
§ 8. Compressing stationary ergodic sources

We have examined the compression of i.i.d. sequence {Si}, for which

1
l

n
(f∗

lim ε

(Sn H S in prob. (8.1)

∗ Sn

))

, nR

→ ( )

0 R
(8.2)

n

>H(S
1 R H S

)

In this lecture, we shall examine

→

similar

∞
(

results

) =

for

{

ergodic

<

pro

(

cesses

)

and we first state the main
theory as follows:

Theorem 8.1 (Shannon-McMillan). Let {S1, S2, . . .} be a stationary and ergodic discrete process,
then

1

n
log

1

PSn(Sn)

P
Ð→H, also a.s. and in L1 (8.3)

where H = limn→∞
1H Sn is the entropy rate.n

Corollary
( )

8.1. For any stationary and ergodic discrete process S1, S2, . . . , (8.1) – (8.2) hold
with H S replaced by

( )

{ }

H.

Proof. Shannon-McMillan (we only need convergence in probability)
which tie together the respective CDF of the random variable l(f∗(

+ Theorem 6.4 + Theorem 7.1
Sn)) and log 1

PSn(sn) .

In Lecture 7 we learned the asymptotic equipartition property (AEP) for iid sources. Here we
generalize it to stationary ergodic sources thanks to Shannon-McMillan.

Corollary 8.2 (AEP for stationary
>

ergodic sources). Let S1, S2, . . . be a stationary and ergodic
discrete process. For any δ 0, define the set

{ }

T δn = {sn ∶ ∣
1

n
log

1
δ

n
Sn(S )

−H∣ ≤ } .
P

Then

1. P [Sn ∈ T δn]→ 1 as n→∞.

2. 2n(H−δ)(1 + o(1)) ≤ ∣T δn ∣ ≤ 2(H+δ)n(1 + o(1)).

Note:

• Convergence in probability for stationary ergodic Markov chains [Shannon 1948]

• Convergence in L1 for stationary ergodic processes [McMillan 1953]
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8.1 Bits of ergodic theory

Let’s start with a dynamic system view and introduce a few definitions:

Definition 8.1 (Measure preserving transformation). τ ∶ Ω
precisely

→ Ω is measure preserving (more
, probability preserving) if

∀E ∈ F , P (E P τ−1E .

The set E is called τ -invariant if E = τ−

F

1E. The set

) =

of all

(

τ -inv

)

ariant sets forms a σ-algrebra (check!)
denoted inv.

Definition 8.2 (stationary pro
∶

cess). A process Sn, n 0, . . . is stationary if there exists a measure
preserving transformation τ Ω h

{

→ Ω suc that:
=

S = S − ○ τ = S ○ τ j

}

j j 1 0

Therefore a stationary process can be described by the tuple (Ω,F ,P, τ, S0) and Sk = S0 ○ τ
k.

Notes:

1. Alternatively, a random process (S0, S1, S2, . . . )
=

is
∀

stationary if its joint distribution is invariant
with respect to shifts in time, i.e., PSm PSmn +

+t , n,m, t. Indeed, given such a process we can
n t

define a m.p.t. as follows:
(s0, s1, . . .

So τ is a shift to the right.

)Ð→
τ

(s1, s2, . . . ) (8.4)

2. An event E ∈ F is shift-invariant if

(s1, s2, . . . ) ∈ E ⇒ ∀s0(s0, s1, s2, . . .

or equivalently E τ 1E (check!). Thus τ -invariant events are

)

also

∈ E

as
= called shift-invariant, when

τ is interpreted (8.4

−

).

3. Some examples of shift-invariant events are {∃n ∶ xi = 0∀
=

i ≥ n}, {lim supxi <
{ = = ⋯ = } ( ) ∈ (

1 etc. A non
shift-invariant event is A x0 x1 0 , since τ 1,0,0, . . . A but 1,0, . .

}

. A.

