking the average over all y ∼ PY , we get the theorem. For the corollary

1

n
log

1

PSn∣Tn(Sn∣Tn)
=

1 1
log

i
∑
n

n =1 PS∣T (Si∣Ti)
Ð→H(S∣T ) (in probability)

as n→∞, using the WLLN.

7.4 Slepian-Wolf (Compression with Side Information at
Decompressor only)

Consider the compression with side information problem, except now the compressor has no access
to the side information.

Compressor Decompressor
X X ∪ {e}{0,1}k

Y

Definition 7.4 (S.W. code). Given PXY ,

• f ∶ X → {0,1}k

• g ∶ {0,1}k ×Y → X ∪ {e

• P

}

• Fundamen

[g(f(X), Y ) =/ X] ≤ ε

tal Limit: ε∗SW

No

= inf{ε k, ε -S.W. code

w the very surprising result: Ev

∶

en

∃(

without

)

side information

}

at the compressor, we can still
compress down to the conditional entropy!

Theorem 7.7 (Slepian-Wolf, ’73).

ε∗(X ∣
1

Y, k) ≤ ε∗SW(X ∣Y, k) ≤ P [log k
PX ∣Y (X ∣Y )

≥ − τ] + 2−τ
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Corollary 7.3.

lim
n→∞

ε∗SW

⎧

Note: Definition 7.4 does not incl

(
0 H T

Sn Tn, nR
⎪⎪ R

1 R

>

H

(S

S

∣

T

)

ude

∣

the zero-undected-error

) = ⎨
⎪⎪ < ( ∣

condition

)

(that is g f x , y x
or e). In other words, we allow for the possibility of

⎩

undetected errors. Indeed, if we require this
condition,
( )

the side-information savings will be mostly gone. Indeed, assuming PX,Y x,

(

y

( )

0 for

) =

all
x, y it is clear that under zero-undetected-error

{ }

condition, if f x1 f x2 c then g c e. Thus
except for c all other elements in 0, 1 k must have unique preimages.

( ) >

es not hold if one

( ) =

Similarly
Slepian-Wolf theorem do uses the setting of variable-length

( ) =

, one can
( )

sho
=

w that
lossless compression

(i.e. average length is H X not H X Y .)

Proof. LHS is obvious, since

( )

side information

( ∣ )

at the compressor and decoder is better than only at
the decoder.

∈ X

For
}

the RHS, first generate
( )

a random codebook with iid uniform codewords: C = {cx
x independently of X,Y , then define the compressor and decoder as

∈ {0,1}k ∶

f(x Cx

x !
g(

x Cx w,x h.p. y
w

)

, y

=

where w

)
⎪⎪
⎨

⎧⎪⎪

e

=
∃ ∶ =

⎩0 o.w.

− ∣

used the shorthand x−h.p.∣y⇔ log 1
2 PX∣Y (x∣y) < k − τ . The error probability of this scheme

is

E(C) = P [log
1

k
PX ∣Y (X ∣Y )

≥ − τ or J(X,C ∣Y ) =/ ∅]

≤ P [
1

log
PX ∣Y (X ∣Y )

≥ k − τ] + P [J(X,C ∣Y ) /= ∅]

= P [log
1

k τ PXY x, y 1{J
Y

(x,C
PX Y X x,y

∣y)=/∅}.

where J(x,C ∣y) ≜ {x′ ≠ x ∶ x h.p. y

∣

,

(

c

∣ )
≥ − ] +∑ ( )

x cx .

[

No
=

w av
]

eraging
= −

over C

′

and
−

′
applying
∣ =

the

′}

union bound: use ∣{x′ ∶ x′ − h.p.∣y}∣ ≤
≠

2k−τ and
P Cx′ Cx 2 k for any x x ,

PC[J(x,C ∣y) ≠ ∅] ≤ EC [
x

∑ 1
′

h.p.

2

{x
x

′− ∣y

k τ C C

} {
≠

1 Cx′=Cx}]

= − [ = ]

Hence the theorem follows as usual from tw

=

P
2−

x x

τ

′

o terms in the union bound.

