
LECTURE NOTES ON INFORMATION THEORY

Preface

“There is a whole book of readymade, long and convincing, lav-
ishly composed telegrams for all occasions. Sending such a
telegram costs only twenty-five cents. You see, what gets trans-
mitted over the telegraph is not the text of the telegram, but
simply the number under which it is listed in the book, and the
signature of the sender. This is quite a funny thing, reminiscent
of Drugstore Breakfast #2. Everything is served up in a ready
form, and the customer is totally freed from the unpleasant
necessity to think, and to spend money on top of it.”

Little Golden America. Travelogue by I. Ilf and E. Petrov, 1937.

[Pre-Shannon encoding, courtesy of M. Raginsky]

These notes are a graduate-level introduction to the mathematics of Information Theory.
They were created by Yury Polyanskiy and Yihong Wu, who used them to teach at MIT
(2012, 2013 and 2016) and UIUC (2013, 2014). The core structure and flow of material is
largely due to Prof. Sergio Verdu,´ whose wonderful class at Princeton University [Ver07]
shaped up our own perception of the subject. Specifically, we follow Prof. Verdu’s´ style in
relying on single-shot results, Feinstein’s lemma and information spectrum methods. We
have added a number of technical refinements and new topics, which correspond to our own
interests (e.g., modern aspects of finite blocklength results and applications of information
theoretic methods to statistical decision theory).

Compared to the more popular “typicality” and “method of types” approaches (as
in Cover-Thomas [CT06] and Csiszár-Körner [CK81]), these notes prepare the reader to
consider delay-constraints (“non-asymptotics”) and to simultaneously treat continuous and
discrete sources/channels.

We are especially thankful to Dr. O. Ordentlich, who contributed a lecture on lattice
codes. Initial version was typed by Qingqing Huang and Austin Collins,who also created

many graphics. Rachel Cohen have also edited parts. Aolin Xu,Pengkun Yang and
Ganesh Ajjanagadde have contributed suggestions and corrections to the content.

We are indebted to all of them.

Y. Polyanskiy
Y. Wu

27 Feb 2015
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§ 1. Information measures: entropy and divergence

Review: Random variables

• Two methods to describe a random variable (R.V.) X:

1. a function X Ω from the probability space Ω, ,P to a target space .

2. a distribution

∶

PX

→

on

X

some measurable space (X ,

( F

.

) X

• Convention: capital letter – RV (e.g. X); small letter –

F

realization

)

(e.g. x0).

• X

∑∞
— disc

j (

rete if there exists a countable set xj , j 1, . . . such that

=1 PX xj

= { =

) = 1. X is called alphabet of X, x
X

∈ X – atoms and PX(xj

}

) – probability
mass function (pmf).

• For discrete RV support suppPX x PX x 0 .

• Vector RVs: Xn
1 X1, . . . ,Xn . Also

= { ∶

denoted

( ) >

just

}

Xn.

• For a vector RV

≜

X

(

n and S

)

⊂ {1, . . . , n} we denote XS = {Xi, i ∈ S}.

1.1 Entropy

Definition 1.1 (Entropy). For a discrete R.V. X with distribution PX :

H(X) = E[
1

log
PX(X)

]

=
x

∑
∈X
PX(x)

1
log .

PX x

Definition 1.2 (Joint entropy). Xn = (X1,X2, . . . ,Xn) – a random

( )

vector with n components.

( n) = ( ) = [
1

H X H X1, . . . ,Xn E log
PX1,...,Xn(X1, . . . ,Xn)

.]

Definition 1.3 (Conditional entropy).

H(X ∣Y ) = Ey∼PY [H(PX ∣Y =y)] = E[ log
1

,
PX Y X Y

i.e., the entropy of H(PX

∣ ( ∣ )
]

∣Y =y) averaged over PY .

Note:
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• Q: Why such definition, why log, why entropy?
Name comes from thermodynamics. Definition is justified by theorems in this course (e.g.
operationally by compression), but also by a number of experiments. For example, we can
measure time it takes for ants-scouts to describe location of the food to ants-workers. It was
found that when nest is placed at a root of

=

a full binary tree of depth d and food at one of the
leaves, the time was proportional to log 2d d – entropy of the random variable describing food
location. It was estimated that ants communicate with about 0.7 − 1 bit/min. Furthermore,
communication time reduces if there are some regularities in path-description (e.g., paths like
“left,right,left,right,left,right” were described faster). See [RZ86] for more.

• We agree that 0 log 1
0 = 0 (by continuity of x↦ x log 1 )x

• Also write H(PX) instead of H(X) (abuse of notation, as customary in information theory).

• Basis of log — units

log2 ↔ bits

loge ↔ nats

log256 ↔ bytes

log ↔ arbitrary units, base always matches exp

Example (Bernoulli): X ∈ {0,1}, P[X = 1

X)
1

] = PX(1) ≜ p

H( = h(p) ≜ p log
p
+ p log

1

p

where h(⋅) is called the binary entropy func-
tion.

Proposition 1.1. h
0,1 and

h

(

p

⋅)

[ ]

is continuous, concave on

′( ) = log
p

p

with infinite slope at 0 and 1.

0 11/2

Example (Geometric): X ∈ {0,1,2, . . .} P[X = i] = Px(i) = p ⋅ (p)
i

H(X) =
∞
∑
i=0

p ⋅ pi log
1

p ⋅ pi
=

∞
∑
i=0

ppi(i log
1

p
+ log

1

p
)

= log
1

p
+ p ⋅ log

1

p
⋅
1 − p

p2
=
h(p)

p

Example (Infinite entropy): Can H(X) = +∞? Yes, P[X = k] = c
k ln2 k

, k = 2,3,⋯
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Review: Convexity

• Convex
∈ [

set : A subset S of some vector space is convex if x, y S αx ᾱy S for
all α 0,1

∈ ⇒ + ∈

]. (Notation:

e.g., unit interval

≜ −

[ ]

ᾱ 1 α.)

0,1 ; S = {probability distributions on X}, S = {PX ∶ E[X] = 0}.

• Convex function: f S R is

– convex if f αx

∶

ᾱ

→

y αf x ᾱf y for all x, y S,α 0,1 .

– strictly con

(

vex

+

if f

) ≤

(α

−

x + ᾱ

(

y

) +

) < αf

( ) ∈ ∈ [

(x) + ᾱf(y) for all x ≠ y ∈ S

]

, α ∈ (0,1

– (strictly) concave if f is (strictly) convex.

).

e.g., x ↦ x logx is strictly convex; the mean P xdP is convex but not strictly
convex, variance is concave (Q: is it strictly conca

↦

v
∫
e? Think of zero-mean distribu-

tions.).

• Jensen’s inequality : For any S-valued random variable X

– f is convex f EX Ef X

– f is strictly

⇒

conv

(

ex

) ≤ ( )

⇒ f(EX
unless X is a constant (X E

)

X
<

a.s.)
)

=

Ef(X

Ef(X)

f(EX)

Famous puzzle: A man says, ”I am the average height and average weight of the
population. Thus, I am an average man.” However, he is still considered to be a little
overweight. Why?
Answer: The weight is roughly proportional to the volume, which is roughly proportional
to the third power of the height. Let PX denote the distribution of the height among the
p
(

opulation.
) <

So by Jensen’s inequality, since x ↦ x3 is strictle convex on x 0, we have
EX 3 EX3, regardless of the distribution of X.

Source: [Yos03, Puzzle 94] or online [Har].

>

Theorem 1.1. Properties of H:

1. (Positivity) H(X) ≥ 0 with equality iff X = x0 a.s. for some x0

2.

∈ X .

(Uniform maximizes entropy) H(X) ≤ log ∣X ∣, with equality iff X is uniform on X .

3. (Invariance under relabeling) H X H f X for any bijective f .

4. (Conditioning reduc

(

es entropy)

( ) = ( ( ))

H X ∣Y ) ≤H(X), with equality iff X and Y are independent.

10



5. (Small chain rule)
H(X,Y ) =H(X) +H(Y ∣X) ≤H X H Y

6. (Entropy under functions) H(X) =H(X,f(X)) ≥H(f X

( )

with

+ (

equality

)

iff f is one-to-one
on the support of PX ,

7. (Full chain rule)

( ))

H(
n n

X1, . . . ,Xn) =
i
∑
=
H Xi

1

( ∣Xi−1) ≤
i

e

∑
=
H

1

(Xi), (1.1)

↑ quality iff X1, . . . ,Xn mutually independent (1.2)

Proof. 1. Expectation of non-negative function
2. Jensen’s inequality
3. H only depends on the values of PX , not locations:

H( ) =H( )

4. Later (Lecture 2)

5. E log 1
PXY (X,Y ) = E[ log 1

( ( ))
PX(X)⋅PY ∣X

6. Intuition: X
(Y ∣X

, f X contains the same
)]

amount of information as X. Indeed, x x, f x
is 1-1. Thus by 3 and 5:

H(X) =H(X,f(X)) =H(f(X)) +H(X f X H f X

↦ ( ( ))

The bound is attained iff H

∣

ens

( ))

iff

≥

(X ∣f(X)) = 0 which in turn happ X is
7.

(

a

(

constant

))

given f(X).
Telescoping:

PX1X2⋯X = PX 1n 1PX2∣X1
⋯PX ∣Xn

n
−

Note: To give a preview of the operational meaning of entropy, let us play the following game. We
are allowed to make queries about some unknown discrete R.V. X by asking yes-no questions. The
ob
[

jectiv
=

e of the game is to guess the realized value of the R.V. X. For example, X a, b, c, d with
P X a 1 2, P X b 1 4, and P X c P X c 1 8. In this case, we can ask “X a?”.
If not, pro

] =

ceed by asking “X b?”. If not, ask “X c?”, after which we will kno

∈ {

w for su

}

re the
realization of

/

X.

[ =

resulting

] = /

average

[

num

=

=

(

The
)

ber

] =

of

[

questions

= ] =

is

/

1 2 1 4 2 1 8 3 1 8 3

=

1.75,
which equals H X in bits. It turns out (chapter 2)

=

that the
/

minimal
+ / ×

( )

average number of yes-no
questions to pin down the value of X is always between H X bits and

+

H

/

X

×

1

+

bits

/ ×

. In

=

this
special case the above scheme is optimal because (intuitively) it always splits the

( )

probab
+

ility in half.

1.1.1 Entropy: axiomatic characterization

One might wonder why entropy is defined as H(P ) = ∑pi log 1 and if there are other definitions.pi
Indeed, the information-theoretic definition of entropy is related to entropy in statistical physics.
Also, it arises as answers to specific operational problems, e.g., the minimum average number of bits
to describe a random variable as discussed above. Therefore it is fair to say that it is not pulled out
of thin air.

Shannon has also showed that entropy can be defined axiomatically, as a function satisfying
several natural conditions.

(

Denote a
)

probability distribution on m letters by P p1, . . . , pm and
consider a functional Hm p1, . . . , pm . If Hm obeys the following axioms:

= ( )

11



a) Permutation invariance

b) Expansible: Hm(p1, . . . , pm−1,0

c) Normalization: H 1
2

) =Hm−1(p1, . . . , pm−1).

(2 ,
1 log

uit

) = 2.

d) Contin y: H2(

2

p,1 − p)→ 0 as p→ 0.

e) Subadditivity: H(X,Y ) ≤ H(X) +H(Y )

( ) ∑ =

.

∑

Equivalently, Hmn r11, . . . , rmn Hm p1, . . . , pm
Hn q1, . . . , qn whenever n

j=1 rij pi and m
i=1 rij

( ) ≤ ( ) +

= qj .

f) Additivity: H(X,Y ) =H(X)+H(

(
mn(

)

Y ) ifX ⊥⊥ Y . Equivalently, H p1q1, . . . , pmqn Hm(p1, . . . , pm
Hn q1, . . . , qn .

) ≤ )+

then Hm(p1, . . . , p
1

m) = ∑mi=1 pi log is the only possibility. The interested reader is referred topi
[CT06, p. 53] and the reference therein.

1.1.2 History of entropy

In the early days of industrial age, engineers wondered if it is possible to construct a perpetual
motion machine. After many failed attempts, a law of conservation of energy was postulated: a
machine cannot produce more work than the amount of energy it consumed from the ambient world
(this is also called the first law of thermodynamics). The next round of attempts was then to
construct a machine that would draw energy in the form of heat from a warm body and convert it
to equal (or approximately equal) amount of work. An example would be a steam engine. However,
again it was observed that all such machines were highly inefficiencient, that is the amount of work
produced by absorbing heat Q was Q. The remainder of energy was dissipated to the ambient
world in the form of heat. Again after

≪

many rounds of attempting various designs Clausius and
Kelvin proposed another law:

Second law of thermodynamics: There does not exist a machine that operates in a cycle
(i.e. returns to its original state periodically), produces useful work and whose only
other effect on the outside world is drawing heat from a warm body. (That is, every
such machine, should expend some amount of heat to some cold body too!)1

Equivalent formulation is: There does not exist a cyclic process that transfers heat from a cold
body to a warm body (that is, every such process needs to be helped by expending some amount of
external work).

Notice that there is something annoying about the second law as compared to the first law. In
the first law there is a quantity that is conserved, and this is somehow logically easy to accept. The
second law seems a bit harder to believe in (and some engineers did not, and only their recurrent
failures to circumvent it finally convinced them). So Clausius, building on an ingenious work of
S. Carnot, figured out that there is an “explanation” to why any cyclic machine should expend
heat. He proposed that there must be some hidden quantity associated to the machine, entropy of it
(translated as transformative content), whose value must return to its original state. Furthermore,
under any reversible (i.e. quasi-stationary, or “very slow”) process operated on this machine the
change of entropy is proportional to the ratio of absorbed heat and the temperature of the machine:

∆S =
∆Q

T
. (1.3)

1Note that the reverse effect (that is converting work into heat) is rather easy: friction is an example.

12



So that if heat Q is absorbed at temperature Thot then to return to the original state, one
must return some Q′

<

amount of heat. Q can be significantly smaller than Q if Q is returned at
temperature Tcold Thot. Further logical

′

arguments can convince one that for irrev

′

ersible cyclic
process the change of entropy at the end of the cycle can only be positive, and hence entropy cannot
reduce.

There were a great many experimentally verified consequences that second law produced.
However, what is surprising is that the mysterious entropy did not have any formula for it (unlike
say energy), and thus had to be computed indirectly on the basis of relation (1.3). This was changed
with the revolutionary work of Boltzmann and Gibbs, who showed that for a system of n particles
the entropy of a given macro-state can be computed as

S =
`

kn
j
∑

1

=
pj log

1

,
pj

where k is the Boltzmann constant, we assume that each particle can only be in one of ` molecular
states (e.g. spin up/down, or if we quantize the phase volume into ` subcubes) and pj is the fraction
of particles in j-th molecular state.

1.1.3* Entropy: submodularity

Recall that [ Sn denotes a set 1, . . . , n , denotes subsets of S of size k and 2S denotes all subsetsk

of S. A set function

]

f S

} ( )

∶ 2

{

→ R is called submodular if for any T1, T2 S

f(T1 ∪ T2) + f T1 T2 f T1 f T2

⊂

Submodularity is similar to conca

( ∩ ) ≤ ( ) + ( )

Indeed consider T ′ ⊂ T and b ∈/
vity, in the sense that “adding elements gives diminishing returns”.

T . Then

f T b f T f T ′ b f

Theorem 1.2. Let Xn be discrete

(

R

∪

V.

) −

Then

( )

T

≤ (

H X

∪

T

) −

is submo

(T ′) .

dular.

Proof. Let A =XT1∖T2 ,B

↦ ( )

=XT1∩T2 ,C =XT2∖T1 . Then we need to show

H(A,B,C) +H(B) ≤H(A,B) +H(B,C) .

This follows from a simple chain

H(A,B,C) +H(B) =

≤

H(A,C ∣B) + 2H B (1.4)

=

H(

(

A∣B) +H(

) + (

C B

H

( )

+ 2H(B) (1.5)

A,B H B

∣

,C

)

) (1.6)

Note that entropy is not only submodular, but also monotone:

T1 T2 H XT1 H XT2 .

So fixing
[ ]

n, let us denote by Γn the

⊂

set of

Ô⇒

all non-negativ

( ) ≤

e,

(

monotone,

)

submodular set-functions
on n . Note that

−
via an obvious enumeration of

∗
all non-empty subsets of [n], Γn is a closed

convex cone in R2
+
n 1. Similarly, let us denote by Γn the set of all set-functions corresponding to

13



¯distributions
∗

on Xn. Let us also denote Γn the closure of Γn. It is not hard to show, cf. [ZY97],
¯that Γn is also a closed convex cone and that

∗ ∗

Γ∗ ¯
n Γ∗n Γn .

The astonishing result of [ZY98] is that

⊂ ⊂

Γ∗2 = Γ̄2 = Γ2 (1.7)

¯Γ

∗

Γ3

Γ∗n

∗
3 ⊊ Γ∗3 (1.8)

Γ̄n
∗
=

Γn n 4 . (1.9)

This follows from the fundamental new information

⊊ ⊊

inequalit

≥

y not implied by the submodularity of
entropy (and thus called non-Shannon inequality). Namely, [ZY98] shows that for any 4 discrete
random variables:

I(
1

X3;X4) − I(X3;X4∣X1) − I(X3;X4∣X2) ≤
2
I(X1;X2) +

1

4
I(X1;X3,X4) +

1
I(X2;X3,X4

4
) .

(see Definition 2.3).

1.1.4 Entropy: Han’s inequality

¯Theorem 1.3 (Han’s inequality). Let Xn be discrete n-dimensional RV and denote Hk(X
n

1

) =

(n) ∑ ⊂([
H

n])
¯

H(XT ) – the average entropy of a k-subset of coordinates. Then k

T
k k

k is decreasing in k:

1

n
H̄n ≤ ⋯ ≤

1 ¯ ¯Hk H1 . (1.10)
k

¯Furthermore, the sequence Hk is increasing and concave

⋯ ≤

in the sense of decreasing slope:

¯ ¯Hk+1 −Hk ≤ H̄k − H̄k−1 . (1.11)

¯Proof. Denote for convenience H0 =
¯

0. Note that Hm
m is an average of differences:

1

m
H̄m =

1 m
¯ ¯Hk Hk

m k 1
−1

Thus, it is clear that (1.11) implies (1.10) since

∑

increasing

=
( −

m

)

by one adds a smaller element to the
average. To prove (1.11) observe that from submodularity

H X1, . . . ,Xk 1 H X1, . . . ,Xk 1 H X1, . . . ,Xk H X1, . . . ,Xk 1,Xk 1 .

Now average

(

this inequalit

+ )

y

+

ov

(

er all n! perm

− )

utations

≤ (

of indices

) +

1, .

(

{ . . , n

− + )

} to get

H̄k+1 + H̄k

as claimed by (1.11).

−1 ≤ ¯2Hk

Alternative proof: Notice that by “conditioning decreases entropy” we have

H(Xk+1∣X1, . . . ,Xk) ≤H(Xk 1 X2, . . . ,Xk .

Averaging this inequality over all permutations of indices

+ ∣

yields (1.11

)

).
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Note: Han’s inequality holds for any submodular set-function.
Example: Another submodular set-function is

S

Han’s

↦ I(XS ;XSc) .

inequality for this one reads

0 =
1

n
In ≤ ⋯ ≤

1

k
Ik⋯ ≤ I1 ,

where Ik =
1

(n) ∑S∶∣S∣=k I(XS ;XSc) – gauges the amount of k-subset coupling in the random vector
k

Xn.

1.2 Divergence

Review: Measurability

In this course we will assume that all alphabets are standard Borel spaces. Some of the
nice properties of standard Borel spaces:

• all complete separable metric spaces, endowed with Borel σ-algebras are standard
Borel. In particular, countable alphabets and Rn and R∞ (space of sequences) are
standard Borel.

• if Xi, i = 1, . . . are s.B.s. then so is ∏∞
i=1Xi

• singletons x

•

{ } are measurable sets

diagonal ∆

• (Most importan

= {(x,x) ∶ x ∈ X} is measurable in

tly) for any probability distribut

X ×

ion

X

PX,Y on there exists a
transition probability kernel (also called a regular branch of a conditional

X × Y

distribution)
PY ∣X s.t.

PX,Y [E] = ∫X
PX(dx)∫Y

PY ∣X=x(dy)1{(x, y) ∈ E} .

Intuition: D(P ∥Q) gauges the dissimilarity between P and Q.

Definition 1.4 (Divergence). Let P,Q be distributions on

• A = discrete alphabet (finite or countably infinite)

D(P ∥Q) ≜
a

∑
∈A
P (a)

P
log

(a)
,

Q(a

where we agree:

)

(1) 0 ⋅
0

log 0
0

(2)

=

∃a ∶ Q(a) = 0, P (a) > 0⇒D(P ∥Q) =∞

15



• A = Rk, P and Q have densities fP and fQ

D(P

⎧

∥ ∫
f

Q) =
⎪⎪
⎨
⎪⎪

Rk log P (xk)

⎩

k
f ( f
Q xk) P (x

k)dx , Leb{fP > 0, fQ = 0

, otherwise

} =

•

+∞

0

A — measurable space:

D(P ∥Q

⎧

) =
⎪⎪
⎨
⎪

E dP

⎪

Q

⎩

dQ log dP
dQ = EP log dP

(Also

+∞

, PdQ ≪ Q

, otherwise

known as information divergence, Kullback–Leibler divergence, relative entropy.)

Notes:

• (Radon-Nikodym theorem) Recall that
≪

for two measures P and Q, we say P is absolutely
contin

≪

uous w.r.t. Q (denoted by P Q) if Q(E) = 0 implies P (

∶ X →

E 0 for all measurable E.
If P Q, then there exists a function f R+ such that for any

) =

measurable set E,

P (E

Such f is called a density (or

)

a

=

Radon-Nik

∫ fdQ. [change of measure]
E

odym derivative) of P w.r.t. Q, denoted by dP
dQ .

For finite alphabets, we can just take dP xdQ( ) to be the ratio of the pmfs. For P and Q on Rn

possessing pdfs we can take dP thedQ(x) to be ratio of pdfs.