4. Also recall that the tail σ-algebra is defined as

) ∈/

tail σ Sn, Sn . . . .
n 1

+1,

It is easy to check that all shift-in

F

varian

≜

t

⋂
≥

even

{

ts belong to

}

Ftail. The inclusion is strict, as for
example the event

{∃n ∶ xi = 0,∀ odd i ≥ n}

is in Ftail but not shift-invariant.
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• Convergence almost surely for stationary ergodic processes [Breiman 1956] (Either of the last
two results implies the convergence Theorem 8.1 in probability.)

• For a Markov chain, existence of typical sequences can be understood by thinking of Markov
process as sequence of independent decisions regarding which transitions to take. It is then
clear that Markov process’s trajectory is simply a transformation of trajectories of an i.i.d.
process, hence must similarly concentrate similarly on some typical set.



Proposition 8.1 (P
[

oincare
] >

recurrence). Let τ be measure-preserving for Ω, ,P . Then for any
measurable A with P A 0 we have

P[⋃
≥
τ A

(

−k A

F )

P τk ω A infinitely oftenA
k 1

Proof. Let B k 1 τ
kA. It is sufficien

∣ ] = [

t to

(

sho

) ∈

w that

− −

P A B P

∣

A

] = 1 .

= ⋃ ≥
− [ ∩ ] = [ ] or equivalently

P A B P B . (8.5)

To that end notice that τ−1A τ

[ ∪ ] = [ ]

∪ −1B = B and thus

P

but the left-hand side equals P A B

[τ−1(A ∪B)] = P[B] ,

[ ∪ ] by the measure-preservation of τ , proving (8.5).

Note: Consider τ mapping initial state of the conservative (Hamiltonian) mechanical system to its
state after passage of a given unit of time. It is known that τ preserves Lebesgue measure in phase
space (Liouville’s theorem). Thus Poincare recurrence leads to rather counter-intuitive conclusions.
For example, opening the barrier separating two gases in a cylinder allows them to mix. Poincare
recurrence says that eventually they will return back to the original separated state (with each gas
occupying roughly its half of the cylinder).

Definition
{

if ∀
}

8.3 (Ergodicity). A transformation τ is ergodic E ∈ Finv we have P E 0 or 1. A
process

[ ∞
S
∈
i is

] =

ergodic if all shift invariant events are deterministic, i.e., for any shift
[

inv
]

arian
=

t event
E, P S1 E 0 or 1.

Example:

• Sk k2 : ergodic but not stationary

•

{ = }

{Sk = S0}

= {(

: stationary
)}

but not ergodic (
[

unless
∞ ∈

S
]
0

=

is a
[

constant). Note
E s, s, . . . is shift invariant and P S1 E P S0 = s] ∈ (0,1)

that the singleton set
– not deterministic.

• {Sk} i.i.d. is stationary and ergodic (by Kolmogorov’s 0-1 law, tail events have no randomness)

• (Sliding-window construction of ergodic processes)
If {Si} is ergodic, then {Xi = f(Si, Si+1, . . . )} is also ergodic. It is called a B-process if Si is
i.i.d.
Example, Si ∼ Bern(1) i.i.d.,

]

Xk =

[
n 0 2 n 1Sk n 2Xk 1 mod 1. The marginal distribution2

of Xi is uniform on 0,1 . Note that

∞

Xk

−

’s

−

behavior
+

is
−
completely deterministic: given X0,

all the future X

∑ =

k’s are determined exactly. This

=

example shows that certain deterministic
maps exhibit ergodic/chaotic behavior under iterative application: although the trajectory
is completely deterministic, its time-averages converge to expectations and in general “look
random”.

• There are also stronger conditions than ergodicity. Namely, we say that τ is mixing (or strong
mixing) if

P[A ∩ τ−nB]→ P[A]P

W

[B] .

e say that τ is weakly mixing if

∑
n 1

k=1

P
n

∣ [A ∩ τ−nB] − P[A]P[B

Strong mixing implies weak mixing, which implies ergodicit

]∣

y

→ 0 .