7.5 Multi-terminal Slepian Wolf

Distributed compression: Two sources are correlated. Compress individually, decompress jointly.
What are those rate pairs that guarantee successful reconstruction?
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Y

( ˆ ˆX,Y )

Definition 7.5. Given PXY ,

• (f1, f2, g) is (

[( )

k
=/
1,
(

k , 1
2 ε)

)]

-co
≤

de if f1 0, 1 k , f k2 k1 k2
2 0, 1 , g 0, 1 0, 1 ,

P ˆ ˆ ˆ ˆs.t. X,Y X,Y ε, where
∶ X →

X,
{

Y
}

g f1 X
∶ Y

,
→

f2

{

Y
} ∶ { } ×{ } → X ×Y

• Fundamental limit: εSW X,Y, k1, k

(

2 inf

) =

ε

( ( ) ( )).

∗

Theorem 7.8. X,Y Sn,

(

Tn - iid pairs

) = { ∶ ∃(k1, k2, ε)-code}.

( ) =

lim

( )

0

→∞
ε∗

,
SW Sn

R1 R2 SW
, Tn, nR1, nR2

n

⎧⎪⎪

1

(

R1,R2

) ∈R

SW

where denotes

(

r

) = ⎨
⎪
⎩⎪ ( ) / R

RSW the Slepian-Wolf rate egion

∈

SW

⎪
⎧⎪
⎪⎪

R = ⎨
⎪⎪
( ∶

a H S T

⎪
⎩

a, b)

⎪

b T

a

≥

H

b

(

H

∣

S

S

)

≥ ( ∣ )

e:

+ ≥ , T

Note: The rate region

)

RSW typically looks lik

(

R2

Achievable
H(T ) Region

H(T |S)
R1

H(S|T ) H(S)

Since H(T ) −H(T ∣S) =H(S) −H(S

Pr

∣T ) = I(S;T ), the slope is −1.

oof. Converse: Take (R1,R2) ∈/ RSW. Then one of three cases must occur:

1. R1 < H(S∣T ). Then even if encoder and decoder had full Tn, still can’t achieve this (from
compression with side info result – Corollary 7.2).

2. R2 <H(T ∣S (same).

3. R1 +R2 <H

)

(S,T ). Can’t compress below the joint entropy of the pair (S,T ).
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Achievability: First note that we can achieve the two corner points. The point H S ,H T S
can be approached by almost lossless compressing S at entropy and compressing T with side informa-
tion S at the decoder. T S
lary ∶

o make this rigorous, let k1

( ( ) ( ∣ ))

S

n H δ and k2

7.1, there exist f n 0 k1 and g k1
1 ,1 1 0,1 n s.t. P g1 f1

Theorem 7.7, there exist f n k2 k1 n n
2 0, 1 and g2

=

0, 1

( ( )+ )

s.t.

=

P

( ( ∣ )+ )

εn 0. Now that Sn is not

→

av

{

ailable,

}

feed the

∶ {

S.W.

}

de

→

compressor

S [

with

( (

n H
n

g
))

T
S ≠

S δ . By Corol-
n S εn 0. By

→
2 f2 Tn

f

]

, Sn Tn

g Sn and

≤

define

→

the
joint decompressor by g w1

∶

,

T

w2

→ {

g1

}

w1 , g2 w2,

∶

g

{

1 w

}

1

×S → T [ ( ( ) ) ≠ ] ≤

( ( ))

( ) = ( ( ) ( ( ))) (see below):

f1 g1

f2 g2

Sn Ŝn

Tn T̂n

Apply union bound:

P [

=

g f1 Sn

[

, f2 Tn Sn, Tn

n n n n n

≤

P
P [

g f n n
1

g

( ( ) ( )) ≠ ( )]

2ε

(

f

))

( 1

0

( )) ≠ ] + [ ( ( ) ( ( ))) ≠ ( ( = ]

n

(

S

)) ≠

S

] +

P
[

g2

(

f2

(

T , g f1 S T , g f1 S S

≤ →

Sn Sn P g2 f2 Tn), Sn) ≠ Tn

.

]

Similarly, the point H S ,H T S can be approached.
To achieve other points in the region, use the idea of time sharing: If you can achieve with

v
(

anishing error

( ( ) ( ∣ ))

+ ¯λR1 λR1
′

probabilit
+ ′ )

y any two points R1,R2 and R1,R2 , then you can achieve for λ 0, 1 ,
¯ ¯, λR2 λR2 by dividing the blo

(

ck of length
) (

n in

′

to

′

t
)

wo blocks of length λn and λn
∈ [

and
apply the two codes respectively

]

Sn

(Sλn λn
1 , T1 )→ [

λnR1 ] using (R1,R2) code
λnR2

(
¯

+
1

1, T
n
λn+

λnR
λn 1)→ [

λ̄nR

′
′ ] using (R1

′ ,R2 co
2

′ de

(Exercise: Write down the details rigorously yourself!) Therefore, all

)

convex combinations of points
in the achievable regions are also achievable, so the achievable region must be convex.