• (Infinite values) D(P ∥Q) can be ∞ s (

=

also when P ≪ Q, but the two case of D P ∥

( ∥ ) ( ∥ )

Q
,

) are
consistent since D P Q supΠD PΠ QΠ where Π is a finite partition of the underlying
space (proof: later)

= +∞

• (Asymmetry)

A

D( ∥

=

P Q) ≠D(Q∥P )

/ ( )

. Asymmetry can be very useful. Example: P (H) = P T
1 2, Q H 1. Upon observing HHHHHHH, one tends to believe it is Q but can

(

nev
)

er
be absolutely sure; Upon observing HHT, know for sure it is P . Indeed, D P Q

=

,
D Q

( ∥ ) = ∞

•

( ∥P ) = 1bit.

(Pinsker’s inequality) There are many other measures for dissimilarity, e.g., total variation
(L1-distance)

TV(P,Q) ≜ supP
E

[E

1

] −Q[E] (1.12)

=
2
∫ ∣dP − dQ∣ = (discrete case)

1
P

2
∑
x

This one is symmetric. There is a famous Pinsker’s (or Pinsker-Csisz´

∣ (x) −Q(x)∣ . (1.13)

ar) inequality relating D
and TV:

TV(P,Q

√

) ≤
1

D P Q . (1.14)
2 log e

• (Other divergences) A general class of divergence-lik

(

e measures

∥ )

was proposed by Csiszár.
Fixing a convex function f ∶ R+ → R with f(1) = 0 we define f -divergence Df as

Df(P ∥Q) ≜ EQ [f (
dP

dQ
)] . (1.15)
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This encompasses total variation, χ2-distance, Hellinger, Tsallis etc. Inequalities between
various f -divergences such as (1.14) was once an active field of research. It was made largely
irrelevant by a work of Harremoës and Vajda [HV11] giving a simple method for obtaining
best possible inequalities between any two f -divergences.

Theorem 1.4 (H v.s. D). If distribution P is supported on A with ∣A∣ <∞, then

H(P ) = log ∣A∣ −D(P ∥
°
U

uniform distribution

A ).

on

Example (Binary divergence): 0,1 ; P p,

A

A = { } = [ p]; Q = [q, q]

D(P ∥Q) = d(p∥q) ≜ p log
p

q
+ p log

p

q

Here is how d(p∥q) depends on p and q:

d (p ||q )

p 1
q

d (p ||q )

q 1
p

−log q

−log q−

Quadratic lower bound (homework):

d(p∥q) ≥ 2(p − q

Example (Real Gaussian): R

)2 log e

D

A =

(N (m1, σ
2)∥N (

1
1 m0, σ

2
0)) = 2

log
σ2

0

σ2
1

+
1

2
[
(m1 −m0)

2

σ2
0

+
σ2

1 1
σ2

0

− ] log e (1.16)

Example (Complex Gaussian): A = C. The pdf of Nc(m,σ
2)

1
is σ

π
− 2

e x

σ2
−∣ m∣ / 2

, or equivalently:

c m,σ
2 Re m Im m ,

σ2

D m ,σ2

N

m

(

, σ2

) = N

log

([

0

( ) ( )] [
σ2/2 0

0 σ2

(Nc( 1 1)∥Nc

/2
]) (1.17)

( 0 0)) = σ2
1

+ [
∣m1 −m0∣

2

σ2
0

+
σ2

1 e
σ

− 1 log
2
0

] (1.18)

Example (Vector Gaussian): Ck

D(Nc(m1,Σ1

A =

)∥Nc(m0,Σ0)) = log det
−
Σ0

tr Σ 1
0 Σ

− log det Σ m1 −m0)
HΣ−1

1 + ( 0 (m1 −m0

1 I log e

)

+ ( − )

log e
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(assume det Σ0 ≠ 0).

Note: The definition of D(P ∥Q
measures), in which case D

)

(P ∥ )

extends verbatim to measures P and Q (not necessarily probability
Q can be negative. A sufficient condition for D P Q 0 is that P

is a probability measure and Q is a sub-probability measure, i.e., dQ 1
(

dP
∥

.
) ≥

1.3 Differential entropy

∫ ≤ = ∫

The notion of differential entropy is simply the divergence with respect to the Lebesgue measure:

Definition 1.5. The differential entropy of a random vector Xk is

h(Xk) = h

In k has probabilit

(PXk

particular, if X y density function

) ≜ −D(PXk∥Leb). (1.19)

(pdf) p, then h(Xk) = E log 1
p(Xk) ; other-

wise h(Xk) = −∞. Conditional differential entropy h(Xk∣Y ) ≜ E log 1
k where

p
∣

k
kX Y

(X ∣Y ) pX ∣Y is a

conditional pdf.

Warning: Even for X with pdf h X can be positive, negative, take values of or even be
undefined2.

Nevertheless, differential entropy shares

( )

many properties with the usual entropy:

±∞

Theorem 1.5 (Properties of differential entropy). Assume that all differential entropies appearing
below exists and are finite (in particular all RVs have pdfs and conditional pdfs). Then the following
hold :

1. (Uniform maximizes diff. entropy) If P[Xn ∈ S] = 1 then h(Xn) ≤ Leb{S} with equality iff
Xn is uniform on S.

2. (Conditioning reduces diff. entropy) h(X ∣Y ) ≤ h(X) (here Y could be arbitrary, e.g. discrete)

3. (Chain rule)

h(Xn) = ∑
n

h(X ∣Xk−1
k

k=1

) .

4. (Submodularity) The set-function T ↦ h XT is submodular.

5. (Han’s inequality) The function k ↦ 1

( )

n n h XT is decreasing in k.
k(
k
) ∑T ∈([k

])

1.3.1 Application of differential entropy: Loomis-Whitney

( )

and
Bollobás-Thomason

The following famous result shows that n-dimensional rectangle simultaneously minimizes volumes
of all projections:3

Theorem 1.6 (Bollobás-Thomason Box Theorem). Let K ⊂ Rn be a compact set. For S n
denote by

{

K
}
S

=

– pr
{

ojection
}

of K on the
⊂ [

subset
]

S of coordinate axes. Then there exists a rectangle
s.t. Leb A Leb K and for all S n :

⊂ [

A
]

Leb{AS} ≤ Leb{KS}

2For an example, consider piecewise-constant pdf taking value e(−1)nn on the n-th interval of width ∆n = c n

e
n2

−(−1) n.
3Note that since K is compact, its projection and slices are all compact and hence measurable.
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Proof. Let Xn be uniformly distributed on K. Then h(Xn) =

×

log Leb{K}

×⋯

. Let A be rectangle
a1 an where

log a i
i h X 1

i X .

Then, we have by 1. in Theorem 1.5

= ( ∣ − )

h(XS) ≤ log Leb{KS

On the other hand, by the chain rule

}

h(XS) =∑
n

1{i ∈ S h
i 1

h

} (Xi∣X[i−1

Xi X
i 1

]∩
=

S) (1.20)

≥
i

∑
∈S

( ∣ − (1.21)

= log∏ i
i∈
a

)

(1.22)

=

S

log Leb{AS} (1.23)

Corollary 1.1 (Loomis-Whitney). Let K be a compact subset of Rn and let Kjc denote projection
of K on coordinate axes [n] ∖ j. Then

Leb{ } ≤∏
n

1

K
j=

Leb{Kjc

1

}n−1 . (1.24)

Proof. Apply previous theorem to construct rectangle A and note that

Leb{
1

Leb
j
∏
n

K} = Leb{A} =
=1

{Ajc}n−1

By previous theorem Leb{Ajc} ≤ Leb{Kjc}.

The meaning of Loomis-Whitney
Leb K

of K in direction j: wj ≜
{ }

inequality is best understood by introducing the average width

alenLeb{ .K cj } Then (1.24) is equiv t to

Leb{K} ≥∏
n

j=
wj ,

1

i.e. that volume of K is greater than volume of the rectangle of average widths.
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§ 2. Information measures: mutual information

2.1 Divergence: main inequality

Theorem 2.1 (Information Inequality).

D(P ∥Q) ≥ 0 ; D(P ∥Q) = 0 iff P = Q

Proof. Let ϕ

D P

(x)

Q

≜ x logx, which is strictly convex, and use Jensen’s Inequality:

( ∥ ) =∑
X
P (x)

P
log

(x)

Q(x)
=∑
X
Q(x)ϕ(

P (x)

Q(x)
) ≥ ϕ(∑

X
Q(x)

P (x)

Q(x)
) = ϕ(1) = 0

2.2 Conditional divergence

The main objects in our course are random variables. The main operation for creating new
random variables, and also for defining relations between random variables, is that of a random
transformation:

Definition 2.1. Conditional probability distribution (aka random transformation, transition prob-
ability kernel,

Y

Markov kernel, channel) K
subset of , second argument is an elemen

(

t
⋅∣⋅) has two arguments: first argument is a measurable
of . It must satisfy:

1. For any x : K x is a probability measure

X

2.

∈ X ( ⋅ ∣ ) on

For any measurable A function x↦K(A x is measurable

Y

on .

In this case we will say that K acts from to

∣ )

. In fact, we will abuse

X

notation and write PY X

instead of K to suggest what spaces
X Y

X and Y are1. Furthermore, if X and Y are connected by the
PY

∣

random transformation PY X we will write X
∣X

Y .

Remark 2.1. (Very technical!)

∣

Unfortunately,

ÐÐ

condition

Ð→

2 (standard for probability textbooks) will
frequently not be sufficiently strong for this course. The main reason is that we want Radon-Nikodym

dP
derivatives such as Y ∣X=x .dQ (y e

Y
) to b jointly measurable in (x, y) See Section ?? for more.

Example:

1. deterministic system: Y = f(X

2.

)⇔ PY ∣X=x = δf(x

decoupled system: Y

)

⊥⊥X⇔ PY ∣X=x = PY
1Another reason for writing PY ∣X is that from any joint distribution PX,Y (on standard Borel spaces) one can

extract a random transformation by conditioning on X.
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3. additive noise (convolution): Y =X +Z with Z ⊥⊥X

Multiplic

⇔ PY ∣X=x = Px+Z .

ation:

P X

Ð
PY

X ÐÐ
∣X
→ Y to get PXY = PXPY

P

∣X :

XY (x, y) = PY ∣X(y∣x

Comp

)PX(x) .

osition (Marginalization): PY PY X PX , that is PY

PY y

= ∣

P

○

Y X y x PX x

∣X acts on PX to produce PY :

( ) =
x

∑ ∣

PY X

∈X
( ∣ ) ( ) .

Will also write PX ÐÐÐ
∣

→ PY .

Definition 2.2 (Conditional divergence).

D(PY ∣X∥QY ∣X ∣PX) = Ex∼PX [D(

= ∑ ( )

PY

(

∣X=x∥QY
∥

∣X=x

∣
X

P

)] (2.1)

∈
PX x D Y ∣X=x QY X=x) . (2.2)

x

Note: H(X ∣Y

Theorem 2.2

) log D PX Y UX PY , where UX is is uniform distribution on .

(Prop

= ∣A

erties

∣ −

of

(

Div

∣

ergence)

∥ ∣ )

.

X

1. D(PY

2. (Simple

∣X∥QY X PX D PXPY X PXQY X

chain

∣ ∣

rule)

) =

D

(

Q

∣ ∥ ∣

(PXY

)

∥ XY D PY X QY X PX D PX QX

3. (Monotonicity) D PXY QXY D

) =

PY

(

QY

∣ ∥ ∣ ∣ ) + ( ∥ )

4. (Full chain rule)

( ∥ ) ≥ ( ∥ )

D PX i1⋯
n

Xn QX 11⋯Xn D PXi
i 1

∣X −

In the special case of

(

Q

∥

Q we

)

have

=∑
=

( ∥QX −1
i∣Xi−1 ∣PXi )

Xn =∏i Xi

D

5. (Conditioning

(PX1⋯Xn∥QX1⋯QXn) =D(PX1⋯Xn∥PX1⋯PXn D PXi QXi

= ○

increases divergence) Let P

) +∑ ( ∥

Y ∣X and QY ∣X be two kernels, let P

)

and ∣
Y

QY QY X PX . Then
= PY ∣X○PX

D(PY ∥QY ) ≤ D(PY

e

∣X∥QY ∣X
quality iff D

∣ )

Pictorially:

(

PX

PX ∣Y ∥QX ∣Y ∣PY ) = 0

PX

PY |X

QY |X

PY

QY
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6. (Data-processing for divergences) Let PY = PY ∣X ○ PX

PY = ∫ PY ∣X
QY

( ⋅ ∣ )

= ∫ PY ∣X

Pictorially:

( ⋅ ∣

x X

x)

dP

dQX
}Ô⇒D(PY ∥QY ) ≤D(PX∥QX) (2.3)

X Y

P X

Q Y

P Y

Q X

P Y | X
Ô⇒D(PX∥QX) ≥D(PY ∥QY )

Proof. We only illustrate these results for the case of finite alphabets. General case follows by doing
a careful analysis of Radon-Nikodym derivatives, introduction of regular branches of conditional
probability etc. For certain cases (e.g. separable metric spaces), however, we can simply discretize
alphabets and take granularity of discretization to 0. This method will become clearer in Lecture 4,
once we understand continuity of D.

1. E PY X
x∼PX [D(PY ∣X=x∥QY ∣X=x)] = E(X,Y )∼PXPY ∣X

[log ∣

QY ∣X

PX
PX

]

2. Disintegration: E(X,Y ) [log PXY
QXY

] = E(X,Y ) [log
PY ∣X

QY ∣X
+ log PX

QX

3. Apply 2. with X and Y interchanged and use D 0.

]

4. Telescoping PXn = n
i=1 PX ∣

n
Xi−1 and QXn i

i i 1

(

Q

⋅∥

X

⋅)

i X

≥

−1 .

5. Inequality follows from monotonicity. To get

=

conditions

= ∣

for equality, notice that by the chain
rule for D:

∏ ∏

D(PXY ∥QXY ) =D PY ∣X QY ∣X PX D PX PX

=

0

D

(

P

∥ ∣

P

) + (

X Y Y Y

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸

( ∥QX ∣ ) +D(PY

=

∥

Q

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
)

Y

and hence we get the claimed result from positivit

∣

y

∣

of D.

∥ )

6. This again follows from monotonicity.

Corollary 2.1.

D(PX1⋯Xn∥QX1⋯QXn) ≥ ∑D

iff PX

(PXi∥QXi) or
n

n j 1 PXj

Note: In general we can have D

= =∏ =

(PXY ∥Q ) ≶ ( ∥ ) + ( ∥ )

( ∥ ( ) =
XY

( ∥

D P
)
X

<

QX
(

D
∥

PY
)

QY . For example, if X Y
under

=

P and Q, then
≠

D PXY D QX
(
Y D PX QX 2D PX QX . Conversely, if PX QX and

PY QY but PXY QXY we have D PXY QXY 0 D PX QX D PY QY .

=

=

Corollary 2.2. Y = f(X D PY QY

∥

D PX

) >

Q

= ( ∥ ) + ( ∥ )

)⇒ ( ∥ ) ≤ ( ∥ X), with equality if f is 1-1.
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Note: D(PY ∥QY ) =D(PX QX f is 1-1. Example: PX Gaussian,QX Laplace, Y X .

Corollary 2.3 (Large deviations

∥ )⇒/

estimate). For any subset

=

E we have

= = ∣ ∣

d PX E QX E D PX QX

⊂ X

Proof. Consider Y = 1

])

{X .

( [ ]∥ [ ≤ ( ∥ )

∈E}

2.3 Mutual information

Definition 2.3 (Mutual information).

I(X;Y ) =D(PXY ∥PXPY

Note:

)

• Intuition: I(X;Y ) measures the dependence between X and Y , or, the information about X
(resp. Y ) provided by Y (resp. X)

• Defined by Shannon (in a different form), in this form by Fano.

• Note: not restricted to discrete.

• I(X;Y ) is a functional of the joint distribution PXY , or equivalently, the pair PX , PY X .

Theorem 2.3 (Properties of I).

( ∣ )

1. I(X;Y ) =D(PXY ∥PXPY ) =D(PY ∣X∥PY ∣PX) =D(PX ∣Y ∥PX ∣PY

2. Symmetry: I

)

(X;Y I Y ;X

3. Positivity: I(X;Y

) = ( )

) ≥ 0; I(X;Y ) = 0 iff X

4.

⊥⊥ Y

I(f(X);Y ) ≤ I

5. “More data

(X;Y

Mor

); f one-to-one ⇒ I(f

e info”: I X1,X2;Z I

(X);Y I X;Y

⇒ ( ) ≥ (X1;Z

) = ( )

Proof. 1. I(X;Y ) = E log PXY

)

PXPY
= E log

PY ∣X

PY
= E log

PX∣Y .PX

2. Apply
(

data-processing inequality twice to the map x, y y, x to get D PX,Y PXPY
D PY,X X

∥

∥PY P
( ) → ( ) ( ) =

).

3. By definition.

4. We will use the data-processing property of mutual information (to be proved shortly, see
Theorem 2.5). Consider the chain of data processing: (x, y) ↦ (f(x), y) ↦ (f
Then

−1(f(x)), y).

I(X;Y ) ≥ I

5. Consider f

(f(X);Y ) ≥ I(f−1(f(X));Y ) = I

(X

(X;Y

1,X2 .

)

) =X1

Theorem 2.4 (I v.s. H).
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⎧

( ) =
⎪⎪
⎨
H( )

⎪⎪+∞

X X discrete
1. I X;X

⎩ otherwise

2. If X, Y discrete then
I(X;Y ) =H

If only X discrete then
I X;Y

(X) +H(Y ) −H(X,Y

H X H X Y

)

3. If X, Y are real-valued vectors, have

(

joint

) =

pdf

(

and

) −

al

(

l thr

∣

e

)

e differential entropies are finite
then

I(X;Y ) = h(X h Y h X,Y

If X has marginal pdf pX and conditional pdf

) +

pX

( ) − (

∣Y (x∣y) then

)

I(X;Y ) = h(X) − h(X ∣Y

4.

) .

If X or Y are discrete then I X;Y min H X ,H Y , with equality iff H X Y 0 or
H Y X 0, i.e., one is a deterministic

( ) ≤

function
( (

of
)

the
(

other.
)) ( ∣ ) =

Proof.

(

1.

∣

By

) =

definition, I(X;X) = D

D δx PX log 1

(PX ∣X∥PX ∣ x∥

∥
X)

(

PX) = Ex∼XD(

) =

δ P . If PX is discrete, then

X discrete,

atoms
( I

X x) and (X;X) H . If PX is notP

denote the set of of PX . Let ∆
but

= (

x,

)

x x
since

A = { ∶ ( ) > }

PX PX E

= {( ) ∶ ∈/ A} ⊂ X ×X

then let

( )

x

=

PX
(A

x

) >

0

. Then PX,X ∆ P c
X 0

we have by taking

(

E

×

∆ that

)( ) ≜ ∫X
PX(dx1 PX dx2 1 x1, x2 E

)(∆

)∫

= (PX × PX ) = 0.

X

Thus

(

PX

)

,X

{(

PX

) ∈

PX

}

and thus

I(X;X D

≪/ ×

) = (PX,X∥PXPX) = +∞ .

2. E log PXY
PXPY

= E [log 1
PX

+ log 1
PY

− log 1
PXY

].

3. Similarly, when PX,Y and PXPY have densities pXY and pXpY we have

D(PXY ∥PXPY ) ≜ E [
pXY

log h X h Y h X,Y
pXpY

4. Follows from 2.

] = ( ) + ( ) − ( )

Corollary 2.4 (Conditioning reduces entropy). X discrete: H X Y H X , with equality iff
X Y .
Intuition: The amount of entropy reduction = mutual information

( ∣ ) ≤ ( )

⊥⊥

Example: X =
i.i.d.

U Y , where U,Y ∼ Bern(1OR 2). Then X ∼ Bern(3
4) and H(X) = h(1

4) < 1bits =

H(X ∣Y = 0), i.e., conditioning on Y = 0 increases entropy. But on average, H(X ∣Y ) = P [Y = 0]H(X ∣Y =

0) + P [Y = 1]H(X ∣Y = 1) = 1 bits <H(X), by the strong concavity of h2

Note: Information, entropy and Venn diagrams:

(⋅).

1. The following Venn diagram illustrates the relationship between entropy, conditional entropy,
joint entropy, and mutual information.
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I(X;Y )H(Y |X) H(X|Y )

H(X,Y )

H(Y ) H(X)

2. If you do the same for 3 variables, you will discover that the triple intersection corresponds to

H(X1) +H(X2) +H(X3) −H(X1,X2) −H(X2,X3

which is sometimes denoted I X;Y ;Z . It can be both

) −H(X1,X3 H X1,X2,X3 (2.4)

( ) positive and

) +

negativ

(

e (why?).

)

3. In
(

general,
)

one can treat random
∪

variables as sets (so that r.v. Xi corresponds to set Ei and
X1,X2 corresponds to E1 E2). Then we can define a unique signed measure µ on the finite

algebra generated by these sets so that every information quantity is found by replacing

I H

e

→ µ ;→ ∩ ,

As an example, we hav

/ → ∪ ∣→ ∖ .

H(X1∣X2,X3) = µ

I

(E1

X1,X2;X3 X4 µ E

∖ (E2

1 E2

∪E ))

( ∣ ) = ((( ∪ )

3 , (2.5)

E3 E4 . (2.6)

By inclusion-exclusion, quantity (2.4) corresponds to µ(E

∩

1

) ∖ )

is not necessarily a positive measure.
∩E2 ∩E3), which explains why µ

Example: Bivariate Gaussian. X,Y — jointly Gaussian

I(
1

X;Y ) =
2

log
1

1 − ρ2
XY

where ρXY ≜
E[(X−EX)(Y −EY )]

1σXσY
∈ [− ,1] is the correlation

coefficient. -1 0 1
ρ

I(X;Y )

Proof. WLOG,
=

by shifting and scaling if necessary, we can assume EX EY 0 and EX2 EY 2 1.
Then ρ EXY . By joint Gaussianity, Y ρX Z for some Z 0,1 ρ2 X. Then using the
divergence formula for Gaussians (1.16), w

=

e get

= = = =

+ ∼ N ( − ) ⊥⊥

I(X;Y ) = D(PY ∣

= (N

X

1
E

(

P

E
∥ Y ∣PX

D ρX,1

)

− ρ2)∥N (0,1))

= [
2

log
1

1 − ρ2
+

log e

2
((ρX)2 + 1 − ρ2 − 1)]

=
1

2
log

1

1 − ρ2
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Note: Similar to the role of mutual information, the correlation coefficient also measures the
dependency between random variables which are real-valued (more generally, on an inner-product
space) in certain sense. However, mutual information is invariant to bijections and more general: it
can be defined not just for numerical random variables, but also for apples and oranges.