(check!).

92



• {Si}: finite irreducible Markov chain with recurrent states is ergodic (in fact strong mixing),
regardless of initial distribution.
Toy example: kernel P (0∣1) = P (1∣0) = 1 with initial dist. P (S0 = 0) = 0.5. This process only
has two sample paths: P [S∞1 = (010101 . . .)] = P [S∞1 = (101010 . . .)] = 1 . It is easy to verify2
this process is ergodic (in the sense defined above!). Note however, that in Markov-chain
literature a chain is called ergodic if it is irreducible, aperiodic and recurrent. This example
does not satisfy this definition (this clash of terminology is a frequent source of confusion).

• (optional)
E S

{ } ( ) =

[ 0Sn
∗]

Si : stationary zero-mean Gaussian process with autocovariance function R n
.

1
lim
n→∞ i

lim

[ S
t
∑
n

+
R

1 =
t 0 ergodic Si weakly mixing

n 0

→∞
R[n 0 mixing

n

] = ⇔ {

Si

} ⇔ { }

Intuitively speaking, an ergodic pro

] =

cess

⇔

can

{

ha

}

ve infinite memory in general, but the memory
is weak. Indeed, we see that for a stationary Gaussian process ergodicity means the correlation
dies (in the Cesaro-mean sense).

The spectr
{

al
(

me
)}

asure is defined as the (discrete time) Fourier transform of the autocovariance
sequence R n , in the sense that there exists a unique probability measure µ on [−1

2 ,
1

(

such2
that R n) = E exp(i2nπX) where X ∼ µ. The spectral criteria can be formulated as follo

]

ws:

{Si} ergodic⇔

{ } ⇔

spectral measure has no atoms (CDF is continuous)

Si B-process spectral measure has density

Detailed exposition on stationary Gaussian processes can be found in [Doo53, Theorem 9.3.2,
pp. 474, Theorem 9.7.1, pp. 494–494].1

8.2 Proof of Shannon-McMillan

We shall show the convergence in L1, which implies convergence in probability automatically. In
order to prove Shannon-McMillan, let’s first introduce the Birkhoff-Khintchine’s convergence theorem
for ergodic processes, the proof of which is presented in the next subsection.

Theorem 8.2 (Birkhoff-Khintchine’s Ergodic Theorem). If Si stationary and ergodic, function
f L

{ } ∀

∈ 1, i.e., E ∣f(S1, . . . )∣ <∞,

1
lim
n→∞ n

n

∑
k=1

f(Sk, . . . ) = E f(S1, . . . ). a.s. and in L1

In the special case where f depends on finitely many coordinates, say, f = f(S1, . . . , Sm), we have

lim
n→∞

1
∑
n

=
f(Sk, . . . , Sk+m−1) = E f(S1, . . . , Sm .

n k 1

) a.s. and in L1

Interpretation: time average
Example: Consider f = f(S1)

converges to ensemble average.

1Thanks Prof. Bruce Hajek for the pointer.
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• {Si} is iid. Then Theorem 8.2 is SLLN (strong LLN).

• {Si} is such that Si = S1 for all i – non-ergodic. Then Theorem 8.2 fails unless S1 is a constant.

Definition 8.4. {Si ∶ i ∈ N} is an mth order
=

Markov chain if PSt+ ∣
∣

St = PS t

∣
1 t 1 S for all t m. It

1 t m 1

is called time homogeneous if PS P m
t+1 St− +

Sm+1 S .
t m 1 1

+ ∣
− +

Remark 8.1. Showing (8.3) for an mth

≥

order time homogeneous Markov chain {Si} is a direct
application of Birkhoff-Khintchine.