7.6* Source-coding with a helper (Ahlswede-Körner-Wyner)

Yet another variation of distributed compression problem is compressing X with a helper, see
figure below. Note that the main difference from the previous section is that decompressor is only
required to produce the estimate of X, using rate-limited help from an observer who has access to
Y . Characterization of rate pairs R1,R2 is harder than in the previous section.

Theorem 7.

(

9 (Ahlsw

)

ede-Körner-Wyner). Consider i.i.d. source Xn, Y n PX,Y with X discrete.
ˆIf rate pair R1,R2 is achievable with vanishing probability of error P Xn Xn 0, then there

exists an
=

auxiliary random variable U taking values on alphabet

(

of cardinality

) ∼

1 such that
PX,Y,U PX,Y PU

[ ≠ ] →

∣X,Y and
R1 H X U ,R2 I Y ;U .

∣Y ∣ +

≥ ( ∣ ) ≥ ( ) (7.4)
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Furthermore, for every such random variable U the rate pair (H(X ∣U), I(Y ;U)) is achievable with
vanishing error.

Proof. We only sketch some crucial details.
First, note that iterating over all possible random variables U (without cardinality constraint)

the
=

set of
(

pairs 2 and
n)

R1,R satisfying (7.4) is convex. Next, consider a compressor W1 f1 Xn

ˆW2 f2 Y . Then
(

from
)

Fano’s inequality (5.7) assuming P ha
=

[Xn ≠Xn] = o(1) we ve

n

( )

H(X ∣W1,W2)) = o(n

Th

) .

us, from chain rule and conditioning-decreases-entropy, we get

nR1 ≥ I(X
n;W1∣W2) ≥H(Xn∣W2) − o(n) (7.5)

=
k

∑
n

=
H

1

(Xk∣W2,X
k−1 o n (7.6)

≥ ∑
n

=
H(Xk∣W2,X

k

) − ( )

k 1

−1, Y k−1 o n (7.7)

On the other hand, from (5.2) we have

) − ( )

nR2 ≥ I(W2;Y n) =
n

I W Yk Y
k

2; 1 (7.8)
k

∑
=1

I

( −

= ∑
n

=
(W2,X

k

∣ )

k 1

−1;Yk Y
k−1 (7.9)

n

I W2,X
k

∣

Y

)

k
k 1

−1, Y k−1; (7.10)

where (7.9) follo (

( ) ⊥⊥

ws from
− ∣

I
−
W ,Xk 1;Yk Y

k 1

= ∑
=

I 1
2 W

(

2;Yk Y
k I Xk

)

1;Yk W2, Y
k 1 and the fact

that W ,Y
= (

Xk 1 Y
−
k 1

2 k ; and 7.10

− ∣ − ) =
1
(

−
( ⊥⊥

)

) from Y k− Yk. Comparin

−

g (7.7

−

) and (7.10)

−

we notice that
denoting Uk W2,X

k 1, Y k 1 we have

∣ )+ ( ∣ )

(
1

R1,R2) ≥
n

H Xk Uk , I Uk;Yk
n k 1

and thus (from convexity) the rate pair must b

∑
=

elong

( (

to the

∣ )

region

(

spanned

))

by all pairs (H(X ∣U), I(U ;Y .

∣Y ∣ +

To show that without loss of generality the auxiliary random variable U can be taken to be
1 valued, one needs to invoke Caratheodory’s theorem on convex hulls. We omit the details.

))
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Finally, showing that for each U the mentioned rate-pair is achievable, we first notice that if there
were side information at the decompressor in the form

=

of
(

the i.i.d. sequence Un correlated to Xn,
then Slepian-Wolf theorem implies that only rate R1 H X ∣U) would be sufficient to reconstruct
Xn. Thus, the question boils down to creating a correlated sequence Un at the decompressor by
using the minimal rate R2. This is the con
below: It is sufficient to use rate I(U ;Y )

tent of the so called covering lemma, see Theorem 24.5
to do so. We omit further details.
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