Example: Additive white Gaussian noise (AWGN) channel. X ⊥⊥ N — independent Gaussian

+X Y

N

I(X;X +N) = 1
2 log (1 +

σ2
X

σ2
N

signal-to-noise ratio

)

(SNR)

Example: Gaussian vectors. X ∈ Rm,Y

°

∈ Rn — jointly Gaussian

I(X;Y) =
1

2
log

det ΣX det ΣY

det Σ X,Y

where ΣX ≜ E [(X −EX)(X −EX denotes

[ ]

)′] the covariance matrix
the the covariance matrix of the random vector

In
[X,Y] ∈ Rm

the special case of additive noise: Y X N for N

+
of X ∈ Rm, and Σ X,Y] denotes

=

n.
X, we have

[

( + ) =
1

I X;X N

+ ⊥⊥

2
log

det(ΣX +ΣN)

det ΣN

Σ Σ why?
since det Σ[X,X+N] = det ( X X

Σ det ΣX
X Σ det ΣN.

X

Example
+ΣN

: Binary symmetric channel

)

(BSC)
=

.

+X Y

N

X Y

1

0

1

0
1− δ

1− δ

δ

X ∼ Bern(
1

2
Y

), N ∼ Bern(δ)

=

=

X N

I(X;Y ) log

+

2 − h(δ

Example: Addition over finite groups. X is uniform

)

on G and independent of Z. Then

I(X;X +Z) = log ∣G∣ −H

Pr

(Z

oof. Show that X

)

+Z is uniform on G regardless of Z.
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2.4 Conditional mutual information and conditional
independence

Definition 2.4 (Conditional mutual information).

I(X;Y ∣Z) =D(

=

PXY ∣Z∥PX ∣ZPY ∣Z ∣PZ) (2.7)

Ez

where the product of two random transformations

∼PZ [I(X;Y ∣Z = z)] . (2.8)

is PX Z zPY Z z x, y PX Z x z PY Z y z ,
under which X and Y are independent conditioned on

(

Z.
∣ = ∣ = )( ) ≜ ∣ ( ∣ ) ∣ ( ∣ )

Note: I(X;Y ∣Z) is a functional of PXY Z .

Remark 2.2 (Conditional independence). A family of distributions can be represented by a directed
acyclic graph.

{

A
∶

simple example
=

is a Markov chain (line graph), which represents distributions that
factor as PXY Z PXY Z PXPY ∣XPZ∣Y }.

⎧⎪⎪⎪⎪
→ Z ⇔

⎪
PXZ∣Y = PX ∣

⎪

X → Y Y ⋅

⎪ ⇔ =

P

⎪

Z Y

⎪
⎪⎪⎪⎪

∣

⎪ ⇔

PZ XY

∣

Y Z =

PZ∣Y

⎪⎪⎪⎪
⎨

PX PX ⋅

⇔

PY X P
Cond. indep.

⎪⎪⎪
⎪⎪ ⇔

X,

⊥⊥

Y,Z

∣

form a Mark

∣ ⋅ Z

ov

∣Y

chain
notation

X Z Y

Theorem 2.5 (Further properties

⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎪⎩
⎪⎪
⎪

⇔ PXY Z = PY ⋅ PX ∣Y ⋅ PZ∣

⇔ → →

Y

Z Y X

of Mutual Information).

1. I(X;Z ∣Y ) ≥ 0, with equality iff X → Y Z

2. (Kolmogorov identity or small chain rule)

→

I(X,Y ;Z) = I(X;Z) + I(Y ;Z ∣X

I Y ;Z I X;Z Y

)

3. (Data Processing) If X

= ( ) + ( ∣ )

→ Y

a) I X;Z I X;Y

→ Z, then

b) I

( ) ≤ (

(X;Y ∣Z) ≤ I X

)

( ;Y

4. (Full chain rule)

)

I(Xn;Y ) = I
k

∑
n

=1

(Xk;Y ∣Xk−1)

Proof. 1. By definition and Theorem 2.3.3.

2.
PXY Z
PXY PZ

=
PXZ
PXPZ

⋅
PY ∣XZ
PY ∣X
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3. Apply Kolmogorov identity to I(Y,Z;X):

I(Y,Z;X) = I

I

(X;Y ) + I
´
(
¹
X;Z

X

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸
=0

;Z I X;Y

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
∣Y
¹¹¹¹¶
)

= ( ) + ( ∣Z

4. Recursive application of Kolmogorov identity.

)

Example: 1-to-1 function I X;Y
In general, I(

I X; f Y
Note:

>

X;Y Z
⇒ (

Y
) =

∣ ) ≷ I(X; ). Examples:
a) “ ”: Conditioning does not always

(

decrease

( ))

M.I. To find counterexamples when X,Y,Z do
not
→

form
→

a Markov chain,
→

notice
←

that there is only one directed acyclic graph non-isomorphic to
X Y Z, namely X Y Z. Then a counterexample is

i.i.d. 1
X,Z ∼ Bern(

I

) Y =X ⊕Z

Z

(X;Y

I X;Y I X;X Z Z H X

)

log

=
2

⊥⊥

(

Then

∣ ) =

0 since X Y

2

b) “<”: Z = Y . I(
⇒

X;Y

( ⊕ ∣ = ( ) =

∣Y ) = 0.

)

Note:
(

(Chain rule for Chain =

∑ ∣ − ) = ∑

I
( ∣

rule
− )

for H)
(

Set
∣

Y X
−
n. Then H Xn I Xn;Xn

n
= I X ;Xn Xk 1 n

= H X Xk 1
k Xk

1 k 1 k , since H Xk X
n

k , 1 0.
( ) = ( ) =

Remark 2.3 (Data processing for mutual information via data

) =

processing of divergence). We
proved data processing for mutual information in Theorem 2.5 using Kolmogorov’s identity. In fact,
data processing for mutual information is implied by the data processing for divergence:

I(X;Z) =D(PZ∣X∥PZ ∣PX) ≤D(PY ∣X∥PY ∣PX I X;Y ,

PZ Y PZ Y
where note that for each x, we have PY X x

∣

PZ X x and PY

) =

∣

(

PZ . Therefore

)

if we have a
bi-variate functional of distributions P Q processing, then we can define an
“M.I.-like” quantity ID(

which satisfies data
via X;Y P

∣ =

P

ÐÐÐ→ ∣ =

Y X Y PX Ex PX PY

ÐÐ

X

Ð→

processing on Markov chains. A

D( ∥ )

in at f -divergence

)

ric
defined (1.15)). Th

≜ D

h
(

class of examples
) ≜

arises
∼

ing

D

is

(

by taking
satisfies

∣ ∥

data-pro

∣

cess going

∣ =x∥PY )

D =

which will satisfy data
Df (an f -divergence,

to be shown in Remark 4.2.

2.5 Strong data-processing inequalities

For many random transformations PY ∣X , it is possible to improve the data-processing inequality (2.3):
For any PX ,QX we have

D(PY ∥QY ) ≤

<

ηKLD(PX∥QX) ,

where ηKL 1 and depends on the channel PY ∣X only. Similarly, this gives an improvement in the
data-processing inequality for mutual information: For any PU,X we have

U →X Y I U ;Y ηKLI U ;X .

For example, for PY ∣X = BSC(δ

→

v

Ô⇒ ( ) ≤

) we ha e η = (1 − 2δ)2
KL . Strong

(

data-pro

)

cessing inequalities
quantify the intuitive observation that noise inside the channel PY ∣X must reduce the information
that Y carries about the data U , regardless of how smart the hook up U →X is.

This is an active area of research, see [PW15] for a short summary.
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2.6* How to avoid measurability problems?

As we mentioned in Remark 2.1 conditions imposed by Definition 2.1 on PY ∣X are insufficient.
Namely, we get the following two issues:

dP
1. Radon-Nikodym derivatives such as Y ∣X=x tlydQ (y ma

Y
) y not be join measurable in (x, y

2. Set

)

The easie

{x ∶ PY ∣X=x ≪ QY

st way to avoid

} may not be measurable.

all such problems is the following:

Agreement A1: All conditional kernels PY X in these notes will be assumed
to b
X

e
×

defined
Y

by choosing a σ-finite measure µ2 on
at

∣ ∶ →

and
on such th

X Y

P

Y measurable function ρ(y∣x) ≥ 0

Y ∣X(A∣x

for all x and measurable sets A and

)

ρ

= ∫ ρ(y
A

y x µ2

∣x)µ2(dy

∫Y ( ∣ ) (dy) = 1 for

)

all x.

Notes:

1. Giv
′′ =

en another
+ ′

kernel QY ∣X specified via ρ′(y∣x) and µ′2 we may first replace µ2 and µ′2 via
µ2 µ2 µ2 and thus

′′
assume that both PY X and

dominating measure µ2 . (This modifies ρ(y∣x
∣
) to ρ(

QY ∣X are specified in terms of the same

y∣x) dµ2

dµ′′2
(y).)

2. Given two kernels PY ∣X and QY ∣X specified in terms of the same dominating measure µ2 and
functions ρP (y∣x) and ρQ(y∣x), respectively, we may set

dPY ∣X ρ

dQY ∣X
≜

P (y∣x)

ρQ y x

outside of ρQ = 0. When PY ∣X=x ≪ QY ∣X=x the ab

(

ov

∣

e

)

derivative, which is automatically measurable in (x, y

3. Given QY specified as

)

gives a version of the Radon-Nikodym
.

dQY q y dµ2

we may set

= ( )

A0

This set plays a role of x PY X x

= {x ∶ ∫{q=0}
ρ(y

QY . e the

∣x

Unlik

)dµ2 = 0

latter A

}

0 is guaranteed to be measurable
by Fubini [Ç11, Prop.

{

6.9].
∶

By
∣

“pla
= ≪

ys a
}

role” we mean that it allows to prove statements like:
For any PX

PX,Y PXQY PX A0 1 .

So, while our agreement resolves th

≪

e two measurabilit

⇐⇒

y problems

[ ] =

above, it introduces a new
one. Indeed, given a joint distribution PX,Y on standard Borel spaces, it is always true that one
can extract a conditional distribution PY ∣X satisfying Definition 2.1 (this is called disintegration).
However, it is not guaranteed that PY ∣X will satisfy Agreement A1. To work around this issue as
well, we add another agreement:
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Agreement A2: All
X

joint distributions
Y

PX,Y are specified by means of
(

data:
)

µ1,µ2 –
σ-finite measures on and , respectively, and measurable function λ x, y such that

PX,Y (E) ≜ ∫ λ(x, y)µ1(dx)µ2 dy
E

( ) .

Notes:

1. Again, given a finite or countable collection of joint distributions PX,Y ,QX,Y , . . . satisfying A2
we may without loss of generality assume they are defined in terms of a common µ1, µ2.

2. Given PX,Y satisfying A2 we can disintegrate it into conditional (satisfying A1) and marginal:

PY ∣X(A∣x) = ∫ ρ
A

(
λ

y∣x)µ2(dy) ρ(y∣x) ≜
(x, y)

(2.9)

( ) = ( ) ( ) ( ) ≜ (

p

P

(x

X A p x µ1 dx p x

)

∫ ∫Y
λ x, η)µ2(dη) (2.10)

A

with ρ(y∣x) defined arbitrarily for those x, for which p(x

b

) 0.

Remark 2.4. The first problem can also e resolved with the

=

help of Doob’s version of Radon-
Nikodym theorem

Y

[Ç11, Chapter V.4, Theorem 4.44]: If the σ-algebra on is separable (satisfied
whenever is a Polish space, for example) and PY X

v
∣ =x QY

deriv
∣X=x then

measurable ersion of Radon-Nikodym ative

Y

dP

≪ there exists a jointly

(
x

y)↦
Y ∣X

x,
=

dQY ∣X=x
(y)
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§ 3. Sufficient statistic. Continuity of divergence and mutual information

3.1 Sufficient statistics and data-processing

Definition 3.1 (Sufficient Statistic). Let

• P θX be a collection of distributions of X parameterized by θ

• PT ∣X be some probability kernel. Let P θT ≜ PT ∣X ○ P θX be the induced distribution on T for
each θ.

We say that T is a sufficient statistic (s.s.) of X for
=

θ if there exists a transition probability kernel
PX ∣T so that P θXPT ∣X P θTPX

Note

∣T . (I.e.: PX ∣T can be chosen to not depend on θ).

:

• Know T , can forget X (T contains all the information that is sufficient to make inference
about θ)

• Obviously any one-to-one transformation of X is sufficient. Therefore the interesting case is
when T is a low-dimensional recap of X (dimensionality reduction)

• θ need not be a random variable (the definition does not involve any distribution on θ)

Theorem 3.1. Let θ →X → T . Then the following are equivalent

1. T is a s.s. of X for θ.

2. ∀Pθ, θ → T →X.

3.

4.

∀Pθ, I(θ;X ∣T ) = 0.

∀Pθ, I(θ;X) = I(θ;T

Theorem

), i.e., data processing inequality for M.I. holds with equality.

3.2 (Fisher’s factorization criterion). For all θ ∈ Θ, let P θX have a density pθ with respect
to a measure µ (e.g., discrete – pmf, continuous – pdf). Let T = T (X) be a deterministic function
of X. Then T is a s.s. of X for θ iff

pθ(x) = gθ(T (x))h(x

for some measurable functions gθ and h, θ Θ.

)

Proof.
⇒

We only give the proof in the discrete

∀ ∈

case
(

(contin ∑→ ∫
) = (

uous
=

case
) = ( =

dµ).
=

Let
) =

t
”: pose

= T x

) (

Sup
=

is
∣

a s.s.
= (

of
))

X for
)

( =

.
“ T

(

= ) ( = (

θ.
=

Then
( ))

pθ x Pθ X x Pθ X x,T t Pθ X x T
t Pθ T t

´
P
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
X
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
x
¹¹¹¹¹¹¸
T
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
T
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
x

¶´
P
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
θ T T x

h x

∣ =

( ) gθ
¹¹¹¹¹¹¹¹¹
(
¸
T (x

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
))

¹¹¹¹¹¶
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“⇐”: Suppose the factorization holds. Then

Pθ(X = x∣T = t) =
pθ(x)

∑x 1{T (x)=t}pθ(x)
=

gθ(t)h(x)

∑x 1{T (x)=t}gθ(t)h(x)
=

h(x)

∑x 1{T (x)=t}h(x)
,

free of θ.

Example:

1. Normal mean model. Let θ R indep.
and observations Xi θ,1 , i n . Then the sample

¯mean X = 1
∈ ∼ N ( ) ∈ [ ]

ofn ∑jXj is a s.s. Xn for θ.

Verify: P θXn factorizes.

i.i.d.
2. Coin flips. Let Bi ∼ Bern(θ . Then n

i 1Bi is a s.s. of Bn for θ.

i.i.d.
3. Uniform distribution. Let U . n

i

)

uniform

∑ =

0, θ Then maxi n Ui is a s.s. of U for θ.

Example: Binary hypothesis testing

∼

. θ 0,

[

1 . Giv

]

en θ 0 or

∈[

1,

]

X PX or QX . Then Y – the
output of PY ∣X – is a s.s. of X for θ iff

=

D
{ }

Q

∣

(PX ∣Y X Y PY 0, i.e., PX Y QX Y holds PY -a.s.
Indeed, the latter means that for kernel QX Y we hav

∣

= ∼

∥

e
∣ ) = ∣ = ∣

PXPY ∣X = PYQX ∣Y and QXPY ∣X = QYQX

which is precisely the definition of s.s. when θ 0, 1 . This example explains

∣Y ,

∈ { } condition for equality
in the data-processing for divergence:

X Y

P X

Q Y

P Y

P Y | X

Q X

Then assuming D(PY ∥QY

Q

) < we have:

D(PX

∞

∥ X) =D(PY ∥QY

Proof: Let QXY QXPY X , PXY PXP

)

Y X ,

⇐

then

⇒ Y – s.s. for testing PX vs. QX

=

D

∣

(PXY

= ∣

∥QXY ) = PY ∣ Q ∣ )+ ( ∥ )D
´

D

( X∥
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹

Y

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
∣X

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
PX

¶
D PX QX

= (
=0

PX ∣Y ∥QX Y

Y

∣ ∣PY

D PY Q

) +D(PY ∥QY )

with equality iff D(PX ∣Y ∥QX ∣Y ∣PY

≥ ( ∥ )

) = 0, which is equivalent to Y being a s.s. for testing PX vs QX
as desired.
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3.2 Geometric interpretation of mutual information

Mutual information as “weighted distance”:

I(X;Y ) =D(PY ∣X∥PY D
x

Q

∣PX) = (PY ∣X=x∥PY )PX(x

Theorem 3.3 (Golden formula).

)

∀ Y such that D

∑

PY QY

I(X;Y ) =D(PY ∣X Q

( ∥ ) <∞

∥ Y ∣PX

Proof. For discrete case: I X;Y E P
log Y XQY

) −D(PY ∥QY )

( ) = ∣

PY QY
, group PY ∣X and QY .

Corollary 3.1 (mutual information as center of gravity).

I X;Y minD PY Q PX ,
Q

∣X

achieved at Q

( ) = ( ∥ ∣ )

= PY .

Note: This representation is useful to bound mutual information from above.

Theorem 3.4 (mutual information as distance to product distributions).

I(X;Y ) = min D PXY QXQY
QX ,QY

P Q QProof. I(X;Y ) = E log XY X Y

( ∥ )

PXPY QXQY
, group PXY andQXQY and bound marginal divergencesD(PX∥QX)

and D(PY ∥QY ) by zero.

Note: Generalization to conditional mutual information.

I(X;Z ∣Y ) = min
∶ → →

D(PXY Z∥QXY Z
QXY Z X Y Z

Proof. By chain rule,

)

D(PXY Z∥

= ( ∥

QXQY XQZ∣Y

D PXY Z PXPY

∣ )

∣XPZ∣Y ) +D

D

(PX∥QX) +D

PXY Z PY PX Y PZ Y . . .

(P ∥ PZ∣Y ∥QZ∣Y ∣ Y )

=

Y ∣X QY ∣X ∣PX) +D( P

=D
´

(

(
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
P
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
XZ Y

∥

∥PX Y P

∣

Z Y ∣

∣

+
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

Y

)

∣ ∣ ∣ P

+

I

)
¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

. . .

(X;Z∣Y )

Interpretation: The most general graphical model for the triplet X,Y,Z is a 3-clique. What
is the information flow on the edge X Z? To answer, notice that
possible joint distributions to a Markov chain X Y Z. Thus, it

(

removing
)

this edge restricts
is natural to ask what is the

minimum distance between a given PX

→

,Y,Z and the set of all distributions QX,Y,Z satisfying the
Markov chain constraint. By the above calculation,

→

optimal

→

QX,Y,Z =

( ∣ )

PY PX Y PZ Y and hence the
distance
→

is I X;Z Y . It is natural to take this number as the information
∣

flowing
∣

on the edge
X Z.
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3.3 Variational characterizations of divergence:
Donsker-Varadhan

Why variational characterization (sup- or inf-representation): F (x

1. Regularity, e.g., recall

) = supλ∈Λ fλ(x)

a) Pointwise supremum of convex functions is convex

b) Pointwise supremum of lower semicontinuous (lsc) functions is lsc

2. Give bounds by choosing a (suboptimal) λ

Theorem 3.5 (Donsk
∶ X →

er-Varadhan). Let P,Q
set of functions f R such that EQ

X C

[exp
expectation EP f X exists and furthermore

{

b
(

e pr
)}]

obability me
f X < ∞

asur
. If D(P ∥

es on
Q) < ∞

and let denote the

[ ( )]

then for every f ∈ C

D(P

Pro

∥Q) = sup
f∈C

EP [f(X)] − logEQ

of. “ ”: take f log dP

[exp{f(X)}] . (3.1)

≤ = dQ .

“≥”: Fix f ∈ C and define a probability measure Qf (tilted version of Q) via Qf(dx) ≜
exp{f(x)}Q(dx)
∫X exp{f( )} ,

x Q(dx) or equivalently,

Qf(dx) = exp{f

Then,

(x) −Zf}Q(dx) , Zf

obviously Qf Q and we have

≜ logEQ[exp{f(X)}] .

EP

≪

[f(X)] −Zf = EP [
dQf

log
dQ

] = EP [log
dPdQf

dQdP
] =D(P ∥Q) −D(P ∥Qf) ≤D(P ∥Q) .

Notes:

1. What is Donsker-Varadhan good for? By setting f x ε g x with ε 1 and linearizing exp
and log we can see that when D P Q is small, exp

(

ectations
) = ⋅ (

under
)

P can
≪

be approximated by
expectations over Q (change of measure): EP g X EQ g X . This holds for all functions
g with finite exponential momen

(

t under

∥ )

Q. T
[

otal
(

v
)]

ari
≈

ation
[

distance
( )]

provides a similar bound,
but for a narrower class of bounded functions:

∣EP g

formally

(X

2. More , inequality EP

[

f X

)] −EQ

log

[g

E

(X ≤ ∥g

Q

)]∣

exp f X

∥∞TV(P,Q) .

useful estimating
EP [f(

D
X)]

P Q is in
for complicated distribution P (e.g. over large-dimensional vector Xn with lots of

weak inter-coordinate dependencies)

[ ( )]

by

≤

making

[

a smart

(

c

)]

hoice

+

of

(

Q

∥

(e.g.

)

with iid components).

3. In the next lecture we will show that P D P Q is convex. A general method of obtaining
variational formulas like (3.1) is by Young-Fenchel inequality. Indeed, (3.1) is exactly this
inequality since the Fenchel-Legendre conjugate

↦ ( ∥

of

)

D(⋅∥Q) is given by a convex map f Zf .