1

n
log

1

PSn(Sn)
=

1

n

n

∑
t=1

log
1

PSt∣St−1(St∣St−1)

=
1

n
log

1

PSm(Sm)
+

1

n

n

∑
t=m+1

log
1

PSt∣St−1
t−m

(Sl∣S
l−1
l−m)

=
1

n
log

1

PS1(S
m
1 )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
→0

+
1

n

n

∑
t=m+1

log
1

PSm+1∣Sm1 (St∣St−1
t−m)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
→H(Sm+1∣Sm1 ) by Birkhoff-Khintchine

, (8.6)

where we applied Theorem 8.2 with f(s1, s2, . . .) = log 1
P

+ ∣ s + smm
.

S S m 1m 1 11

Now let’s prove (8.3) for a general stationary ergodic process

( ∣

{Si

)

which might have infinite
memory. The idea is to approximate the distribution
(finite memory) and make use of (8.6); then let m

}

(Markov approximation).
→

of
∞

that ergodic process by an m-th order MC
to make the the approximation accurate

Proof of Theorem 8.1 in L1. To show that (8.3) converges in L1, we want to show that

E∣
1

n
log

1

PSn(Sn

To this end, fix an m N. Define the following

)

auxiliary

−H∣→ 0, n→∞.

∈ distribution for the process:

Q(m)(S1
∞) = P m

Sm(S1 ) ∏
∞

= +
PSt∣St−−1 (St∣S

t
1 t m

t m 1

−1
t−m

stat.

)

= PSm(Sm t
1 ) ∏

∞

= +
P (S 1
Sm+1∣Sm t S1 1 t

t m 1
−
−
m

Note that under Q(m), {S } is an mth-order

∣ )

i time-homogeneous Markov chain.
By triangle inequality,

E∣
1

n
log

1

PSn(Sn)
−H∣ ≤E ∣

1

n
log

1

PSn(Sn)
−

1

n
log

1

Q
(m)
Sn (Sn)

∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≜A

+E ∣
1

n
log

1
H

Q
(m
Sn

)

B

( n)
− m

S
∣+ ∣

´
H
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
m

≜
¸
C

−
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
H
¶
∣

where H m
m H Sm 1 S1 .

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
≜
¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Now
≜ ( + ∣ )
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• C = ∣Hm − H∣ → 0 as m
H S Smm 1 1 H from abov

→

e
∞ by Theorem 5.4 (Recall that for stationary processes:

).

• As

(

sho

+

wn

∣

in

)→

Remark 8.1, for any fixed m, B 0 in L1 as n , as a consequence of
Birkhoff-Khintchine. Hence for any fixed m, EB

→ → ∞

→ 0 as n→∞.

• For term A,

E[A] =
1

n
EP ∣ log

dPSn

dQ
(m)
Sn

∣ ≤
1

n
D(PSn∥Q

(m)
Sn ) +

2 log e

en

where

1

n
D(PSn∥Q

(m)
Sn ) =

1 P
E

n

⎡
⎢
⎢
⎢
⎢

Sn

⎣

log
(Sn)

PSm(Sm)∏n
t=m+1 PSm+1∣S1

m(St∣St−1
t−m)

⎤
⎥
⎥
⎥
⎥
⎦

stat.
=

1
H

n
(− (Sn) +H(Sm) + (n −m)Hm

Hm as n

)

and the next Lemma 8.1.

→ −H →∞

Combining all three terms and sending n , we obtain for any m,

∣
1

lim sup
n→∞

E

→∞

n
log

1

PSn(Sn)
−H∣ ≤ 2(Hm −H).

Sending m→∞ completes the proof of L1-convergence.

Lemma 8.1.

EP [∣log
dP 2

D
dQ

∣] ≤ (P ∥Q) +
log e

e
.

Proof. ∣x logx∣ − x logx ≤ 2 log e , x 0, since LHS is zero if x 1, and otherwise upper bounded by

≤ ≤
e

2 sup0 x 1 x log 1

∀ > ≥

x =
2 log e
e .