Theorem
H

3.6 (Weak lower-semicontinuity of divergence). Let X be a metric space with Bor

↦

el
σ-algebra . If Pn and Qn converge weakly (in distribution) to P , Q, then

D(P ∥Q) ≤ lim inf
n→∞

D(Pn Qn
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Proof. First method: On a metric space bounded continuous functions ( b) are dense in the set
of all integrable functions. Then in Donsk

X

er-Varadhan (3.1) we can replace
C

by b to get

D(Pn∥Qn) = sup
∈C

EPn f X logEQn exp f X .
f

C C

b

Recall Pn → P weakly if and only if EP f

[ ( )] − [

f

{ (

n (X) EP f X for all b.

)}]

Taking the limit concludes
the proof.

Second metho
)

d (less m Let A
( +

ysterious): b

→

e the algebra

( )

of Borel

∈ C

sets E whose boundary has
zero P Q measure, i.e.

E P Q ∂E 0 .

By the property of weak convergence

A = {

Pn

∈

and

H ∶

Q

(

n

+

conv

)(

erge

)

p

=

oin

}

twise on . Thus by (3.8) we have

D(PA∥Q D

in

A) ≤ lim
n→∞

(Pn,

A

If we show is P Q -dense , we are done by (3.7

A

)

∥Qn,

. To

A

get

)

an idea, consider R. Then
open sets are
by open interv

A (

(P
+ ) H

+Q)

(

-dense
)

in H
+

(since finite measures are regular), while the algebra
X =

F generated

∈ X (

als
) +

is
(

P
) >

Q -dense in the open sets. Since there are at most
(

coun
)

tably many points
a with P a Q a 0, we may further approximate each interval a, b whose boundary has
non-zero P Q measure by a slightly larger interval from .

i.i.d.
Note: In

(

general,

+ )

D(P ∥Q) is

∑

not continuous in either P or

A

=

Q. Example: Let B1, . . . ,Bn 1
n
i=

D
equiprobably. Then S 1

n √
n 1Bi

{± }

Ð→ 0,1 . But D PSn 0,1

∼

discrete cont’s

this is an example for strict inequality in

N (

(3.2).

) (
°

∥N
´¹¹¹¹¹¹¹¹¹¹

(
¸¹¹¹¹¹¹¹¹¹¹¹¶

)) = ∞ for all n. Note that

Note: Why do we care about continuity of information measures? Let’s take divergence as an
example.

1. Computation. For complicated P and Q direct computation of D(P ∥Q) might be hard.
Instead, one may want to discretize them then let the computer compute. Question: Is this
procedure stable, i.e., as the quantization becomes finer, does this procedure guarantee to
converge to the true value? Yes! Continuity w.r.t. discretization is guaranteed by the next
theorem.

2. Estimating information measures. In many statistical setups, oftentimes we do not know P
or Q, if we estimate the distribution from data (e.g., estimate P by empirical distribution
ˆ ˆPn from n samples) and then plug in, does D(Pn∥Q) provide a good estimator for D P Q ?

ˆWell, note from the first example that this is a bad idea if Q is continuous, since D Pn Q
for n. In fact, if one convolves the empirical distribution with a tiny bit of, say, Gaussian

( ∥ )

distribution, then it will always have a density. If we allow the variance of the Gaussian

( ∥ ) =∞

to
vanish with n appropriately, we will have convergence. This leads to the idea of kernel density
estimators. All these need regularity properties of divergence.

3.4 Variational characterizations of divergence:
Gelfand-Yaglom-Perez

The point of the following theorem is that divergence on general alphabets can be defined via
divergence on finite alphabets and discretization. Moreover, as the quantization becomes finer, we
approach the value of divergence.
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Theorem
F

3.7 (Gelfand-Yaglom-Perez). Let P,Q be two probability measures on with σ-algebra
. Then

i
D(P ∥Q) =

n P E

{
sup

}
∑
=
P [Ei] log

[ ]
,

X

(3.3)
E1,...,En i 1 Q Ei

where the

=

supremum

=∞

is over all finite -measurable partitions: n
j 1Ej ,Ej Ei , and

0 log 1 0 and log 1 per our usual convention.

[ ]

0 0

F ⋃ =

Remark 3.1. This theorem, in particular, allows us to prove all general iden

=

tities

X

and

∩

inequalities

= ∅

for the cases of discrete random variables.

Proof. “≥”: Fix a finite partition E1, . . .En. Define a function (quantizer/discretizer) f
1, . . . , n as follows: For any x, let f x denote the index j of the set Ej to which X belongs.
X be distributed according to either P or Q and set Y f X . Applying data processing inequ

∶ X

for

}

yields

) Let
→

{

= ( ) ality
divergence

(

D(P ∥Q) = ( ∥ )

≥

D PX QX

D(PY QY (3.4)

P Ei
P E

∥

i log

)

i Q

[

Ei

]
.

“≤”: To show D is

=

(P Q indeed achiev

∑

able,

[

fir

]

st note

[

that

]

if P Q, then by definition,
there exists

( ∥

B

) =

suc

∞

h

=

that
∥

Q
)

B) = 0 < P (B). Choosing the partition E
≪/

( 1 = =

∑ [ ]
[ ]

≪

B and E2 Bc, we

have D 2
i=

P E
P Q 1 P Ei log [

i

] . In the sequel we assume that P Q, hence the likeli-Q Ei

hood ratio dP is well-defined. Let us define a partition of by partitioning the range of log dP :dQ dQ

E x log dP j n dP

/

1 dP
j ε 2, j n 2 , j 1, . . . , n 1 and En x log 1 n 2 or logdQ dQ dQ

P E
n 2

X

= { ∶ ∈ ⋅ [ − / + − / )} = − = { ∶ < − / ≥

n−

)}.1Note dP j n 1 dP

∑ =
1 εP (E ) +

that

(

on

)

Ej , log ε j 1 n 2 log ε. Hence E dP logdQ Q Ej j 1 j dQ
P

P E log
(
(
Ej ε n

(

j

≤
)

P Ej
j

( + −

=
)

≤

(

Q
) 1

j 1

∑ )
(

Ej

≥

) + ∑

∫

j 1 εP (Ej) + P (Ej) log Q
P

) ≤ ) + =

n E

− / (

j dP 1

(
PE

)
En

j

∑ ∫ ≤

words, j=1 P Ej log c dP log ε P En log . Let nQ(Ej En dQ P E

(

n

) + ( )

such that nε (e.g., ε 1 ).

)

noting
εn

)
The pro

−

of

−

is

(

complete b
)

dP log dP

(
y that

1 dP log dP

√
n

D P Q .

→

log

∞

P (En) . In other

and ε → 0 be

∫ {∣ log dP εn dQ
dQ

→ ∞ = / ( ) →

∣≤ } ÐÐ
↑
Ð
∞
→ ∫ = ( ∥

P En 0 and

dQ )

3.5 Continuity of divergence. Dependence on σ-algebra.

For finite alphabet X it

X

is easy to establish continuity of

X

entropy and divergence:

Proposition 3.1. Let be finite, fix distribution Q on with Q(x) > 0 for all x

P

∈ X . Then map

D P Q

is continuous. In particular,

↦ ( ∥ )

P ↦H(P ) (3.5)

is continuous.

(
1Intuition

∥
:
∣

The
)

main idea is to note that the loss in the inequality (3.4) is in fact D PX QX D PY QY
D PX Y QX Y PY , and we want to show that the conditional divergence is small. Note that PX Y j PX X Ej

and
dP Q E

Q = X
X

∣

Q Y j dP

( ∥ ) = ( ∥ ) +

Y j X

∣

X Ej
. Hence

dQX j
=
dQ

∣ = ∣ ∈

∣

Y

=

P

( )

∣ = ∣ ∈
∣ =

(

j

)
1Ej . Once we partitioned the likelihood ratio sufficiently

Ej

=
finely, these

two conditional distribution are very close to each other.
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Warning: Divergence is never continuous in the pair, even for finite alphabets: d( 1 ∥2−n 0.n

Proof. Notice that
P x

)→/

D P Q P x log
x Q x

and each term is a continuous function

(

of

∥

P

) =

x

∑

.

( )
( )

( )

Our next goal is to study continuity prop

( )

erties of divergence for general alphabets. First,
ho

(

wev
∥

er,
)

we need to understand dependence on the σ-algebra of the space. Indeed, divergence
D P Q implicitly dep
the dependence on

F (X F)

We want to understand

F

ends on the σ-algebra defining the measurable space , . To emphasize
we will write

D PF QF

define D P Q

( ∥ )

this we take (
F

(

.

F
3.3)

∥ ) F

we do not

(

ha

∥

ve Radon-Nik

)

how does D P
for any algebra of sets

F

as the definition. Note th
odym theorem

F

QF depend upon refining . Notice that we can even
and two positive additive set-functions P For

at when F
,Q on .

is not a σ-algebra or P,Q are not σ-additiv
F

e,
and thus our original definition is not applicable.

Corollary 3.2 (Measure-theoretic properties of divergence). Let P,Q be probability measures on
the measurable space

• (Monotonicity)

(

If

X ,H). Assume all algebras below are sub-algebras of H. Then:

F ⊆ G then

D P Q D P Q . (3.6)

• Let F1 ⊆ F2 . . . be an increasing sequenc

( F∥

e of

F)

algebr

≤ (

as

G

and

∥ G)

let F = ⋃n

D

Fn be their limit, then

P n Q n D P Q .

• If F is (P +Q)-dense in

( F ∥ F )↗ ( F∥ F)

G then2

D P Q D P Q . (3.7)

• (Monotone convergence theorem) Let

( F

1

∥ F)

2 .

=

F

. .

(

e

∥ G)

F ⊆ F

F

b an

G

= ⋁

increasing sequence of algebras and let

n n be the σ-algebra generated by them, then

D(PFn∥QFn)↗D(P

In

F∥QF) .

particular,
D PX∞ QX∞ lim D PXn QXn .

n

• (Lower-semicontinuity of divergenc

(

e)

∥ ) =
→∞

( ∥

∥

If Pn →

( ) ≤

P and Qn Q pointwise

)

on the algebra , then3

D PF QF lim infD Pn, Qn, . (3.8)
n

→ F

Proof. Straightforward applications of (3.3) and the

→∞
( F∥ F

F

observation that

)

}

any is µ-dense in
the σ-algebra σ{

algebra
it generates, for any µ on , .4

Note: Pointwise convergence on
distribution (aka “w

H is weaker than convergence in total variation and

F

stronger than
convergence in eak convergence”).

(X H)

However, (3.8) can be extended to this mode
of convergence (see Theorem 3.6).

2Note: is µ-dense in if E , ε 0 E s.t. µ E∆E ε.
3Pn P pointwise on some algebra if E

′

Pn E P

′

E .
4This ma

F

y be shown by

G

transfinite

∀ ∈ G

induction:

> ∃ ∈ F [ ] ≤
→ F ∀ ∈

to
F ∶

each
[ ]→ [ ]

F ′ < {F} = F
ordinal ω associate an algebra ω generated by monotone

limits
F

of sets from ω′ with
F
ω ω. Then σ ω0 , where ω0 is the first ordinal for which Fω is a monotone class.

But is µ-dense in each ω by transfinite induction.

F
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3.6 Variational characterizations and continuity of mutual
information

Again, similarly to Proposition 3.1, it is easy to show that in the case of finite alphabets mutual
information is continuous

Proposition 3.2. Let X

in the distribution:

and Y be finite alphabets. Then

PX,Y ↦ I(X;Y

is continuous.

)

Proof. Apply representation

I(X;Y ) =H(X) +H(Y

and (3.5).

) −H(X,Y )

Further properties of mutual information follow from I(X;Y
e.g.

) D
ing properties of divergence,

= (PXY ∥PXPY ) and correspond-

1.
I(X;Y ) = ¯supE[f(X,Y logE exp f X,Y ,

f

¯where Y is a copy of Y , independent of X and

)]

suprem

− [

um is

{

o

(

ver b

)}]

ounded, or even bounded
continuous functions.

2. If (
d

Xn, Yn)→ (X,Y ) converge in distribution, then

I(X;Y ) ≤ lim inf
n→∞

I(Xn;Yn) . (3.9)

d
Go
(

od example
) =

of strict inequality: X 1
n Yn Z. In this case Xn, Yn 0,0 butn

I Xn;Yn H Z
= = ( ) → (

( ) > 0
)

= I(0; 0).

3.

(
PXY Ei Fj

I X;Y sup PXY Ei Fj log ,
Ei Fj i,j PX E

[

i PY

×

Fj

]

where supremum is over finite

) =
{

partitions

}×{ }
∑

of spaces

[ × ]
[ ] [ ]

X and Y.5

4. (Monotone convergence):

I(X∞;Y lim I Xn;Y (3.10)
n

I X

) =
→∞

(

( ∞;Y ∞) = lim
→∞

I(Xn;Y

)

n (3.11)
n

This implies that all mutual information between two-processes

)

X and Y is contained in
their finite-dimensional projections, leaving nothing for the tail σ-algebra.

∞ ∞

5To prove this from (3.3) one needs to notice that algebra of measurable rectangles is dense in the product
σ-algebra.
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§ 4. Extremization of mutual information: capacity saddle point

4.1 Convexity of information measures

Theorem 4.1. (P,Q)↦D(P ∥Q) is convex.

Proof. First proof : Let X ∈ {0,1}, PX = [λ,1 − λ]. Select two conditional kernels:

PY ∣X=0 = P0, PY ∣X=1 =

= =

P1 (4.1)

QY ∣X=0 Q0, QY ∣X=1 Q1 (4.2)

Conditioning increases divergence, hence

D PY X QY X PX D PY QY

pSecond proof : (p, q

( ∣

) → p log is conv

∥

ex on

∣ ∣

R2

) ≥ ( ∥

computing

)

+ [Verify by the Hessian matrix andq

showing that it is positive semidefinite]1

Third proof : By the Donsker-Varadhan variational representation,

D P Q supEP f X logEQ exp f X .
f

where for fixed P →
( )

f
↦

,
( ∥

EP

( ∥ ) =
∈C

[ ( )]

[f

− [ { ( )}]

Therefore P,Q D P Q is
(

)

X)] is affine (hence convex), Q logEQ exp f X is concave.
pointwise supremum of convex functions,

↦

hence
[ {

con
(

v
)}]

ex.

Remark
( )↦

4.1.
D(

The
∥ )

first proof shows that for an arbitrary measure of similarity P Q convexity
of P,Q P Q is equivalent to “conditioning increases divergence” property of . Convexity
can also be understood as “mixing decreases divergence”.

D( ∥ )

Remark 4.2 (f -divergences). Any f -divergence, cf. (1.15), satisfies all the key prop

D

erties of the
usual divergence: positivity, monotonicity, data processing (DP), conditioning increases divergence
(CID) and convexity in the pair. Indeed, by previous remark the last two are equivalent. Furthermore,
proof of Theorem 2.2 showed that DP and CID are implied by monotonicity. Thus, consider PXY
and QXY and note

PXY
Df(PXY ∥QXY ) = EQXY [f ( (4.3)

QXY
)]

=
P P

EQY EQX∣

Y X Y

Y
(4.4)

Y

P

[f (
QY

⋅
QX

∣
)]

≥ E Y
QY f

∣

[ (
QY

)] , (4.5)

where inequality follows by applying Jensen’s inequality to convex function f . Finally, positivity
follows from monotonicity by taking Y to be a constant and recalling that f 1 0.

1This is a general phenomenon: for a convex f the perspective function p, q qf

(

p

) =

(⋅) ( )↦ (
q
) is convex too.
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Theorem 4.2 (Entropy). PX H PX is concave.

Proof. If PX is on a finite alphab

↦ (

et,

)

then proof is complete by H X log D PX UX .
Otherwise, set

P0 Y 0
P , P Y 0

( ) = ∣X ∣ − ( ∥ )

X ∣Y = {
P1 Y

=

= Y1

Then apply H X Y H X .

( = ) = λ

Recall that

(

I

∣ ) ≤ ( )

(X,Y ) is a function of PXY , or equivalently, (PX , PY ∣X
I X;Y .

Theorem 4.3 (Mutual Information).

) (

(

. Denote I X) =

)

PX , PY ∣

• For fixed PY ∣X , PX

X

↦ I

F

(PX , PY X is concave.

• or fixed P , PY ∣X ↦ I(PX , PY

∣ )

∣X) is convex.

Proof.

• First proof
=

: Introduce θ ∈ Bern(λ)
+ ( ) =

.
(

Define PX θ 0 P 0
X and PX 1 P 1

θ X . Then θ X Y .
¯Then P

(

λP 0

+

λP 1
X X X . I X;Y

¯ ¯desired I λP 0 P

∣ = ∣ =

X λP 1
X , Y X λI

= = → →

Second proof : I X;Y

∣

min

) = ( ) + ( ∣ ) ≥ ( ∣ )

concav

) ≥

QD
e.

(

I X, θ;Y I θ;Y I X;Y θ I X;Y θ , which is our
P 0

( ) = (

X , PY ∣X) + λI(P 0
X , P X .

PY ∣X∥Q∣PX)

Y

– pointwise

∣ )

minimum of affine functions is

Third proof
↦

: Pic
(

k a
∥

Q
)

and use the golden formula: I P

X

(X;Y ) = D Y

where P D PY Q is convex, as the composition of the PX
D

↦ P
P Q (convex).

( ∣X Q PX D PY Q ,

(
Y (affine) and PY

Y

∥ ∣ ) − ( ∥ )

↦

• I

∥ )

(X;Y ) =D(PY ∣X

eha

∥PY

b

∣PX

4.2* Local vior

)

of divergence

pDue to smoothness of the function (p, q)↦ p log at (1, 1) it is natural to expect that the functionalq

P D P Q

should also be smooth as P Q. Due to non-negativit

↦ ( ∥ )

y and convexity, it is then also natural to
expect that this functional deca

→

ys quadratically. In this section, we show that generally decay is
sublinear and it is quadratic

(

in

∥

the

) <

sp

∞

ecial case when χ2(P ∥Q) <∞ (see

=

below).

Proposition 4.1. When D P Q , the one-sided derivative in λ 0 vanishes:

d ¯D
dλ

∣
λ=0

(λP + λQ∥Q) = 0
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Proof.
1 1¯ ¯ ¯D λP
λ

( + λQ∥Q) = EQ [
λ
(λf + λ) log

dP
where f . As λ 0 the function under expectation decreases

(λf + λ

to

)]

Indeed,

=
dQ

on

→ f 1 log e monotonically.

the functi
¯ ¯λ g λ λf λ log λf λ

( − )

g λ
is convex and equals zero at λ

↦ ( )

)

+ ) ( +

= 0. Thus
(

≜

is

(

increasing in λ. Moreo

)

ver, by convexity of x x logxλ

1
(λf + λ)(log(λf + λ)) ≤

1
(λf log f + λ1 log 1) = f log f

↦

λ λ

and by assumption f log f is Q-integrable. Thus the Monotone Convergence Theorem applies.

Note: More generally, under suitable technical conditions,

d
∣ D

dλ λ=0
(λP + λQ

and

∥R) = EP [
dQ

log
dR

] −D(Q∥R) .

d
∣
=

(
dP dQ¯ + ∥¯ + ) = E [

1
] − ( ∥ ) +E [ −

0
D λP1 λQ1 λP0 λQ0 Q log D P1 P0 P

dλ 1
λ 0 dP 1 1 log e

0 dP0

The message of Proposition 4.1 is that the function

]

λ↦D(λP + λ̄Q∥Q) ,

is o(λ) as λ
define the concept

→ 0. In fact, in most cases it is quadratic in λ. To state a precise version, we need to
of χ2-divergence – a version of f -divergence (1.15):

2

χ2 dP
P Q dQ 1 .

dQ

This is a very popular measure of distance

( ∥ )

b

≜

et

∫

ween

(

P and

−

Q

)

, frequently used in statistics. It has
many important properties, but we will only mention that χ2 dominates KL-divergence:

D(P ∥Q

Our second result about local properties

) ≤ log(1 + χ2(P ∥Q)) .

of KL-divergence is the following:

Proposition 4.2 (KL is locally χ2-like). If χ2 P Q then

( +
λ2 log e¯D λP λQ

( ∥ )

∥Q

<∞

) = χ2

2

Proof. First, notice that

(P ∥Q) + o(λ2) , λ→ 0 .

D(
dP

P

where

∥Q) = EQ [g (
dQ

)] ,

g x x logx x 1 log e .

↦ ( −
g
)
x

Note that x
x 1

(
2
)
log e

( ) ≜ − ( − )

= ∫
1 sds

0 x(1−s)+ is decreasing in x ons (0,∞). Therefore

0 ≤ g(x) ≤ (x 1
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and hence
1 dP dP 2

¯0 g λ λ 1 log e.
λ2 dQ dQ

By the dominated convergence theorem

≤ (

(whic

+

h is

) ≤

applicable

( − )

since χ2 P Q ) we have

1
[ ( +

dP
)]

g
lim

( ∥ ) <∞

2
E ¯
Q g λ λ

λ 0 λ dQ
=

′′ 1

→ 2

( )
EQ [(

dP

dQ
− 1)

2

] =
log e

χ2

2
(P ∥Q) .

4.3* Local behavior of divergence and Fisher information

Consider a parameterized set of distributions Pθ, θ Θ and assume Θ is an open subset of Rd.
Furthermore, suppose that distribution Pθ are all

{

given
∈

in
}

the form of

Pθ dx f x θ µ dx ,

where
→ (

µ
∣

is some common dominating meas

(

ure

) =

(e.g.

( ∣

Leb

)

esgue

( )

)

or counting). If for a fixed x functions
θ f x θ are smooth, one can define Fisher information matrix with respect to parameter θ as

JF (θ) ≜ EX∼
T

Pθ [V V ] , V

Under suitable regularity conditions, Fisher information

≜ ∇θ log f(X ∣θ) . (4.6)

matrix has several equivalent expressions:

JF (θ) = covX∼Pθ [∇θ log f(X ∣θ

e

)] (4.7)

= (4 log )∫ µ(dx)(∇θ
√
f(x∣θ))(∇θ

√
f(x∣θ))T (4.8)

where the latter is obtained b

=

y

−(log e)Eθ[Hessθ(log f(X ∣θ))] , (4.9)

differentiating

0

in θj .

= ∫ (
∂

µ dx)f(x∣θ) log f
∂θi

(x∣θ)

Trace of this matrix is called Fisher information and similarly can be expressed in a variety of
forms:

( ) = ∫ ( )
∥∇ f(x∣θ)∥2

θ
trJF θ µ dx (4.10)

=

f x θ

4∫ µ(dx 2
θ

( ∣ )

)∥∇
√
f(x∣θ)∥ (4.11)

Significance of Fisher information

= −( EX∼
d ∂2

log e) ⋅ Pθ log f X θ , (4.12)
i 1 ∂θi∂θi

matrix arises

[

from

∑
=

the fact that

( ∣

it

)]

gauges the local behaviour
of divergence for smooth parametric families. Namely, we have (again under suitable technical
conditions):

D(Pθ0∥Pθ0+ξ) =
1

ξTJF θ0 ξ o ξ 2 , (4.13)
2 log e
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which is obtained by integrating the Taylor expansion:

log f(x∣θ0 + ξ) = x∣
1

log f(x∣θ0) + ξ
T∇θ log f( θ0) + ξTHessθ log f x θ0 ξ o ξ 2 .

2

Property (4.13) is of paramount importance in statistics. We should

( (

remem

∣ ))

ber

+

it

(∥

as:

∥

Diver

)

gence
is locally quadratic on the parameter space, with Hessian given by the Fisher information matrix.

˜ ˜Remark 4.3. It can be seen that if one introduces another parametrization θ Θ by means of a
˜smooth invertible map Θ Θ, then Fisher information matrix changes as

˜J θ ATJ θ A ,

∈

→

F F

dθ

( ) = ) (4.14)

where A

(

= ˜ is the Jacobian of the map. So we can see that JF transforms similarly to the metric
dθ

tensor in Riemannian geometry. This idea can be used to define a Riemannian metric on the
space of parameters Θ, called Fisher-Rao metric. This is explored in a field known as information
geometry [AN07].

Example
{ }

: Consider Θ to be the interior of a simplex of all distributions on a finite alphabet
0, . . . , d . We will take θ1, . . . , θd as free parameters and set θ0 = 1

with respect to θ1, . . . , θd only. Then we have
−∑di=1 θi. So all derivatives are

Pθ(x

⎧

) = f(x∣θ

and for Fisher information matrix we get

) =
⎪

⎪

θx, x =

⎪
⎨
⎪

−∑ =

1, . . . , d

⎩1 x≠0 θx, x 0

1
JF (θ) = (log2 e){diag(

θ1
, . . . ,

1

θd
) +

1
1

1 −∑di=1 θi

where 1 1T is the d d matrix of all ones. For future reference, we also

⋅ 1T} , (4.15)

compute determinant of
JF T

⋅

(θ .
×

) o that end notice that det
we used the identity det I AB

( + ) = ⋅ ( + − ) = ⋅ ( + − )

det

(

JF

+

θ

) =

A
(

xyT detA det I 1xyT detA 1 yTA , where
det I +BA)

A 1x
. Thus, we have

( ) = (log e)
d

2d

x
∏

1

=0 θx
= (log e)2d 1

1 −∑dx=1 θx

d

∏
x=1

1
. (4.16)

θx

4.4 Extremization of mutual information

Two problems of interest

• Fix PY ∣X →max I X;Y — channel coding
PX

Note: This maxim

(

um is

)

called “capacity” of a set of distributions {PY

• Fix PX min I X;Y — lossy compression

∣X=x, x

→
PY X

∈ X}.

∣

Theorem 4.4 (Saddle

(

poin

)

t). Let be a convex set of distributions on . Suppose there exists
PX
∗

P

∈ P such that
sup
∈P
I(PX , PY ∣X) = I(PX

∗ , PY ∣X) ≜ C

X

PX

and let PX
∗ Ð

P
Ð
Y
Ð
∣X
→ PY

∗ . Then for all PX and for all QY , we have

D(PY

P

∣X P

∈

∥ Y
∗ ∣PX) ≤D(PY ∣X∥PY

∗

43

∣PX
∗ ) ≤D(PY ∣X∥QY ∣PX

∗ ). (4.17)



Note: PX
∗ (resp., PY

(resp., the caod).

∗) is called a capacity-achieving input (resp., output) distribution, or a caid

Proof. Right inequality:
=

obvious P )

∞

from C = I(PX
∗ , Y ∣X = minQY D(PY ∣X∥QY ∣

<∞

PX

∈

n

∗ .
Left inequality: If C , then trivial. I the sequel assume that C , hence

)

I(

P = +

PX , PY X

for all PX . Let PXλ λPX

∣ ) <∞

λPX by convexity of , and introduce θ Bern λ , so that
PXλ∣θ=0 PXλ

∗

= PX
∗ , ∣θ

C

=1

∈ P P ∼ (

= PX , and θ →Xλ → Yλ. Then
)

≥ I(Xλ;Yλ) = I(θ,Xλ;Yλ) = I(

= ( ∥ ∣ )

θ

+

;Yλ) + I(

(

Xλ;Y

)

λ

+

θ

D PYλ∣θ PYλ Pθ λI PX , PY

∣ )

∣X λC

= λD(PY ∥PYλ) + λD(P ∗
Y ∥PYλ) + λI(PX , PY ∣X) + λC

≥ λD(PY ∥PYλ) + λI(PX , PY ∣X) + λC.

Since I(PX , PY ∣X) <∞, we can subtract it to obtain

λ C I PX , PY X λD PY PYλ .

Dividing both sides by λ, taking

(

the

−

lim

(

inf and

∣

using

)) ≥

low

(

er semicon

∥ )

tinuity of D, we have

C − I(PX , PY ∣X) ≥ lim
→
infD(PY ∥PYλ) ≥D(PY ∥PY

∗)

Here

Ô⇒ C

is

≥ I

an ev

(

λ 0

PX , PY ∣X) +D(PY PY
∗

en shorter proof:

∥ ) =D(PY ∣X∥PY ∣PX) +D(PY ∥PY
∗) =D(PY ∣X∥PY

∗ ∣PX).

C ≥ I(Xλ;Yλ) =D(

= ( ∥ ∣

PY X PYλ PXλ (4.18)

¯

≥

λD

(

PY ∣X PYλ PX

∣ ∥ ∣ )

) + λD(PY ∣X∥PYλ ∣PX
∗ ) (4.19)

¯

=

λD PY X PYλ

λD(

PX λC (4.20)

¯PX

∣

,Y

∥ ∣ ) +

where inequality is by the right part of (4.17

∥PXPYλ) + λC , (4.21)

¯) (already shown). Thus, subtracting λC and dividing
by λ we get

D PX,Y PXPYλ C

and the proof is completed by taking lim inf

(

λ

∥ ) ≤

→0 and applying lower semincontinuity of divergence.

Corollary 4.1. In addition to the assumptions of Theorem 4.4, suppose C . Then cao
unique. It satisfies the property that for any PY induced by some PX

<∞ ∗

have
D PY

∈ P (i.e. PY PY

C

∣X

PY

= ○

d PY is
PX) we

articular PY

∗

≪

(4.22)

and in p PY
∗ .

( ∥ ) ≤ <∞

Proof. The statement is: I(PX , PY ∣X) = C ⇒ PY = PY
∗ . Indeed:

C =D(PY ∣X∥PY ∣PX) =D(

≤ (

PY ∣X∥ Y
∗ ∣PX) −D(P ∥

∥

P

∣ ) −

P
∗ ∗ (

Y

∥

Y

=

D

−

PY ∣

(

X P

∥

Y PX

)⇒

D P

=

Y P
∗

Y

∗

∗
)

C D PY PY PY PY
∗

)

Statement (4.22) follows from the left inequality in (4.17) and “conditioning increases divergence”.
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Notes:

• Finiteness of C is necessary. Counterexample: The identity channel Y X, where X takes
values on integers. Then any distribution with infinite entropy is caid or

• Non-uniqueness of caid. Unlike the caod, caid does not need to be unique.

=

caod.

Let Z1 ∼ Bern(1

=

.2
Consider Y1 X

)

1 ⊕ Z1 = (

= ( × (

and Y2 X2. Then maxPX X
I X1,X2;Y1, Y2) = log 4, achieved by

1 2

PX1X2 Bern p Bern 1

)

2) for any p. Note that the caod is unique: P ∗
Y1Y2

= Bern(1
2)×Bern(1 .2

Review: Minimax and saddlepoint

)

Suppose we have a bivariate function f . Then we always have the minimax inequality :

inf sup f
y x

(x, y) ≥ sup inf f
yx

(x, y).

When does it hold with equality?

1. It turns out minimax equality is implied by the existence of a saddle point (x∗, y∗),
i.e.,

f

Furthermore, minimax

(x, y∗) ≤ f(x∗, y∗) ≤ f(x

equality also implies existence

∗, y x, y

of saddle point if inf and sup
are achieved c.f. [BNO03, Section 2.6]) for all x, y

)

[Straigh

∀

tforward to check. See
proof of corollary below].

2. There are a number of known criteria establishing

inf sup f(x, y) = sup inf f(x, y
y yx x

They usually require some continuity of f , compactness

)

of domains and convexity
in x and concavity in y. One of the most general version is due to M. Sion [Sio58].

3. The mother result of all this minimax theory is a theorem of von Neumann on
bilinear functions: Let A and B have finite alphabets, and g a, b be arbitrary, then

min maxE g A,B max minE g A,B
P

( )

A PB PB PA

Here (x, y)↔ (PA, PB

[ ( )] =

B

[

) and f(x, y)↔ ∑a,b PA(a)P (b

( )]

)g(a, b).

4. A more general version
)

is: if X and Y
(

are compact convex domains in Rn, f x, y
continuous in x, y , concave in x and convex in y then

( )

max min f x, y min max f x, y
x∈X y∈Y

( ) =
y∈Y x∈X

( )

Applying Theorem 4.4 to conditional divergence gives the following result.

Corollary 4.2 (Minimax). Under

(

assumptions

) =

of Theorem 4.4, we have

max I
X∈P

X;Y max minD PY X QY PX
P

=

PX

min

∈P QY

max

(

Y

∣

Y PX

∥ ∣ )

∈P
D(P

Q
∣X∥QY ∣PX
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Proof. This follows from saddle-point trivially: Maximizing/minimizing the leftmost/rightmost
sides of (4.17) gives

min max
∈P
D(PY ∣X∥QY ∣PX) ≤ max X∥PY

∗
∈P
D(PY ∣X∥PY

∗ ∣PX) ≤ D(PY ∣ ∣PX
QY PX PX

∗

≤ minD(PY ∣X∥QY
Q

)

Y

∣PX
∗ ) ≤ max

PX∈P
minD
QY

(PY ∣X∥QY ∣PX).

but by definition min max max min.

4.5 Capacity = information

≥

radius

Review: Radius and diameter

Let (X,d) be a metric space. Let A be a bounded subset.

1. Radius (aka Chebyshev radius) of A: the radius of the smallest ball that covers A,
i.e., rad (A) = infy∈X supx∈A d(x, y).

2. Diameter of A: diam A supx,y A d x, y .

3. Note that the radius and

( )

the

=

diameter

∈ (

both

)

measure how big/rich a set is.

4. From definition and triangle inequality we have

1
diam (A rad A diam A

2

5. In fact, the rightmost upper bound

) ≤

can

(

frequen

) ≤

tly

(

b

)

e improved. A result of
Bohnen

( )

blust
≤

[Boh38
(

] sho
)

ws that in Rn equipped with any norm we always have
rad

(

A
) =

n
+ diam

( )

A . For Rn with ` the situation is even simpler:n 1
rad A 1diam A called

∞-norm
(such spaces are centrable).2

The
X}

next simple corollary shows that capacity is just the radius of the set of distributions PY X x, x
when distances are measured by divergence (although, we remind, divergence is not a

∣
metric).
=

Corollary 4.3. For fixed kernel PY X , let {all dist. on } and is finite, then

{ ∈

max I(X;Y

∣

P

P

D

= X X

) = max
X x

(PY ∣X=x∥PY
∗

D PY X x PY
∗

)

The last corollary gives a geometric

=

interpretation

( ∣ = ∥

to

)

of
div {

capacit

∀x ∶ PX
∗ (x) > 0 .

y: it equals the radius the smallest
ergence-“ball” that encompasses all distributions P

com
=

∣
Y ∣X x

those.
∶ x

bination of some PY X=x and it is equidistant to
∈ X}. Moreover, PY

∗ is a convex

4.6 Existence of caod (general case)

We have shown above that the solution to

C = sup
PX∈P

I(X;Y
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can be a) interpreted as a saddle point; b) written in the minimax form and c) that caod PY
∗ is

unique. This was all done under the extra assumption that supremum over PX is attainable. It
turns out, properties b) and c) can be shown without that extra assumption.

Theorem 4.5 (Kemperman). For any PY ∣X and a convex set of distributions such that

C = sup
∈P
I(PX , PY

P

P

X

∣X (4.23)

there exists a unique PY
∗ with the property that

) <∞

C = sup
∈P
D(PY ∣X∥PY

∗ ∣PX) . (4.24)
PX

Furthermore,

C = sup
∈P

minD(PY ∣X∥QY ∣PX (4.25)
QP YX

)

= min sup
QY PX∈P

D PY ∣X

min supD P
Q

(

Y X x

∥QY

QY

∣PX (4.26)

=
∈X

( ∣ = ∥ ) ,

)

(if all PX .) (4.27)
Y x

Note: Condition (4.23) is automatically satisfied if there is an

P

y

=

Q

{

Y such

}

that

sup D PY QY P
PX

∣X X

Example: Non-existence of caid. Let

∈

Z

P
(

0,1

∥

and

∣

consider

) <∞ . (4.28)

∼ N ( ) the problem

C =
[ ]

sup
= [ ]=

I(X;X +Z) . (4.29)

∶E X 0,E X2 P
PX E X4 s

If
≠

we remove the constraint E X4 s the

[

unique

]=

caid is P
s 3P 2 then such PX is no longer

[ ]

inside
=

the constraint set

1

= N ( )

C log 1 P
2

P
X 0, P , see Theorem 4.6. When
. However, for s > 3P 2 the maximum

is still attainable. Indeed, we can add a small

=

“bump”

( +

to

)

the gaussian distribution as follows:

PX

where p 0, px2 0 but px4 s 3P 2

= (1 − p)N (0, P ) + pδx ,

→ → → −
∗

>

= N (

0. This
+ )

shows that for the problem (4.29) with s 3P 2

the caid does not exist, the caod PY 0,1 P exists and unique as Theorem 4.5 postulates.
>

Proof of Theorem 4.5. Let PX
′

P

be a sequence of input distributions achieving C, i.e., I P ,P
n

{
Xn Y X

C. Let n be the convex
(

hull of
)

PX
′

↦

, . . . , P
1 X

′

P

′ . Since n is a finite-dimensional simplex, the
n

concave function X I PX , PY ∣X attains its maxim
}

um at
P

some point P

∣

Xn n, i.e.,

( )→

In ≜ I(PXn , PY ∣X) = max I
PX

∈ P

∈Pn

Denote by PYn be the sequence of output distributions cor

(PX , PY ∣X) .

responding to PXn . We have then:

D(PYn∥PYn+k) = D(PY ∣X∥PYn+k ∣PXn

I PXn+k , PY X I

C I ,

) −

≤

D(

)

n ∣

(

PY ∣X∥

) − (

PY PXn

P

) (4.30)

≤ −

∣ Xn , PY ∣X (4.31)

n (4.32)
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where in (4.31) we applied Theorem 4.4 to (P

↗
n+k, PYn+k). By the Pinsker-Csiszár inequality (1.14)

and since In C, we conclude that the sequence PYn is Cauchy in total variation:

sup
≥

TV(PYn , PYn+k)→ 0 , n .
k 1

Since the space of probability distributions is complete in total

→

variation,

∞

→ ∗
the sequence must have a

limit point PYn PY . By taking a limit as k →∞ in (4.32) and applying the lower semi-continuity
of divergence (Theorem 3.6) we get

D

and therefore, PYn PY in the

(PYn∥PY
∗) ≤ lim

k→∞
D(PYn∥PYn+k) ≤ C − In ,

→ ∗ (stronger) sense of D PYn PY
∗ 0. Therefore,

D PY X PY
∗ PXn In D

(

PY

∥

n P

)

Y
∗

→

C . (4.33)

Take any PX

( ∣ ∥ ∣ ) =

sufficien

+ (

tly

∥

∈ ⋃k≥1Pk. Then PX ∈ Pn for all large

)→

n and thus by Theorem 4.4

D PY X PYn PX In C , (4.34)

which by lower semi-continuity of divergence

( ∣ ∥

implies

∣ ) ≤ ≤

D PY X PY
∗ PX C . (4.35)

P

Finally, to prove that (4.35) holds for arbitrary

( ∣ ∥

PX

∣ ) ≤

∈ P

P = ( ∪ P )

, we may repeat the argument above with
˜ ˜ ˜

n replaced
∗

by n conv PX n , denoting the resulting sequences by PXn , PYn and the limit
˜point by PY we have:

D(PYn∥P̃Yn) = D(PY ∣X∥

≤ −

P̃Yn ∣PXn) −D(PY ∣X∥PYn ∣PXn) (4.36)

C In , (4.37)

∈ P̃ →∞ ˜where (4.37) follows from (4.35) since PXn n. Hence taking limit as n we have PY
∗ PY

∗ and
therefore (4.35) holds.

Finally, to see (4.26), note that by definition capacity as a max-min is at most the min-max,

=

i.e.,

C = sup
∈P

minD(PY ∣X∥QY ∣PX) ≤ min sup
∈P
D(PY ∣X∥QY ∣PX) ≤ sup

∈P
D(PY ∣X∥PY

∗ ∣PX C
QY QP YX PX PX

in view of (4.34).

) =

Corollary 4.4. Let X be countable and P a convex set of distributions on X . If supPX∈P H(X
then

1
sup H X min sup PX x log

) <∞

∈ QPX P
( ) =

X PX∈P
∑
x

( )
QX(x

and the optimizer QX exist and is unique. If QX then it is also

)

a

<

unique

∞

∗ ∗ ∈ P maximizer of H(X).

Proof. Just apply Kemperman’s result to channel Y =X.

Example: Assume that f ∶ Z→ R is such that ∑n∈ exp{−λf(n)} <∞ for all λ 0. ThenZ

∶ [
max

( )]≤
H(X) ≤ inf

>
λa + log∑ exp{−λf(n

>

)} .
X E f X a λ 0 n

This follows from taking ( ) = {− ( )}

( ) = {− ( )}

Q n c exp λf n . This bound is often tight and achieved by
PX n c exp λf n , known as the Gibbs distribution for energy function f .
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4.7 Gaussian saddle point

For additive noise, there is also a different kind of saddle point between PX and the distribution of
noise:

Theorem 4.6. Let X ∼ N (0, σ2 ) , N ∼ N (0, σ2
g X g N , Xg Ng. Then:

1. “Gaussian capacity”:

) ⊥⊥

C = I(Xg;Xg +Ng) =
1

2
log (1 +

σ2
X

σ2
N

2. “Gaussian input is the best”: For all X ⊥⊥ Ng and varX σ2

)

X ,

I(X;X +Ng) ≤ I(Xg;Xg

≤

+Ng),

D
with equality iff X=Xg.

3. “Gaussian noise is the worst”: For for all N s.t. E XgN 0 and EN2 σ2
N ,

I(Xg;Xg N I Xg

[

;Xg

]

N

=

g ,

≤

D
with equality iff N

+ ) ≥ ( + )

=Ng and independent of Xg.

Note: Intuitive remarks

1. For AWGN channel, Gaussian input is the most favorable. Indeed, immediately from the
second statement we have

1
max

X ∶varX≤
I

σX

(X;X +Ng
2

) =
2

log (1 +
σ2
X

σ2
N

which is the capacity formula for the AWGN channel.

)

2. For Gaussian source, additive Gaussian noise is the worst in the sense that it minimizes the
mutual information provided by the noisy version.

Proof. WLOG, assume all random variables have zero mean. Let Yg =Xg +Ng. Define

g( 2 1
x) =D(PYg ∣Xg=

2 2
x∥PYg) =D(N (x,σN)∥N (0, σX + σN)) =

2
log (1 +

σ2
X

σ2
N

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=C

+
log e

2

x2 − σ2
X

σ2
X + σ2

N

1. Compute I(Xg;Xg +Ng) = E

2.

[g(Xg)] = C

Recall the inf-representation I(X;Y ) = minQD PY X Q PX . Then

I(X;X +Ng D

( ∣ ∥ ∣

) ≤ (PYg ∣Xg∥PYg ∣PX) = E[g

)

X C .

Furthermore,
=

if I X;X Ng then uniqueness of caod, cf. Corollary
2

( )] ≤

4.1

<

,

∞

implies PY PYg . But
P P 2
Y X ,

(

∗ 0
+

N ( σN

)

). Then it must be that X 0, σX simply by considering characteristic
functions:

=

( ) ⋅ − 1

∼ N ( )

ΨX t e 2
σ2
N t

2

= e−
1
2
(σ2
X+σ2

N )t2 ⇒ ΨX(t) = e−
1
2
σ2
X t

2

Ô⇒X ∼ N (0, σ2
X)
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3. Let Y =Xg +N and let PY ∣Xg b
[

e the
]

resp
=

ective kernel. [Note that here we only assume that N
is uncorrelated with Xg, i.e., E NXg 0, not necessarily independent.] Then

I(Xg;Xg +N) = D(PXg ∣Y ∥PXg ∣PY )

= ( ∣ ∥ ∣ ∣ ) +
P

E Xg ∣Y X
D PXg Y PXg Yg PY log

g
( g ∣Y )

PXg(Xg)

≥ E log
PXg ∣Yg(Xg ∣Y )

(4.38)
PXg(Xg)

=
P

E Y
log

g ∣Xg(Y ∣Xg)

PYg(Y )
(4.39)

= C +
log e Y

E
2

[
2

σ2
X + σ2

N

−
N2

σ2
N

] (4.40)

= C +
log e

2

σ2
X

σ2
X + σ2

N

(1 −
EN2

(4.41)
σ2
N

)

≥ C , (4.42)

where

•
P

(4.39):
Xg ∣Yg

PXg
=
PYg ∣Xg
PYg

• (4.41): E XgN 0 and E Y 2 E N2 E X2
g .