8.3* Proof of Birkhoff-Khintchine

˜ ˜Proof of Theorem 8.2. function f L1, ε, there exists a decomposition f f h such that f is
bounded, and h 1, h 1 ε.
Let us first focus

∀ ∈ ∀

∈ L ∥ ≤

L

on the b
∥

ounded function f . Note that in
(

the

= +

Furthermore, 2 is a Hilbert space with inner product f, g
L ⊂ L ∈ L

) =

bounded domain 1 2, thus f 2.
E[f(S1

∞)g S1
∞ .

For the measure
( ) =

preserving
○

transformation τ that generates the stationary process Si , define
the operator T f f τ . Since τ is measure preserving, we know that

( )]

∥Tf∥2 2
2 = ∥f∥2,

unitary

{

thus
}

T is a
and bounded operator.

Define the operator
1

An(f) =
n

n

∑
k=1

f ○ τk

Intuitively:

An =
1 1

T
k

∑
n

k

n =1

=
n
(I − Tn)(I − T )−1
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Then, if f ⊥ ker(I − T ) we should have Anf → 0, since only components in the kernel can blow up.
This intuition is formalized in the proof below.

Let’s further decompose f into two parts f = f1 + f2, where f1 ∈ ker(I − T ) and f2 ∈ ker(I − T )⊥.
Observations:

• if g ∈ ker(I − T ), g must be
=

a constan
○ =

t function. This
[ ] =

is due to the ergodicity. Consider
indicator
=

function 1A, if 1A 1A τ 1τ 1A, then P A 0
g Tg and g is not constant, then at least

−

some set {g ∈ (

or 1. For a general case, suppose
a, b)} will be shift-invariant and

have non-trivial measure, violating ergodicity.

• ker(I − T ) = ker(I − T ∗

g Tg

). This is due to the fact that T is unitary:

= ⇒ ∥g∥2 = (Tg, g) = (g, T ∗g T ∗g, g g T ∗g T ∗g g

where in the last
=

step we used the fact that Cauc

)⇒

h

(

y-Schw

)

arz

= ∥

f

∥∥

, g

∥

f

⇒

g

=

only holds with
equality for g cf for some constant c.

( ) ≤ ∥ ∥ ⋅ ∥ ∥

• ker(I T ⊥ ker I T ∗ ⊥ Im I

• g ker

−

I

)

T

= ( − ) =

E

[

g

( − T )], where [Im(I − T )] is an 2 closure.

∈ ( − )⊥ ⇐⇒ [ ] = 0. Indeed, only zero-mean functions

L

are orthogonal to
constants.

With these observations,
approximate it by f2

and h1 1 h1 2 ε.

= ∈ [ ( − )]

= +

we know that
∈

f1

(

m
−

is
)

a const. Also, f2 Im I T so we further

∥ ∥ ≤ ∥ ∥ <

f0 h1, where f0 Im I T , namely f0 g g τ for some function g 2,
Therefore we have

= − ○ ∈ L

Anf1 = f1 E
1

[f

Anf0

= ]

=
n
(g − g ○ τn)→ 0 a.s. and L1

(since E[∑
n≥1

(
g ○ τn

n
)2] = E[g2]∑

1

n2
<∞ Ô⇒

1
g

n
○ τn → 0 a.s.

The proof completes by showing

)

P[
2

lim supAn
n

(h + h1) ≥ δ] ≤
ε
. (8.7)

δ

Indeed, then by taking ε→ 0 we will have shown

P lim supAn f E f δ 0
n

as required.