• (4.42): E

[

N2

] = [ ] = [ ] + [ ]

≤ σ2
N .

Finally, the conditions for equality in (4.38) say

D PXg ∣Y PXg ∣Yg PY 0

Thus, P 2
Xg Y

∥ ) =

∣ = PXg ∣Yg , i.e., Xg is conditionally

(

Gaussian:

∣

PXg Y y by, c for some constant
b, c. In other words, under PXgY , we have

∣ = = N ( )

Xg = bY + cZ , Z ∼ Gaussian ⊥⊥ Y.

But then Y must be Gaussian itself by Cramer’s Theorem or simply by considering characteristic
functions:

ΨY (t

Therefore, Xg, Y must b

)

e

⋅ ect
2

= ec
′t2 ⇒ ec

′′t2Ψ t Y– Gaussian

( )

Y

jointly Gaussian and hence N Y Xg is Gaussian. Thus we
conclude that it is only possible to attain I X

( ) = Ô⇒

C
=

( g;Xg +N) = if N
−

is Gaussian of variance σ2
N

and independent of Xg.
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§ 5. Single-letterization. Probability of error. Entropy rate.

5.1 Extremization of mutual information for memoryless sources
and channels

Theorem 5.1. (Joint M.I. vs. marginal M.I.)

(1) If PY n∣Xn PYi∣Xi then
I Xn;Y n I Xi;Yi (5.1)

with equality

=∏

iff PY n .

(

= i

) ≤∑ ( )

∏PY Consequently,

max I(Xn;Y n) =∑
n

=
max I(Xi;Yi .

P nX Pi 1 Xi

)

(2) If X1 ⊥⊥ . . . ⊥⊥Xn then
I Xn;Y n

with equality iff PXn Y n PX n
i Yi P

(

Y -almost

) ≥

sur

∑ I(X (5.2)

=

i;Yi)

∣ ∏ ∣ ely1. Consequently,

min (
n

I Xn;Y n

P n ∣ nY X

) =∑
=

min I Xi;Yi .
Pi 1 Yi ∣Xi

( )

Proof. (1) Use I(Xn;Y n) −∑ I(Xj ;Yj) =D(PY n∣Xn∥∏PYi∣Xi

(2) Reverse the role ofX and Y : I Xn;Y n I Xj ;Yj D P

∣PXn D PY n PYi

( )− ( ) = ( Xn∣Y

)

n

− (

Y

∥

∥ PXi∣ i ∣P

∏

Y n

)

)−D(PXn∥ PXi)

Note: The moral of this result is that

∑ ∏ ∏

1. For product channel, the MI-maximizing input is a product distribution

2. For product source, the MI-minimizing channel is a product channel

This type of result is often known as single-letterization in information theory, which tremendously
simplifies the optimization problem over a large-dimensional (multi-letter) problem to a scalar (single-
letter)
(

problem.
)

For example, in the simplest case where Xn, Y n are binary vectors, optimizing
I Xn;Y n over PXn and P

(
Y n∣Xn en

)

tails optimizing over 2n-dimensional vectors and 2n 2n matrices,
whereas optimizing each I Xi;Yi individually is easy.
Example:

×

1That is, if PXn,Y n = PY n∏PXi ∣Yi
as measures.

51



1. (5.1) fails for non-product channels. X1 X2 Bern 1 2 on 0,1 F2:

Y1 =

=

X1

⊥⊥ ∼ ( / ) { } =

+X2

Y2 X1

I X ;Y I X ;Y 0 but I X2;Y 2
1 1 2 2 2 bits

2. Strict inequality in (5.1

(

).

) = ( ) = ( ) =

∀k Yk =Xk = U ∼ Bern(1/2) ⇒ I(Xk;Yk) =

( ) =

1

I Xn;Y n 1 I Xk;Yk

3. Strict inequality in (5.2). X1 . . . Xn

<∑ ( )

Y1 =X2, Y2 X

⊥ ⊥⊥

= 3, . . .

⊥

, Yn =X1 ⇒ I

I

( ) =

5.2* Gaussian capacity via orthogonal

(

Xk;Yk

Xn;Y n) =

0

∑H

symmetry

(Xi) > 0 =∑ I(Xk;Yk)

Multi-dimensional case (WLOG assume X1 ⊥⊥ . . . ⊥⊥Xn iid), for a memoryless channel:

max
E[∑

X
X
k
]≤

I
nP

(Xn; n

2
+Zn) ≤

n

max
E

Giv

[∑X2
k
]≤nP k

en a distribution PX1 PXn satisfying the constraint, form

∑

the

=
I k;Xk

“a

+Zk
1

(X

verage of marginals”

)

distribution
P̄ 1
X

⋯

= n ∑
n
k=1 PXk , which also satisfies the single letter constraint E[X2] = 1

n ∑
n
k=1 E[X2

k] ≤ P . Then
from concavity in PX of I(PX , PY ∣X)

I(P̄X ;PY ∣X) ≥
1 n

I PXk , PYn k 1
∣X

So
(

P̄X
)

gives the same better MI, which shows

∑
=

)

)

or the

(

(

that extremization
=

ab
+

ove ought to have the form
nC P where C P is the single letter capacity. Now suppose Y n Xn ZnG where ZnG ∼ 0, In .
Since an isotropic Gaussian is rotationally symmetric,

∼

for any orthogonal transformation
=

U O n ,
the additive noise has the same distribution Zn ZnG U G, so that PUY n UXn PY n Xn , and

N ( )

∈ ( )

I(PXn , PY n∣Xn) = I(PUXn , PUY n∣UXn) = I(PUXn , P

∣

Y n Xn

∣

From the “average of marginal” argument above, averaging over many rotations

∣ )

of Xn can only
make the mutual information larger. Therefore, the optimal input distribution PXn can be chosen
to be invariant under orthogonal

∗
transformations. Consequently, the (unique!) capacity achieving

output distribution PY n must be rotationally invariant. Furthermore, from the conditions for
equality in (5.1) we conclude that PY

∗
n must have independent components. Since the only product

distribution satisfying the
= (

po
∗
w
)

er constrain
∗ =

ts
N (

and having rotational symmetry is an isotropic Gaussian,
we conclude that PY n P n

Y and PY 0, P In

direction

).

For the other in the Gaussian saddle point problem:

∶
min I XG;XG N

PN E N2 1

This uses the same trick, except here

[

the

]=

input

(

distribution

+ )

is automatically invariant under
orthogonal transformations.
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5.3 Information measures and probability of error

ˆLet W be a random variable and W be our prediction. There are three types of problems:

ˆ1. Random guessing: W W .

→ → ˆ2. Guessing with data: W X W .

ˆ3. Guessing with noisy data: W X Y W .

We want to draw converse statemen

→

ts, e.g.,

→

if

→

the uncertainty of W is high or if the information
provided by the data is too little, then it is difficult to guess the value of W .

Theorem 5.2. Let ∣X ∣ =M <∞ and Pmax

H

≜ maxx∈X PX(x). Then

X 1 Pmax log M 1 h Pmax FM Pmax , (5.3)

with equality iff P

( ) ≤ (

max
X

− ) ( − ) + ( ) ( )

= (Pmax,
1−P

≜

M−1 , . . . , 1−Pmax

M−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

M−1

).

Proof. First proof : Write RHS-LHS as a divergence. Let P = (Pmax, P2, . . . , PM) and introduce
Q = (Pmax,

1−Pmax

M−1 , . . . , 1−Pmax . Then RHS-LHS D P Q 0, with inequality iff P Q.M
Se

−1

−

cond proof : Given any
)

P Pmax, P2, . . . , PM , apply a random permutation π to the last
M 1 atoms to obtain the distribution Pπ. Then

= (

averaging

∥ ) ≥

Pπ over all

=

Then use concavity of entropy or

=

“conditioning

(

reduces

)

entropy”: H Q
Third proof : Directly solve the convex optimization max H P pi
Fourth proof : Data processing inequality. Later.

( ) ≥

perm

)

H(

utation π gives Q.

{ ( ∶ ≤

Pπ ∣π) P
. . ,M

)

=

H
}

.
Pmax, i 1,

=

.
(

.

Note: Similar to Shannon entropy H, Pmax is also a reasonable measure for randomness of P . In fact,
log 1 is known as the Rényi entropy of order , denoted by H P . Note that H P logMPmax

iff P is uniform; H point mass.
∞ ∞

Note:
∞(P ) = 0 iff P is a

The function FM on the RHS of (5.3) looks

∞

like

( ) ( ) =

0 1/M 1
p

FM (p)

which is concave with maximum logM at maximizer 1/M , but not monotone. However, Pmax ≥
1
M

and FM is decreasing on [ 1 ,1 . Therefore (5.3) gives a lower bound on Pmax in terms of entropy.M
Interpretation: Suppose one is trying to guess the value of X without any information. Then

the best bet is obviously the most

]

likely outcome, i.e., the maximal probability of success among all
estimators is

maxP ˆX X Pmax (5.4)
X̂

Th It

⊥⊥X

us (5.3) means: is hard to predict something

[ =

of

]

large

=

entropy.
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ˆConceptual question: Is it true (for every predictor X ⊥⊥X

H X FM P ˆ

) that

This is not obvious from (5.3) and (5.4

(

) since

) ≤

p

( [ =

↦

X X ? (5.5)

(

FM(p)
)↦

is not monotone. To show (5.5) consider
ˆthe data processor X,X 1

])

{X=X̂

P ˆ PXP ˆ P

}:

XX = X [X = X̂] ≜ P d(P 1
S S∥M ) ≤ D(PXX̂∥QXX̂)

QXX̂ = UXPX̂

⇒
Q[X = X̂] = 1 logM

⇒
= M −H(X

where inequality follows by the data-processing for divergence.

)

(

The
)

benefit of this proof is that it trivially generalizes to (possibly randomized) estimators
X̂ Y , which depend on some observation

∣X ∣

Y

=

correlated

<∞

with

→

X:

ˆTheorem 5.3 (F

(

ano’s

∣ )

inequalit

≤ ( [

y).

=

Let

( )]) =

M and X Y X. Then

ˆ ˆH X Y FM P X X Y P

→

[X ≠X] log(M − 1) + h(P

(

is

[ ˆX ≠X]). (5.6)

Thus, if in addition X uniform, then

I X;Y ) = logM − ˆH(X ∣Y ) ≥ P[X =X] logM − (P[ ˆh X ≠X . (5.7)

Proof. Apply data processing to PXY vs. UXPY and the data processor (kernel)

])

(X,Y )↦ 1{ ˆX X

(note that P ˆ fixed).X

}

∣ isY

≠

ˆRemark: We can also derive Fano’s Inequality as follows: Let ε P X X . Apply data
processing for M.I.

I

= [ ≠ ]

(X;Y ) ≥ I( ˆX;X) ≥ min{I(PX , P
∣

Z∣X P X Z 1 ε .
PZ X

This minimum will not be zero since if we force X and Z to agree

) ∶ [

with

=

some

] ≥

probabilit

− }

y, then I X;Z
cannot be too small. It remains to compute the minimum, which is a nice convex optimization
problem. (Hint: look for invariants that the matrix PZ∣X must satisfy under permutations X

(

, Z

)

π X ,π Z then apply the convexity of I PX , ).

Theorem

( ( ) (

5.4

))

(

(Fano

)

inequality: general).

( )

[

Let X

⋅

≥ ( [ = ]∥

, Y , M and let Q

)↦

XY PXPY , then

(

I X;Y d P X Y Q X Y

≥ [ = ]
1

∈ X ∣X ∣ = =

P X Y log

= ])

h P X Y
Q

(=

X Y

P[X Y

[ = ]
− ( [ = ])

= ] logM − h(P[X = Y ]) if PX or PY uniform)

Pr
]

o
=

of. Apply data processing to PXY and QXY . Note that if PX or PY = uniform, then Q[X
Y 1

=

=

M always.

The following result is useful in providing converses for data transmission.

→ → →

[ ] ≜ { }

ˆCorollary 5.1 (Lower bound on average probability of error). Let W X Y W and W is
uniform on M 1, . . . ,M . Then

Pe ≜ P[
I X;Y h Pˆ e

W ≠W ] ≥ 1 −
( ) + ( )

logM
(5.8)

≥ 1 −
I(X;Y ) + log 2

. (5.9)
logM

ˆProof. Apply Theorem 5.3 and the data processing for M.I.: I(W ;W ) ≤ I(X;Y ).
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5.4 Fano, LeCam and minimax risks

In order to show an application to statistical decision theory, consider the following setting:

• Parameter space θ ∈ [0,1

• Observation model Xi –

]

i.i.d. Bern(θ

• Quadratic loss function:

)

`(θ̂, θ) = (θ̂ − θ

limit:

)2

• Fundamental
R∗(n) ≜ sup

∈[
E[(ˆ

]
inf θ(Xn θ 2 θ θ0

ˆθ0 0,1 θ

A natural estimator to consider is the empirical mean:

) − ) ∣ = ]

1
θ̂emp(X

n) =
n
∑
i

Xi

It achieves the loss

sup
θ0

E[(θ̂emp − θ)
2∣θ = θ0] = sup

θ0

θ0(1 − θ0)

n
=

1
. (5.10)

4n

The question is how close this is to the optimal.

→

First,
→

recall the
∈

Cramer-Rao
(

lower
∣ )

b
=

ound
(

: Consider an arbitrary statistical estimation problem
ˆθ X

( )

θ with

[

θ

(

R
)∣

and

] =

PX
+

∣θ
(

dx

)

θ0 f x∣θ)µ(dx) with f(x∣ )

( )

θ is differentiable in θ. Then for
ˆany θ x with E θ̂ X θ θ b θ and smooth b θ we have

E[(
1 b θ 2

ˆ 0
θ − θ)2∣θ = θ0] ≥ b(θ0)

2 +
( + ′( ))

JF (θ0)
, (5.11)

where JF (θ0) = Var[
∂ ln f(X ∣θ)

∣

( =

θ = θ0]

)

is the Fisher information (4.6). In our case, for any unbiased∂θ
estimator (i.e. b θ 0) we have

E[(θ̂ −
θ0 1 θ0

θ)2∣θ = θ0] ≥
( − )

,
n

ˆand we can see from (5.10) that θemp is optimal in the class of unbiased estimators.
How do we show that biased estimators can not do significantly better? One method is the

ˆfollowing. Suppose some estimator θ achieves

E[(θ̂ − θ)2

for

∣θ θ 2
0 ∆n (5.12)

all θ0. Then, setup the following probability space:

= ] ≤

W → → ˆθ Xn → θ → Ŵ

• W ∼ Bern 1 2

• θ = 1 2 κ

( /

1

)

W∆n where κ 0 is to be specified later

• Xn is

/

i.i.d.

+ (−

Bern

) >

(θ)
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• θ̂ is the given estimator

• ˆ ˆ ˆW 0 if θ 1 2 and W 1 otherwise

The
θ = 1/

idea here is that we use our high-quality estimator to distinguish between two hypotheses
2

= > / =

± κ∆n. Notice that for probability of error we have:

P[W ≠ Ŵ ] =
E θ̂ θ 2

P[θ̂ > 1/2∣θ = 1/2 − κ∆n] ≤
[( − ) ]

κ2∆2
n

≤
1

κ2

where the last steps are by Chebyshev and (5.12), respectively. Thus, from Theorem 5.3 we have

I(W ; Ŵ ) ≥ (1 −
1

κ
) log 2 h

2
− (κ−2 .

On the other hand, from data-processing and golden formula we

)

have

I( ˆW ;W ) ≤ I(θ;Xn) ≤D

Computing the last divergence we get

(P 1/2)nXn∣θ∥Bern( ∣Pθ)

D(PXn∣θ∥Bern(1/2)n∣Pθ) = nd

As

(1/2 − κ∆n∥1/2) = n(log 2 − h(1

∆n 0 we have

/2 − κ∆n))

→

h(1/2 − κ∆n) = log 2 − 2 log e ⋅ (κ∆n)
2 + o(∆2

n

So

) .

altogether, we get that for every fixed κ we have

(1 −
1

κ
κ

− e

In

) log 2 h κ 2 2n log ∆ 2
n o n∆2 .

2 n

particular, by optimizing over κ w

−

e get

(

that

) ≤

for some

⋅ (

constan

)

t

+

c

( )

≈ 0.015 > 0 we have

∆2
n ≥

c

n
+ o(1/n) .

Together with (5.10), we have

0.015

n
+ o(1/n) ≤ R∗(n) ≤

1
,

4n

and thus the empirical-mean estimator is rate-optimal.
We mention that for this particular problem (estimating mean of Bernoulli samples) the minimax

risk is known exactly:

R∗(n) =
1

4(1 +
√
n)2

but obtaining this requires rather sophisticated methods. In fact, even showing R∗(n) = 1 o 1 n4n
requires careful priors on θ (unlike the simple two-point prior we used above).2

We demonstrated here the essense of the Fano method of proving lower (impossibility)

+

bounds

( / )

in statistical decision theory. Namely, given
(

an estimation task we select a prior on θ which on one
hand yields a rather small information I θ;X and on the other hand has sufficiently separated
points which thus should be distinguishable by

)

a good estimator. For more see [Yu97].

2In fact, getting this result is not hard if one accepts the following Bayesian Cramer-Rao lower bound : For any
ˆestimator θ and for any prior π(θ)dθ with smooth density π we have

∼ [( ( ) − )2] ≥ 1E ˆ
θ π θ X θ

E[JF (θ)] + JF (π)
,
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5.5 Entropy rate

Definition 5.1. The entropy rate of a process X = (X1,X2, . . .) is

H(X) ≜
1

lim
n→∞

H
n

(Xn) (5.13)

provided the limit exists.

Stationarity is a sufficient condition for entropy rate to exist. Essentially, stationarity means
D

invariance w.r.t.
∈

time shift. Formally, X is stationary if (Xt1 , . . . ,Xtn)=(Xt1+k, . . . ,Xtn k for any
t1, . . . , tn, k N.

+

Theorem 5.5. For any stationary process X = (X ,

)

1 X2, . . .

1. H X 1
n X

n H Xn 1 X
n 2

)

2. 1

( ∣ − ) ≤ ( − ∣ − )

nH(Xn) ≥H(Xn∣X
n−1)

3. 1Hn (Xn) ≤ 1
n−1H(Xn−1)

4. H(X) exists and H(X) = limn→∞
1H Xn limn H Xn X

n
n

−1 .

5. For X = (

(

double-side
) <∞

d process . . . ,X

( ) = →

−1,X0,X1,X2

∞

, . . .

(

,

)

) H

∣

(X) = H(X1∣X
0

H
−∞ ovided that

X1

) pr
.

Proof.

1. Further conditioning + stationarity: H(Xn∣X
n−1

2. Using chain rule: 1

) ≤H(X n−1
2 ) =H(X −1∣X

n−2
n∣X n )

nH(Xn) = 1 H X Xi 1 1
i H Xn X

n

( ) = ( ) + ( ∣

n

3. H Xn H Xn−1 H X Xn
n

∑

1

( ∣ − ) ≥ ( ∣ − )

− ) ≤H(Xn−1) + 1
nH(Xn)

4. n ↦ 1H Xn is a decreasing sequence and lower bounded by zero, hence has a limit H .n
Moreo

( ) (X
ver by chain rule, 1

)

nH(Xn) = 1
n ∑

n
i=1H(Xi∣X

i−1). Then H(Xn∣X
n−1)→H(X). Indeed,

from part 1 limnH(Xn∣X
n−1) = H ′ exists. Next, recall from calculus: if an → a, then the

Cesàro’s mean 1 n
i 1 ai a as well. Thus, H H X .n

′

5. Assuming H

∑ = → = ( )

(X1) < we have from (3.10):

lim
→∞

H(X1) −H X
n

∞

( 1∣X−
0
n) = lim

n→∞
I(X1;X−

0
n) = I(X1;X−∞

0 ) =H(X1) −H(X1∣X−∞
0 )

2

where JF (θ) is as in (5.11), JF (π) ≜ ∫ (π′(θ))

π(θ)
dθ. Then taking π supported on a 1

n
1
4

-neighborhood surrounding a

given point θ0 we get that E[JF (θ)] = n
θ0(1−θ0)

+ o(n) and JF (π) = o(n), yielding

R∗(n) ≥ θ0(1 − θ0)
.

n
+ o(1/n

This is a rather general phenomenon: Under regularity assumptions in

)

ˆany iid estimation problem θ →Xn → θ with
quadratic loss we have

∗( 1
R n) =

infθ JF (θ)
+ o(1/n) .
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Example: (Stationary processes)

1. X − iid source⇒H(X) =H(X1

2. X mixed sources: Flip a coin

)

− = = =

( ) = ( ) + ( )

with bias p at time t 0, if head, let X Y, if tail, let X Z.
Then H X pH Y pH¯ Z .

3. X − stationary Markov chain X1 X2 X3

H(X ∣Xn−1
n

∶ → → → ⋯

) =H(
1

Xn∣Xn−1)⇒H(X) =H(X2∣X1) =∑µ
a,b

(a)Pb∣a log
Pb a

where µ is an invariant measure (possibly non-unique; unique if the chain is ergodic).

∣

4. X−
PY X

hidden
= (

Marko
)

v chain ∶ Let X1 →X2 →X3 be a Markov chain. Fix PY X . Let Xi
∣

Yi.
Then Y Y1, . . . is a stationary process. Therefore H Y exists but it is very difficult
(no closed-form solution to date), even if

∣
to compute

X is

→

a

⋯

binary

ÐÐÐ→

(

Mark
)

ov chain and PY ∣X is a BSC.

5.6 Entropy and symbol (bit) error rate

In this section we show that the entropy rates of two processes X and Y are close whenever they
can be “coupled”. Coupling of two processes means defining them on a common probability space
so that average distance between their realizations is small. In our case, we will require that the
symbol error rate be small, i.e.