[ ( ) ≥ [ ] + ] =

Proof of (8.7) makes use of the Maximal Ergodic Lemma stated as follows:

Theorem 8.3 (Maximal Ergodic Lemma). Let (P, τ)
∈ ( )

be a probability measure and a measure-
preserving transformation. Then for any f L1 P we have

P [ > ] ≤
E[f1supn≥1A f

sup
n≥

Anf a
n

1

>a]

a
≤

∥f∥1

a

where Anf = 1 n
n ∑

−1
k=0 f ○ τ

k.
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Note: This is a so-called “weak L1” estimate for a sublinear operator supnAn . In fact, this
theorem is exactly equivalent to the following result:

Lemma
[∣

8.2
∣] <∞

(Estimate for the maximum of averages). Let {Zn, n = 1, . . .} be a stationary

(⋅)

process
with E Z then

P [
.

sup
n 1

∣Z1

≥

+ . . +Zn∣

n
> a] ≤

E[∣Z ∣]
a

a
∀ > 0

Proof. The argument for this Lemma has originally been quite involved, until a dramatically simple
proof (below) was found by A. Garcia.

Define

Sn =
n

k

L

∑
=
Zk (8.8)

1

n = max

Mn max

S

{

= {

0, Z1, . . . ,

+

Z1 (8.9)

2

+⋯ +Zn

0, Z2, Z Z3, . . . , Z2

}

n

+⋯ +Zn} (8.10)

Z∗ = sup
n≥1

(8.11)
n

It is sufficient to show that
E[Z11{Z∗

˜Indeed,

>0}] ≥ 0 . (8.12)

applying (8.12) to Z1 = ˜Z1 − a and noticing that Z∗ = Z∗ − a we obtain

E[Z11

from which Lemma follows by upper-bounding

{Z∗>a}] ≥ aP[Z∗ > a] ,

the left-hand
In order to show (8.12) we first notice that

[∣ ∣]

{Ln 0

Z1 Mn max S

>

1,

}

. .

↗

side with E Z1 .
Z∗ 0 . Next we notice that

+ = { . , S

{

n

> }

and furthermore

}

Z1 +Mn

Thus, we have
Z 1

= Ln on {Ln > 0}

1 {Ln

where we do not need indicator in the first

>0} = Ln −Mn1{Ln>0

term since Ln = 0 on

}

{Ln > 0}c. Taking expectation we
get

E[Z11{Ln>0}] = E[Ln] − [ ]

≥ [ ] −

E
[

Mn1

]

{Ln>0} (8.13)

where we used Mn 0, the fact that

=

E Ln E Mn

E[Ln] −E[Ln−1

Mn has the sam

] = E[Ln −Ln−1] ≥

(8.14)

0 , (8.15)

≥

→∞

e distribution as Ln−1, and Ln
in

≥ Ln−1,
respectively. Taking limit as n (8.15) we obtain (8.12).
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8.4* Sinai’s generator theorem

It turns out there is a way to associate to every probability-preserving transformation τ a number,
called Kolmogorov-Sinai entropy. This number is invariant to isomorphisms of p.p.t.’s (appropriately
defined).

Definition 8.5. Fix a probability-preserving transformation τ acting on probability space Ω, ,P .
Kolmogorov-Sinai entropy of τ is defined as

H( ) ≜
1

( F )

τ sup lim
nX0
→∞

H X0,X0 τ, . . . ,X n 1
0 τ

n
− ,

where supremum
F

is taken over all random variables

(

X0

○

Ω with

○

finite

)

range and measurable
with respect to .

Note that every random variable X

∶ → X X

0 generates a stationary process adapted to τ , that is

Xk X0 τk .

In this way, Kolmogorov-Sinai entropy of τ equals

≜ ○

the maximal entropy rate among all stationary
processes adapted to τ . This quantity may be extremely hard to evaluate, however. One help comes
in the form of the famous criterion of Y. Sinai. We need to elaborate on some more concepts before:

• σ-algebra
if for every

G

E
⊂ F F

∈ F

is P-dense in , or sometimes we also say mod P or even mod 0,
there exists E′ ∈ G s.t.

G = F G = F

P E∆E′ 0 .