1 n

P Xj Yj ε . (5.14)
n j
∑
=1

Notice that if we define the Hamming distance

[

as

≠ ] ≤

n

d (xnH , yn 1 xj yj
j 1

then indeed (5.14) corresponds to requiring

) ≜∑
=

{ ≠ }

E[dH(Xn, Y n nε .

Before showing our main result, we show that Fano’s

)] ≤

inequality Theorem 5.3 can be tensorized:

Proposition 5.1. Let Xk take values on a finite alphabet X . Then

H(Xn∣Y n

where
1

) ≤ nF∣X ∣(1 − δ) , (5.15)

δ =
n
E[dH(Xn, Y n)] =

1 n

P Xj Yj .
n j 1

ˆProof. For each j

∑
=

[ ≠

∈ [n] consider X

]

j(Y
n

H X

)

j

= Yj . Then from (5.6) we get

( ∣Y n) ≤ FM(P[Xj = Yj) , (5.16)
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where we denoted M = ∣X ∣. Then, upper-bounding joint entropy by the sum of marginals, cf. (1.1),
and combining with (5.16) we get

H(
n

Xn∣Y n) ≤
j
∑
=
H

1

(Xj ∣Y
n) (5.17)

≤
j

nF

∑
n

P
=
FM

1

( [Xj = Yj]) (5.18)

≤ M(
1

n

n

∑
j=1

P[Xj = Yj]) . (5.19)

where in the last step we used concavity of FM and Jensen’s inequality. Noticing that

1
P

j
∑
n

n =1

[Xj = Yj] = 1 − δ

concludes the proof.

Corollary 5.2. Consider two processes X and Y with entropy rates H

P

(X) and H(Y). If

Xj Yj ε

for every j and if X takes values on a finite

[

alphab

≠

et

] ≤

of size M , then

H

If both processes have alphabets of size

(X) −H Y

M then

( ) ≤ FM(1 − ε) .

H X H Y ε logM h ε 0 as ε 0

Proof. There is almost nothing

∣ ( )

to

−

pr

(

ov

)∣

e:

≤ + ( )→ →

H

and apply (5.15). For the last

(Xn) ≤H(Xn, Y n) =H(Y n) +H(Xn∣Y n

statement just recall the expression for

)

FM .

5.7 Mutual information rate

Definition 5.2 (Mutual information rate).

I(X;Y) =
1

lim
n→∞

I(Xn;Y n

n

provided the limit exists.

)

Example: Gaussian processes. Consider X,N two stationary Gaussian processes, independent of
each other. Assume that their auto-covariance functions are absolutely summable and thus there
exist continuous power spectral density functions fX and fN . Without loss of generality, assume all
means are zero. Let cX(k) = E [

( ) = ∑∞
X1Xk+1]

( )

. Then fX is the Fourier transform of the auto-covariance
function cX , i.e., fX ω k=−∞ cX k eiωk. Finally, assume fN ≥ δ 0. Then recall from Lecture 2:

1
I(Xn;Xn +Nn

>

) =
2

log
det(ΣXn +ΣNn)

det ΣNn

=
1 1

log
i
∑
n

2 =
σi

1

−
2

n

∑
i=1

logλi ,
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where σj , λj are the eigenvalues of the covariance matrices ΣY n ΣXn ΣNn and ΣNn , which are
all Toeplitz matrices, e.g.,

= +

(ΣXn)ij E XiXj cX i j . By Szegö’s theorem (see Section 5.8*):

1

= [ ] = ( − )

n

n

∑
i=1

logσi →
1 2π

log fY ω dω
2π 0

Note that cY (k) = E [(X1 +N1)(Xk+1 +Nk 1

∫ ( )

+ )] = cX(k) + cN(k) and hence fY = fX + fN . Thus, we
have

1

n
I(Xn;Xn +Nn)→ I(X;X +N) =

1

4π
∫

2π

0
log

fX(w) + fN(ω)
dω

fN ω

(Note: maximizing this over fX ω leads to the famous water filling solution

( )

fX
∗ ω T fN ω +.)

5.8* Toeplitz matrices

( )

and Szegö’s theorem

( ) = ∣ − ( )∣

Theorem 5.6 (Szegö). Let f ∶ [0,2π)→ R be the Fourier transform of a summable sequence ak ,
that is

f(ω e ak

{ }

k

∞
ikωak ,

Then for any φ ∶ R→ R continuous on

) =

the

=
∑
−∞

closure of the

∑

range

∣ ∣ <

of

∞

f , we have

1
lim
n→∞ n

n

∑
j=1

φ(σn,j) =
1 2π

φ f ω dω ,
2π 0

where {σn,j , j = 1, . . . , n ar

∫ ( ( ))

} e the eigenvalues of the Toeplitz matrix Tn a n
` m `,m 1.

Proof sketch. The idea is to approximate φ by polynomials, while for

=

p

{

olynomials

− } =

the statement
can be checked directly. An alternative interpretation of the strategy is the following: Roughly
speaking we want to show that the empirical distribution of the eigenvalues 1 n

j 1 δσn,j convergesn
weakly to the distribution of f W , where W is uniformly distributed on 0,2π . To this end, let
us check that all moments converge.

( )

Usually this does not imply weak conve

∑
[

rgenc
]

e,

=

but in this case
an argument can be made.

For example, for φ(x) = x2 we have

1

n

n

∑
j=1

σ2
n,j =

1

n
trT 2

n

=
1

T
`,m

∑
n

n =1

( n)`,m(Tn)m,`

=
1

n
∑
`,m

a`−mam−`

=
1 n 1

n ` a`a `

=

n `

∑
−

=−n−1

( − ∣ ∣) −

x∈(−1

∑
,1)∩ 1

n
Z
(1 − ∣x∣)anxa−nx ,

Substituting a` =
1

2π ∫
2π

0 f(ω)eiω` we get

1

n

n

∑
j=1

σ2
n,j =

1

(2π)2 ∬ f(ω)f(ω′)θn(ω − ω
′) , (5.20)
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where
θn(u) = ∑

x∈(−1,1)∩ 1

1 x e

n
Z

−inux

is a Fejer kernel and converges to a δ-function: θ

( − ∣ ∣)

n u 2πδ u (in the sense of convergence of
Schwartz distributions). Thus from (5.20) we get

( ) → ( )

1

n

n

∑
j=1

σ2
n,j →

1

(2π)2 ∬ f(ω)f(ω′)2πδ(ω − ω′)dωdω′ =
1

2π
∫

2π

0
f2(ω)dω

as claimed.
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Part II

Lossless data compression
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§ 6. Variable-length Lossless Compression

The principal engineering goal of compression is to represent a given sequence a1, a2, . . . , an produced
by a source as a sequence of bits of minimal possible length. Of course, reducing the number of bits
is generally impossible, unless the source imposes certain restrictions. That is if only a small subset
of all sequences actually occur in practice. Is it so for real world sources?

As a simple demonstration, one may take two English novels and compute empirical frequencies
of each letter. It will turn out to be the same for both novels (approximately). Thus, we can see
that there is some underlying structure in English texts restricting possible output sequences. The
structure goes beyond empirical frequencies of course, as further experimentation (involving digrams,
word frequencies etc) may reveal. Thus, the main reason for the possibility of data compression is
the experimental (empirical) law: real-world sources produce very restricted sets of sequences.

How do we model these restrictions? Further experimentation (with language, music, images)
reveals that frequently, the structure may be well described if we assume that sequences are generated
probabilistically. This is one of the main contributions of Shannon: another empirical law states
that real-world sources may be described probabilistically with increasing precision starting from i.i.d.,
1-st order Markov, 2-nd order Markov etc. Note that sometimes one needs to find an appropriate
basis in which this “law” holds – this is the case of images (i.e. rasterized sequence of pixels won’t
appear to have local probabilistic laws, because of forgetting the 2-D constraints; wavelets and local
Fourier transform provide much better bases).1

So our initial investigation will be about representing one random variable X ∼ PX in terms of
bits efficiently. Types of compression:

• Lossy
X →W → ˆ ˆX s.t. E[(X −X)2] ≤ distortion.

• Lossless
P (X ≠ X̂) = 0. variable-length code, uniquely decodable codes, prefix codes, Huffman codes

• Almost lossless
P (X ≠ X̂

V

) ε. fixed-length codes

6.1 ariable-length,

≤

lossless, optimal compressor

Coding paradigm:

Compressor
f ∶ X→{0,1}∗

Decompressor
g∶ {0,1}∗→X

X X{0,1}∗

1Of course, one should not take these “laws” too far. In regards to language modeling, (finite-state) Markov
assumption is too simplistic to truly generate all proper sentences, cf. Chomsky [Cho56].
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Remark 6.1.

• Codeword: f(x) ∈ {0,1}∗; Codebook: {f(x) ∶ x

• Since 0, 1 , 0, 1, 00, 01, . . . is countable, lossless

∈ X} ⊂ {0,1}∗

{ }∗ = {∅ } compression is only possible for discrete
R.V.;

• if we want g ○ f = 1 (lossless), then f must be injective;

• relabel X such that

X

X = N = {1,2, . . .} and order the pmf decreasingly: PX(i

Length

) ≥ PX(i + 1).

function:
l ∶ {0,1}∗ → N

e.g., l(01001
ctiv

) 5.
Obje es:

=

Find the best compressor f to minimize

E[l

sup

(f(X

l

))]

(f(X

median l f

))

X

It turns out that there is a compressor f that minimizes
ide

( ))

all together!
Main a: Assign longer codewords

∗

to less lik

(

ely symbols, and reserve the shorter codewords
for more probable symbols.

Aside: It is useful to introduce the partial order of stochastic dominance: For real-valued RV X
st.

and Y , we say Y stoc

if P
of

≤ t

≤

[Y ] ≤ P [X t
Y pointwise. In particular,

supremum, etc.

≤ ]

hastically

for all t ∈

dominates (or, is stochastically

≤

larger than) X, denoted by X Y ,
st.

R. In other words, X Y iff the CDF of X is larger than the CDF
if X is dominated by Y stochastically, so are their means, medians,

Theorem 6.1 (optimal f∗). Consider the compressor f∗ defined by

Then

1. length of codeword:
l(f∗(i)) = ⌊log2 i

2. l

⌋

(f∗(X)) is stochastically the smallest: for any lossless f ,

l(
st.

f∗(X)) ≤ l(f(X

i.e., for any k, P

))

[l(f(X)) ≤ k] ≤ P[l(f∗(X)) ≤ k].
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Proof. Note that

∣Ak∣ ≜ ∣{x ∶ l(f(x)) ≤ ∑
k

k∣ ≤
=

2i = 2k+1 − 1 = ∣{x ∶ l f
i 0

( ∗

where the inequality is because of f is lossless and A exceeds the

(x)) ≤ k∣ ≜ ∣Ak
∗∣.

k total number of binary strings
of length less than k. Then

∣ ∣

P[l(f(X)) ≤ k] = ∑
∈

PX x PX x P l f∗ X k ,
x Ak x A∗

k

since ∣A ∣ ≤ ∣A∗∣ and A∗ contains all 2k 1

( ) ≤ ∑
∈

( ) = [ ( ( )) ≤ ]

k k k
+ − 1 most likely symbols.

The following lemma is useful in bounding the expected code length of f∗. It says if the random
variable is integer-valued, then its entropy can be controlled using its mean.

Lemma 6.1. For any Z ∈ N s.t. E[Z] <∞, H(Z) ≤ E[Z]h( 1
E[ ,Z] where h is the binary entropy

function.

Theorem 6.2 (Optimal average code length: exact expression)

)

. Suppose

(⋅)

X
PX 2 . . .. Then

E l f

∈

(

N (

)

and PX 1) ≥

[ ( ∗

Proof. Recall that expectation of U Z

(X))] = ∑
∞

P
=

.
k 1

[X ≥ 2k

))]

can be written as

]

[ ( ∗( =

E U k 1 P U k . Then by
Theorem 6.1, E l f X E log

∈ +
P

[ ] = ∑ [ ≥ ]

[⌊ 2X⌋] = ∑k≥1 [⌊log2X⌋ ≥ k] = ∑k
≥

≥1 P [log2X ≥ k].

Theorem 6.3 (Optimal average code length v.s. entropy).

H(X) bits − log2[e(H(X) + 1)] ≤ E[l(f∗(X))] ≤H(X) bits

Note: Theorem 6.3 is the first example of a coding theo
[

rem, which relates the fundamental
E l(f∗

limit
X (operational quantity) to the entropy H X (information measure).

Proof.

(

Define

))]

L

( )

(X l f X .

(

RHS:
) ≤

observ
≤

e that
log2m log

)

2

= ∗

L m 1

( ( )))

LHS:

( ) ≤ /

( /

since
(

the
))

pmf are ordered
[ (

decreasingly
)] ≤ (

by assumption, PX m 1 m, so
PX m , take exp., E L X H X).

H(X) =H(X,L) =H(X L H L

≤ [ ] + (
1

E L h

∣ ) + ( )

1 +E[L]
) (1 +E[L]) (Lemma 6.1)

= E[L] + log2(1 +E[L]) +E[L] log(1 +
1

≤ +

E L

E[L] + log2(1 E[L log

[ ]
)

]) + 2 e (x log

E L log e 1 H X (by RHS)

(1 + 1/x) ≤ log e,∀x > 0)

where we hav

≤

e used

[ ] +

H

( ( + (

(X ∣L = k) ≤ k kbits

)))

, since given l(f∗(X))) = k, X has at most 2 choices.
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Note: (Memoryless source) If X = Sn is an i.i.d. sequence, then

nH S E l f∗ Sn nH S logn O 1 .

For iid sources, the exact beha

(

vior

) ≥

is

[

found

( (

in

))]

[SV11

≥

, Theorem

( ) −

4]

+

as:

( )

E[`(f∗( n))] =
1

S nH(S) − logn +O(1
2

) ,

unless the source is uniform (in which case it is nH S O 1 .
Theorem 6.3 relates the mean of l

( ) + ( )

(f∗(X)) ≤ k to that of log 1
2 (enPX(X) tropy). The next result

relates their CDFs.

Theorem 6.4 (Code length distribution of f∗). ∀τ > 0, k ∈ Z+,

P [
1

log2 PX(X)
≤ k] ≤ P [l(f∗(X)) ≤ k] ≤ P [log2

1
k

PX(X)
≤ + τ] + 2−τ+1

Proof. LHS: easy, use PX(m) ≤ 1
log

) log
1

/m. Then similarly as in Theorem 6.3, L(m = ⌊ 2m⌋ log2m

2

≤ ≤

PX(m) . Hence L(X) ≤ log2
1

PX(X) a.s.

RHS: (truncation)

P [L ≤ k] = P [L ≤ k, log2
1

PX(X)
≤ k + τ] + P [L ≤ k, log2

1
k

PX(X)
> + τ]

≤ P [
1

log2 PX(X)
≤ k + τ] + ∑

x∈X
PX(x)1{l(f∗(x))≤k}1{PX(x)≤2−k−τ}

≤ P [log2
1

k
PX(X)

≤ + τ] + (2k+1 − 1) ⋅ 2−k−τ

So far our discussion
(

applies
a random process S1, S2, . . .)

to an arbitrary random variable X. Next we consider the source as
and introduce blocklength. We apply our results to X Sn: the first

n symbols. The following corollary states that the limiting behavior of l
=

(f∗(Sn)) and log 1
PSn(Sn)

always coincide.

Corollary 6.1. Let (S1, S2, . . .) be some random process and U be some random variable. Then

1

n
log2

1
Ð
D

PSn(Sn)
→U ⇔

1

n
l(f∗(Sn))

D
Ð→U (6.1)

and
1

√
n

(log2
1

PSn(Sn)
−H(Sn))

D
Ð→V ⇔

1
√

D
l f∗ Sn H Sn V (6.2)

n

Proof. The proof is simply logic. First recall: convergence in distribution

( ( ( )) −

is equiv

( ))

alen

Ð→

t to convergence
D

of CDF at any continuity point. UnÐ→U ⇔ P [Un ≤ u]→ P [U ≤ u]

√

for all u at which point the CDF
of U is continuous (i.e., not an atom of U).

Apply Theorem 6.4 with k = un and τ = n:

P [
1

n
log2

1

PX(X)
≤ u] ≤ P [

1 1
l

n
(f∗(X)) ≤ u] ≤ P [

n
log2

1

PX(X)
≤ u +

1
√
n
] + 2−

√
n+1.
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Apply Theorem 6.4 with k =H(Sn) +
√
nu and τ = n1/4:

P [
1

√
n

(log
1

PSn(Sn)
−H(Sn)) ≤ u] ≤ P [

l(f∗(Sn)) −H(Sn)
√
n

≤ u]

≤ P [
1

√
n

(log
1 1

H
PSn(Sn)

− (Sn)) ≤ u + n−1/4] + 2−n
/4+1

Remark 6.2 (Memoryless source). Now let us consider Sn that are i.i.d. Then log 1

∑
P nS (Sn

n
i

) =

=1 log 1
PS(Si) .

1. By the Law of Large Numbers (LLN), we know that 1
n log 1

PSn(Sn)
P
Ð→E log 1 H S .PS S

Therefore in (6.1) the limiting distribution U is degenerate, i.e., U
( ) = ( )

= H(S), and we have
1
n l(f

∗(Sn))
P
Ð→E log 1 vP ( H

S S) = (S). [Note: con ergence in distribution to a constant conver-

gence in probability to a constant]

⇔

2. By the Central Limit Theorem (CLT), if V (S) ≜ Var [ log 1
PS(S)] <∞,2 then we know that V

in (6.2) is Gaussian, i.e.,

1
√
nV (S)

(log
1

PSn(Sn

Consequently, we have the following Gaussian

)

appro

− nH(S))Ð
D
→N (0,1).

ximation for the probability law of the
optimal code length

1
√

( )
(l(f∗(Sn)) − nH(S))Ð

D
→N (0,1

nV S
),

or, in shorthand,

l(f∗(Sn)) ∼ nH(S) +
√
nV (S)N (0,1) in distribution.

Gaussian approximation tells us the speed of 1 l f Sn to entropy and give us a goodn
approximation at

( ∗
finite
(

n. In the next section w
(

e

∗

apply our bounds to approximate the
distribution of ` f Sn in a concrete example:

( ))

6.1.1 Compressing iid

))

ternary source

Consider the source outputing n ternary letters each independent and distributed as

PX = [.445 .445 .11

F

] .

or iid source it can be shown

E[ (f∗(Xn))] =
1

` nH(X) −
2

log(2πeV n) +O(1) ,

where we denoted the varentropy of X by

V (X) ≜ Var [log
1

.
PX(X)

]

2V is often known as the varentropy of S.
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The Gaussian approximation to `(f∗(X)) is defined as

nH(X) −
1

2
log 2πeV n +

√
nV Z ,

where Z ∼ N (0,1).
On Fig. 6.1, 6.2, 6.3 we plot the distribution of the length of the optimal compressor for different

values of n and compare with the Gaussian approximation.
Upper/lower bounds on the expectation:

H(Xn) − log(H(Xn) + 1) − log e ≤ E[`(f∗(Xn))] ≤H

differen

(Xn

Here are the numbers for t n

)

n = 20 21.5 ≤ 24.3 ≤

= ≤ ≤

27.8
n
=

100 130.4 134.4 139.
n 500 684.1 ≤ 689.2 ≤

0
695.0

In all cases above E[`(f∗(X))] is close to a midpoint between the two.
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Optimal compression: CDF, n = 20, P
X
 = [0.445 0.445 0.110]

P

 

 

Rate

P
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1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55
0

0.01

0.02

0.03

0.04

0.05

0.06

Optimal compression: PMF, n = 100, P  = [0.445 0.445 0.110]
X

P

Rate

True PMF
Gaussian approximation

Figure 6.2: CDF and PMF, Gaussian is shifted to the true E[`(f∗(X))]
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Optimal compression: CDF, n = 500, P
X
 = [0.445 0.445 0.110]

P

 

 

Rate

P
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6.2 Uniquely decodable codes, prefix codes and Huffman codes

Huffman

code

all lossless codes

uniquely decodable codes

prefix codes

We have studied f∗, which ac
∗

hieves the stochastically smallest code length among all variable-
length compressors. Note that f is obtained by ordering the pmf and assigning shorter codewords to
more likely symbols. In this section we focus on a specific class of compressors with good properties
which lead to low complexity and short delay when decoding from a stream of compressed bits.
This part is more combinatorial in nature.

We start with a few definition. Let A+ = ⋃n≥1A
n denotes all non-empty finite-length strings

consisting of symbols from alphabet

Definition 6.1 (Extension
f(a1, . . . , an) = (f(a1) (

of a code). The extension of f 0,1 is f 0,1 where
, . . . , f an)) is defined

A

by concatenating
∶ A → {

∶ A→ { }

the bits.

∗ + ∗

Definition
+

6.2
∗

(Uniquely decodable codes). f 0,1 uniquely

}

de

∶ A →

∗ is codable if

{

its extension

}

f 0,1 is injective.

Definition 6.3 (Prefix codes). f
(e.g.,

∶ A

010

→ {

is a

}

prefix of 0101).

Example:

∶ A→ {0, 1}∗ is a prefix code3 if no codeword is a prefix of another

• f(a) = 0, f(b) = 1, f(c) = 10 – not uniquely decodable, since f(ba) = f(c) = 10.

• f

• f

(a) = 0, f(b

a 0, f b

) = 10, f c 11 – uniquely decodable and prefix.

( ) = ( ) = 01, f

( ) =

(c
as 0 appears, we know

)

that
= 011, f(d

las
) 0111 – uniquely decodable but not prefix, since as long

the t
=

codeword has terminated.

Remark 6.3.

1. Prefix codes are uniquely decodable.

3Also known as prefix-free/comma-free/instantaneous code.
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2. Similar to prefix-free codes, one can define suffix-free codes. Those are also uniquely decodable
(one should start decoding in reverse direction).

3. By definition
∶ X →

, an
{

y uniquely
}+

decodable code does not have the empty string as a codeword.
Hence f 0,1 in both Definition 6.2 and Definition 6.3.

4. Unique decodability means that one can decode from a stream of bits without ambiguity, but
one might need to look ahead in order to decide the termination of a codeword. (Think of the
last example). In contrast, prefix codes allow the decoder to decode instantaneously without
looking ahead.