• Partition Ai, i 1,2, . . . measurable

[

with

] =

A = { = } respect to F is called generating if

n
⋁
∞

=
σ

0

{τ−nA} = F mod P .

• Random variable Y ∶ Ω→ Y with a countable alphabet Y is called a generator of (Ω,F ,P, τ if

σ{Y,Y ○ τ, . . . , Y ○ τn, . . . mod P

)

Theorem 8.4 (Sinai’s generator theorem)
= { =

. Let
○

Y be the

}

=

gener

=

ator

F

of a p.p.t. Ω, ,P, τ . Let H Y
be the entropy rate of the process Y Y τkk Y , k 0, . . . . If H Y is finite,

(

then
F )

τ H
(

Y
)

.

Proof. Notice that since H(Y) is finite, we must have H Y

}

n
0

( ) H( ) = ( )

argue that τ H Y . If Y has finite alphabet, then it
(

is simply
let Y be Z ˜-valued. Define a truncated version Ym min Y,m

) <

,

∞

H( ) ≥ ( )

and thus H Y . First, we

= ( )

from the definition. Oth

+ ˜then since Ym

( )

→ Y

<

as

∞

m
have from lower semicontinuity of mutual information, cf. (3.9), that

→

e
∞

rwise
we

lim
→∞

I( ˜Y ;Ym) ≥H(Y ) ,
m

and consequently for arbitrarily small ε and sufficiently large m

H(Y ∣Ỹ ) ≤ ε ,
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Then, consider the chain

H(Y n) =H(Ỹ n, Y n ˜H n
0 0 0 Y n

0 H Y n ˜
0 Y0

= ( ) +∑
n

˜H Y n
0

) = ( ) + ( ∣ )

i=
H

0

(Yi

n
˜H Y n H Y

∣Ỹ n
0
−1

0 , Y
i

Ỹ

)

≤ ( 0 ) +
i
∑
=0

( i∣ i

˜H Y n ˜
0 nH Y Y

)

˜Thus, entropy rate of Y (which has

=

finite-alphab

( ) +

et)

( ∣

can

) ≤H(Ỹ n
0 ) + nε

H( ) ≥H( )

be made arbitrarily close to the entropy
rate of Y, concluding that τ Y .

The main part is
(

sho
)

wing that for any stationary
∶

pro
→ X

cess X adapted
X

to τ the entropy rate is
upper bounded

= {

b
○

y H Y
=

. To that end, consider X Ω with finite and define as usual the
process X X τk, k 0,1, . . .}. By generating propert

∞
y of Y we have that X (perhaps after

modification on a set of measure zero) is a function of Y0 . So are all Xk. Thus

H(X0) = I(X0;Y0
∞ lim I X0;Y n

0n

where we used the continuity-in-σ-algebra propert

)

y

=

of

→

m

∞

utual

(

information,

) ,

cf. (3.10). Rewriting the
latter limit differently, we have

lim H X0 Y
n

0 0 .
n

Fix ε > 0 and choose m so that H

∞
( ∣ ) =

(X0

→

∣Y m
0 ) ≤ ε. Then consider the following chain:

H(Xn
0 ) ≤H(Xn

0 , Y
n

0 ) =H(Y n
0 ) +H

H Y
i
∑
n

H

(Xn
0 ∣Y n

0 )

≤ (Y n
0 ) +

=
X n
i i

0

i
∑
n

H

( ∣ )

= (Y n
0 ) + n

=
H X0 Y

i
0

≤ ( ) +

0

Y

( −

H n
0 m log

∣

n

)

m ε ,

where we used stationarity of

∣X ∣ + ( −

(Xk, Yk) and the fact that H(X0∣Y
n

)

−i
0

by n and passing to the limit our argument implies
) < ε for i ≤ n−m. After dividing

H(X H

Taking here ε 0 completes the proof.

) ≤ (Y) + ε .

Alternative

→

proof: Suppose X0 is taking
>

values on a finite alphabet and X0 f Y0 . Then
(this is a measure-theoretic fact) for every ε 0 there exists m m

X = ( ∞

= (ε) and a function f ∶ Ym 1
ε

s.t.

)
+

P f Y Y m
0 fε 0 ε .

→ X

(This is just another way to say that
X̃ as

[

n
n

( ∞) ≠ ( )] ≤

⋃ σ{Y0 } is P-dense in σ Y0
∞ .) Define a stationary process

X̃j ≜
m jfε Yj

( )

n m

+ .

˜Notice that since Xn
0 is a function of Y0

+ we ha

(

ve

)

H(X̃n) ≤H(Y n
0

+m
0 ) .
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Dividing by m and passing to the limit we obtain that for entropy rates

(X̃H ) ≤H(Y

˜Finally, to relate X to X notice that by construction

) .

P[X̃j ≠Xj] ≤ ε .

Since both processes take values on a fixed finite alphabet, from Corollary 5.2 we infer that

∣H(X) −H(X̃)∣ ≤ ε log ∣X ∣ + h(ε

Altogether, we have shown that

) .

H X H Y ε log h ε .

Taking ε

+

→ 0 we conclude the proof.

( ) ≤ ( ) + ∣X ∣ ( )

Examples:

• Let Ω = [0,1], F–Borel σ-algebra, P = Leb and

τ

⎧

(ω) =
⎪ ω

2ω mod 1 =
⎪2 , ω < 1

2ω 1, ω 1

/2

2

It is easy to show that Y (ω) = 1{ω < 1/2} is a generator

⎨
⎪⎪⎩ −

and

≥

that

/

Y is an i.i.d. Bernoulli 1 2
process. Thus, we get that Kolmogorov-Sinai entropy is τ log 2.

• Let Ω be the unit circle S1, -algebra, P be the

H(

F – Borel σ normalized length

( / )

) =

and

τ(ω) = ω + γ

γi.e. τ is a rotation by the angle γ. (When is irrational, this is known to be an ergodic2π
p.p.t.). Here Y = 1{∣ω∣ < 2πε} is a generator for arbitrarily small ε and hence

H(τ) ≤H

This

(X) ≤H

is an example of a zero-entropy p.p.t.

(Y0) = h(ε)→ 0 as ε→ 0 .

Remark 8.2. Two p.p.t.’s Ω

−

( 1, τ1,P1 and Ω0, τ0,P0 are called isomorphic if there exists fi Ωi

Ω1 i defined Pi-almost everywhere and such that 1) τ1 i fi f1 i τi; 2) fi f1 i is identity on
Ω 1
i (a.e.); 3) Pi[f1

−
−iE] = P1−i[E]. It is

)

easy

(

to see that

)

Kolmogoro
− ○ = −

v-Sinai
○

entropies
−

of isomorp

∶

hic

→

p.p.t.s are equal. This observation was made by Kolmogorov in 1958. It was rev

○

oluationary, since it
allowed to show that p.p.t.s corresponding shifts of iid Bern 1 2 and iid Bern 1 3 procceses are
not isomorphic. Before, the only invariants known were those

(

obtained
/ )

from studying
( / )

the spectrum
of a unitary operator

Uτ ∶ L2(Ω,P)→ L2(Ω,P) (8.16)

φ x φ τ x . (8.17)

However, the spectrum of τ corresponding to an
unit

(

y

)↦

non-constan
circle, and thus is unable to distinguish Bern 1 2

(

from

( ))

( / )

t i.i.d. process consists of the entire
Bern(1/3).2

2To see the statement about the spectrum, let Xi be iid with zero mean and unit variance. Then consider φ(x∞1 )
defined as 1

√ ∑m iω
k=1 e

kxk. This φ has unit energy and as m → ∞ we have ∥U iω
τφm

− e φ∥L2 → 0. Hence every eiω

belongs to the spectrum of Uτ .
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