5. Prefix code ↔ binary tree (codewords are leaves) ↔ strategy to ask “yes/no” questions

Theorem 6.5 (Kraft-McMillan).

1. Let f ∶ A → {0,1
inequality

}∗ be uniquely decodable. Set la l f a . Then f satisfies the Kraft

∑
∈A

2 l

= ( ( ))

a

− a ≤ 1. (6.3)

2. Conversely, for any set of code length {

=

la ∶ a ∈ A}

( ( ))

satisfying (6.3), there exists a prefix code f ,
such that la l f a .

Note: The consequence of Theorem 6.5 is that as far as compression efficiency is concerned, we can
forget about uniquely decodable codes that are not prefix codes.

Proof. We prove the Kraft inequality for prefix codes and uniquely decodable codes separately.
The purpose for doing a separate proof for prefix codes is to illustrate the powerful technique of
probabilistic method. The idea is from [AS08, Exercise 1.8, p. 12].

Let f be a prefix code. Let us construct a probability space such that the LHS of (6.3) is the
probability of some event, which cannot exceed one. To this end, consider the following scenario:
Generate independent Bern(1 bits. Stop if a codeword has been written, otherwise continue. This2

process terminates with probability l
a 2 a . The summation makes sense because the events that

a given codeword is written are

)

mutually
∑ ∈A

exclusiv

−

e, thanks to the prefix condition.
Now let f be a uniquely decodable code. The proof uses generating function as a device for

counting.
=

(The analogy in coding theory
( ) =

is

∑

the weigh
=

t

∑

enumerator function.) First
Then L max ∈A l is finite. Let G z zla L l

a a f a l 0Al f z , where Al f
of codewords of length l in f . For k 1, define fk k 0, 1 as the symbol-b

A

of f . Then G z zl f
k ak

∈A

la

=

la k kL
1 kfk ak k a a z

( )
∗

Gf z

(

l 0

)

assume is finite.
denotes the number

( ) = ∑ ∈A
( ( ))

≥

k

∶ A

= ∑ 1
⋯∑ +⋯+

→ { }

= [ ( )] = ∑

y-symbol extension

= Al(f
k)zl

( ) ≤ ( / ) =

. By unique

decodability of fk is lossless. Hence k l

∑

f , k

− = ( / ) ≤

Al f

(

2

)

.
/

Therefore

→ A

we have Gf 1 2 Gfk 1 2 kL

for all k
A

.
′
Then a∈A 2 la Gf 1 2 limk

subset ⊂ A, repeating the same argumen
→∞ kL 1 k 1. If is countably infinite, for any finite

′
t gives a

( / ) ≤

arbitrariness of .
∑ ∈A′ 2

−la 1. The proof is complete by the

Conversely, given a set of code lengths l

≤

la
a a s.t. a 2 1, construct a prefix code f

as follows: First

A

relabel A to N and assume that l i 1 lk
1 l2 . . .. For eac

−

h i, ai k 1 2 1 by Kraft
inequality. Thus we define the codeword f i

{ ∶

0,

∈

1

A} ∑ ≤

≤ ≤
∈A

∗ as the first li bits in
≜

the binary

− −

expansion of
ai. Prov

≥

e that f is a prefix
− ≤

co
−
de by contradiction: Suppose for some j i, f i

∑

is

=

the prefix

<

of f j ,
since l l . Then a a 2 li li li 1 li

j i j i . But aj a

(

i

) ∈ { }

> ( ) ( )

− = 2− + 2− + + . . . > 2− , which is a contradiction.

Open problems:
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1. Find a probabilistic proof of Kraft inequality for uniquely decodable codes.

2. There is a conjecture of Ahslwede that for any sets of lengths for which ∑ 2−la ≤ 3
4 there exists

a fix-free code (i.e. one which is simultaneously prefix-free and suffix-free). So far, existence
has only been shown when the Kraft sum is ≤ 5 , cf. [Yek04].8

In view of Theorem 6.5, the optimal average code length among all prefix (or uniquely decodable)
codes is given by the following optimization problem

L∗(X) ≜ min P
a

∑
∈A

X(a)la (6.4)

s.t. 2 la 1
a

−

la

∑
∈A

≤

∈ N

This is an integer programming (IP) problem, which in general is hard to solve computationally.
It is remarkable that this particular IP problem can be solved in near-linear time, thanks to the
Huffman

)

algorithm. Before describing the construction of Huffman codes, let us give boun to
L∗(

ds
X in terms of entropy:

Theorem 6.6.
H(X) ≤ L∗(X) ≤H(X) + 1bit. (6.5)

Proof. “≤” Consider the following length assignment l = ⌈log 1
a 2 PX(a)⌉,

4 which satisfies Kraft since

∑a∈A 2−la ≤ ∑a∈A PX(a) = 1. By Theorem 6.5, there exists a prefix code f such that l(f(a)) =

⌈log2
1

≥

andPX(a)⌉ El f X H X 1.

“ ” We give tw

(

o

(

pro

))

of

≤

s for

(

the

) +

converse. One of the commonly used ideas to deal with
combinatorial optimization is relaxation. Our first idea is to drop the integer constraints in (6.4)
and relax it into the following optimization problem, which obviously provides a lower bound

L∗(X) ≜ min
a

∑
∈A
PX(a

s.t. 2 la

)la (6.6)

a

− 1 (6.7)

This is a nice convex programming problem,

∑
∈A

since

≤

the objective function is affine and the feasible set
is convex. Solving

=

(6.6) by Lagrange multipliers (Exercise!) yields the minimum is equal to H(X
(achieved at l 1

a log2

)

PX(a)).
Another proof is the following: For any f satisfying Kraft inequality, define a probability measure

Q(a) = 2−la

∑a∈A 2−la
. Then

El(f(X)) −H(X) = D(P ∥Q) − log
a

∑
∈A

2−la

≥ 0

Next we describe the Huffman code, which achieves the optimum in (6.4). In view of the fact
that prefix codes and binary trees are one-to-
binary tree bottom-up: Given a pmf {PX( )

one, the main idea of Huffman code is to build the
a ∶ a ∈ A},

4Such a code is called a Shannon code.
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1. Choose the two least-probable symbols in the alphabet

2. Delete the two symbols and add a new symbol (with combined weights). Add the new symbol
as the parent node of the previous two symbols in the binary tree.

The algorithm terminates in ∣A∣ − 1 steps. Given the binary tree, the code assignment can be
obtained
(∣A∣

b
∣A

y assigning 0/1 to the branches. Therefore the time complexity is O (sorted pmf) or
O log (unsorted pmf).
Example:

∣)

A = {a, b, c, d, e}, PX = {0.25,0.25,0.2,0.15,0.15

(∣A∣)

}.
Huffman tree:

0.45

b c

0 1
0.55

0.3

ed

0 1
a

0 1

0

codebook:

1
f(a) = 00

f(b) =

( ) =

10

f c 11

f(d) = 010

f(e) = 011

Theorem 6.7 (Optimality of Huffman codes). The Huffman code achieves the minimal average
code length (6.4) among all prefix (or uniquely decodable) codes.

Proof. [CT06, Sec. 5.8].

Remark 6.4 (Drawbacks of Huffman codes).

1. Does not exploit memory. Solution: block Huffman coding. Shannon’s original idea from
1948 paper: in compressing English text, instead of dealing with letters and exploiting the
nonequiprobability of the English alphabet, working with pairs of letters to achieve more
compression (more generally, n-grams). Indeed, compressing the block S1, . . . , Sn using its
Huffman code achieves H S1, . . . , Sn within one bit, but the complexit

(

y is n!
)

2. Non-universal (constructing

(

the Huffman

)

code needs to know the source distribution).

∣A∣

This
brings us the question: Is it possible to design universal compressor which achieves entropy
for a class of source distributions? And what is the price to pay? – Homework!

There are much more elegant solutions, e.g.,

1. Arithmetic coding: sequential encoding, linear complexity in compressing (S1, . . . , Sn) (see
later).

2. Lempel-Ziv algorithm: low-complexity, universal, provably optimal in a very strong sense.

To sum up: Comparison of average code length (in bits):

H(X) − log2[e(H(X) + 1)] ≤ E[l(f∗(X))] ≤H(X) ≤ E[l(fHuffman(X))] ≤H(X) + 1.
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§ 7. Fixed-length (almost lossless) compression. Slepian-Wolf problem.

7.1 Fixed-length code, almost lossless

Coding paradigm:

Compressor
f ∶ X→{0,1}k

Decompressor
g∶ {0,1}k→X∪{e}

X X ∪ {e}{0,1}k

Note: If we want g ○ f = 1X , then k ≥ log2 ∣X ∣. But, the transmission link is erroneous anyway...
and it turns out that by tolerating a little error probability ε, we gain a lot in terms of code length!

Indeed, the key idea is to allow errors: Instead
consider only lossless decompression for a subset

( ( )) = ∈ X

g f x

S ⊂ X

of insisting on g f x x for all x ,
:

( ( ))
⎪
⎧⎪x x

e x

∈ S

and the probability of error:

⎨

P

⎪⎪⎩ ∈/ S

compressor-dec

[g(f(X

=

Definition 7.1. A ompr

))

e

≠X] = P g f X e .

ssor pair

[

f

(

, g

(

is

))

called

= ]

a k, ε -code if:

f ∶ X → {

∶ { }

0

→

,1

(

k

) ( )

g 0,1 k

}

X ∪ {e

such that g

}

(f(x)) ∈ {x, e} and P [g(f(X)) = e] ≤ ε.

Fundamental limit:
ε∗(X,k) ≜ inf

The following result connects the respectiv
compression and variable-length lossless compression

{ε ∶ ∃(k, ε -code for X

e fundamen

)

tal limits

}

of fixed-length almost lossless
(Lecture 6):

Theorem 7.1 (Fundamental limit of error probabiliy).

ε∗(X,k) = P [l(f∗(X)) ≥ k] = 1 − sum of 2k − 1 largest masses of X.

Proof. The proof is essentially tautological. Note 1 2 2k 1 2k 1. Let 2k

1 most likely realizations of X
+ + ⋯ + − = − S = { −

}. Then

ε∗(X,k

Optimal codes:

) = P [X ∈/ S] = P [l(f∗(X)) ≥ k] .
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• Variable-length: f∗ encodes the 2k−1 symbols with the highest probabilities to φ, 0, 1, 00, . . . , 1k−1 .

• Fixed-length: The
(

optimal
)

compressor f maps the elements of S into 00 . . . 00 , . . . , 11 . . . 10
and the rest

(

to 11 . . . 11 . The decompressor g decodes perfectly except for ou

{

tputting e upon

}

receipt of 11 . . .11

( ) ( )

).

Note: In Definition 7.1 we require that the errors are always detectable, i.e., g f x x or e.
Alternatively, we can drop this requirement and allow undetectable errors, in which case we can of
course do better since we have more freedom in designing codes. It turns out that

(

w

(

e do

)) =

not gain
much by this relaxation. Indeed, if we define

ε̃∗(X,k) = inf{P [g(f(X X f 0,1 k, g 0,1 k e ,

then ε̃∗(X,k) = −

∑ ( )

1 sum
≜

of
{

2
∶

k largest
( ( )) =

mass

)) ≠

es of

] ∶

X.

∶ X

This

→ {

follows

}

immediately

∶ { } →

from

X ∪ {

} ∣ ∣ ≤

P
2

}}

g

∈C PX x where C
[ (f X X

x x g f x x satisfies C k, because f takes no more than 2k values.
Compared
∗(

to Theorem 7.1, we see that ε̃ X, k and ε̃ X, k do not differ much. In

(

particul

)) = ]

ar,

=

ε X, k + 1) ≤ ε̃∗(X,k) ≤ ε∗(X,k .

∗( ) ∗

Corollary 7.1 (Shannon). Let

( )

)

Sn be i.i.d. Then

lim ε Sn
0 R H S

,nR
n

∗
→∞

( ) = {
1 R

> ( )

<H(S

lim ε Sn, nH S
n

)

∗
→∞

( ( ) +
√
nV (S)γ) = 1 −Φ(γ).

where Φ(⋅) is the CDF of N (0, 1), H(S) = E log 1
PS(S) – entropy, V (S) = Var log 1 –PS(S) varentropy

is assumed to be finite.

Proof. Combine Theorem 7.1 with Theorem 6.1.

Theorem 7.2 (Converse).

ε∗(X,k) ≥ ε̃∗(X,k) ≥ P [
1

log2 PX(X)
> k + τ] − 2−τ , ∀τ > 0.

Proof. Identical to the converse of Theorem 6.4. Let C = {x ∶ g(f(x)) = x}. Then ∣C ∣ ≤ 2k and

P [X ∈ C] ≤ P [log2
1 kPX(X) ≤ + τ] + P [X ∈ C, log 1

2 PX(X) > k + τ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤2−τ

Two achievability bounds

Theorem 7.3.

ε∗(X,k) ≤ P [
1

log2 k (7.1)
PX X

and there exists a compressor-decompressor pair that achieves

( )
≥

the

]

upper bound.

Proof. Construction: use those 2k − 1 symbols with the highest probabilities.
This is essentially

(

the
) ≤

same as the lower bound in Theorem 6.3 from Lecture 6. Note that the
mth largest mass PX m 1

m . Therefore

ε∗(X,k) = ∑
m≥2k

PX(m) =∑1{m≥2k}PX(m) ≤∑1
{ 1
PX (m)

≥2k}
PX(m) = E1

{log2
1

.
k

PX (X)
≥ }
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Theorem 7.4.

ε∗(X,k) ≤ P [
1

log2 k τ 2 τ , τ 0 (7.2)
PX(X

that

)
>

achieves

− ] + −

and there exists a compressor-decompressor pair the upp

∀

er

>

bound.

Note: In fact, Theorem 7.3 is always stronger than Theorem 7.4. Still, we present the proof of
Theorem 7.4 and the technology behind it – random coding – a powerful technique for proving
existence (achievability) which we heavily rely on in this course. To see that Theorem 7.3 gives
a better bound, note that even the first term in (7.2) exceeds (7.1). Nevertheless, the method of
proof for this weaker bound will be useful for generalizations.

Proof. Construction: random coding (Shannon’s magic). For a given compressor f , the optimal
decompressor which minimizes the error probability is the maximum a posteriori (MAP) decoder,
i.e.,

g∗(w) = argmaxPX
x

∣f(X)(x

which can be hard to analyze. Instead, let us consider

∣w) = argmax x ,
x∶f

follo

(x)=
PX

w

the wing (sub

( )

optimal) decompressor g:

⎧⎪
( ) =

⎪⎪
⎨

x, ∃! x ∈ X s.t. f(x) 1

g w

= w and log

⎪

2

⎪⎪⎩

kPX(x
p

) ≤ τ,

(exists unique high- robability x that is mapp

−

ed to w)
e, o.w.

Denote f(x) = cx and the codebook C = {cx ∶ x ∈ X} ⊂ {0, 1}k. It is instructive to think of as a
hashing table.

Error probability analysis: There are two ways to make an error ⇒ apply union bound. Before

C

proceeding, define

J(x,C) ≜ {x′ ∈ X ∶ cx′ =
1

cx, x
′ ≠ x, log2 k

PX(x′

of

)
< τ

to be the set high-probability inputs whose hashes collide with that

−

of

}

x. Then we have the
following estimate for probability of error:

P [g(f(X)) = e] = P [{
1

log2 PX(X)
≥ k − τ} ∪ {J(X,C) ≠ ∅}]

≤ P [log2
1

k τ P J X, φ
PX X

The first term does not
C

depend on the codebo

(

ok

)
≥ − ] + [ ( C) ≠ ]

C, while the second term does. The idea now
is to randomize over and sho

−
w that when we average over all possible choices of codebook, the

second term is smaller than 2 τ . Therefore
C

there exists at least one codebook that achieves the
desired bound. Specifically, let us consider
independently of X. Equivalently, since
rows correspond to codewords, we choose

C

which is uniformly distributed over all codebooks and
can be represented by a ∣X ∣ × k binary matrix, whose

each entry to be independent fair coin flips.
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Averaging the error probability (over C and over X), we have

EC[P [J
⎡

(X,C) ≠ φ]] = EC,X
⎢
⎢
⎢
⎣
1
{∃x′≠X ∶log 1

2 PX (x′)
<k−τ,cx′=cX}

⎤
⎥
⎥
⎥
⎦

≤ EC,X
⎡
⎢
⎢
⎢
⎣
∑
x′≠X

1
{log2

1 c
P

<
1

X (x′)
k−τ} { x′=cX}

⎤
⎥
⎥

2

⎥
(union bound)

= −kEX [
x

∑ (
≠

1 x
X

{PX ′ −

′
)>2 k+τ

⎦

}]

≤ 2−k

x

∑
′

{ ( )> }

≤ 2 k2k
∈X

1 P x′ 2−k+τX

− −τ = 2−τ .

Note: Why the proof works: Compressor f(x) =

∈ { }

cx, hashing x to a random k-bit string
cx 0,1 k.

∈ X

high-probability x ⇔ log 1
2 k τ P x 2 k τ

X .PX x

Therefore the cardinality of high-probabilit

− +
( )

y x’s is at most 2k τ 2k number of strings. Hence
the chance of collision is small.

≤ − ⇔ ( ) ≥
−

Note: The random coding argument is a canonical example of prob

≪

abilistic

=

method : To prove the
existence of something with certain property, we construct a probability distribution (randomize)
and show that on average the property is satisfied. Hence there exists at least one realization with
the desired property. The downside of this argument is that it is not constructive, i.e., does not give
us an algorithm to find the object.
Note: This is a subtle point: Notice that in the proof we choose the random codebook to be uniform
over all possible codebooks. In other words, C cx x consists of iid k-bit strings. In fact,
in the proof we only need pairwise independence,
should we care about this? In fact, having access

= {

i.e.,
to external

∶

cx

∈ X}

It is more desirable to use less randomness in the random co

⊥⊥ cx′ for any x ≠ x′ (Why?). Now, why
randomness is also a lot of resources.

ding argument. Indeed, if we use zero
randomness, then it is a deterministic construction, which is the best situation! Using pairwise
independ

∣X ∣

ent codebook requires significantly less randomness than complete random coding which
needs k bits. To see this intuitively, note that one can use 2 independent random bits to generate
3 random bits that is pairwise independent but not mutually independent, e.g., {b1, b2, b1 ⊕ b2 .
This observation is related to linear compression studied in the next section, where the codeword
we generated are not iid, but related through a linear mapping.

}

Remark 7.1 (AEP for memoryless sources). Consider iid Sn. By WLLN,

1

n
log

1 P
H S . (7.3)

PSn Sn

For any δ

( )
Ð→ ( )

> 0, define the set

T δn = {sn ∶ ∣
1

n
log

1

PSn(sn)
−H(S)∣ ≤ δ} .
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As a consequence of (7.3),

1. P [Sn ∈ T δn]→ 1 as n

2.

→∞.

T δ n n
n 2(H(S)+δ) .

In other

∣ ∣

w

≤

ords, Sn is

≪

con

∣S

cen

∣

trated on the set T δn which is exponentially smaller than the whole
space. In almost compression we can simply encode this set losslessly. Although this is different
than the optimal encoding, Corollary 7.1 indicates that in the large-n limit the optimal compressor
is no better.

The propert
∈

y (7.3) is often referred as the Asymptotic Equipartition Pr
that for any sn T δn, its likelihood is concentrated around PSn(s

n) ∈ 2−(H(S

sequences.

)±
op (AEP). Note
δ)

erty
n, called δ-typical
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Next we study fixed-blocklength code, fundamental limit of error probability ε∗(X,k) for the
following coding paradigms:

• Linear Compression

• Compression with Side Information

– side info available at both sides

– side info available only at decompressor

– multi-terminal compressor, single decompressor

7.2 Linear Compression

From Shannon’s theorem:

ε∗ X,nR 0 or 1 R H S

Our goal is to find compressor

(

with

)

structures.

Ð→

The simplest

≶

one

( )

can think of is probably linear
operation, which is also highly desired for its simplicity (low complexity). But of course, we have to
be on a vector space where we can define linear operations. In this part, we assume X Sn, where
each coordinate takes values in a finite field (Galois Field), i.e., Si Fq, where q is the cardinality of
Fq. This is only possible if q p

∈

= n for some prime p and n ∈ N. So Fq

=

= Fpn .

Definition 7.2 (Galois Field). F is a finite set with operations , where

• a b

+ ⋅)

+ associative and commutative

(

• a b associative and commutative

• 0,

⋅

1 ∈ F s.t. 0 + a = 1 a a.

• ∀a,∃ − a, s.t. a + (−a

⋅ =

) = 0

• ∀a ≠ 0,∃a−1, s.t. a−1a = 1

• distributive: a ⋅ (b

Example:

+ c) = (a ⋅ b) + (a ⋅ c)

• Fp Z pZ, where p is prime

• F 2
4

=

= {0

/

,1, x, x + 1}
[ ]

with addition and multiplication as polynomials mod x + x + 1) over
F2 x .

(

Linear Compression Prob

∈

lem: x ∈ Fnq , w = Hx where H ∶ Fnq → Fk
×

q is linear represented by a

matrix H Fk n
q .

⎡
⎢
⎢
w1

wk

⎥
⎤
⎥

⎡
⎢

⎢
⎢ ⋮ ⎥

⎥
=
⎢
⎢
⎢

h11

⋮

. . . h1n x1

⎢
⎣ ⎦

⎥
⎣
⎢ hk1 . . . hk

⋮

n

⎤
⎥
⎡

⎥
⎢

⎥
⎢
⎢

x
⋮

n

⎤
⎥
⎥
⎥

Compression is achieved if k ≤ n, i.e., H is a fat matrix. Of

⎥
⎥⎢
⎢

course,

⎥
⎥

we have to tolerate some error
(almost lossless). Otherwise, lossless compression is only p

⎦

os

⎣

sible

⎦

with k ≥ n, which not interesting.
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Theorem n

H ∶ →

7.5 (Achievability). Let X Fq be a random vector. τ 0, linear compressor

Fnq Fkq and decompressor g

∈ ∀ > ∃

∶ Fkq

P g HX

→ Fnq ∪ {e}, s.t.

[ ( ) ≠X] ≤ P [
1

logq k
PX(X)

> − τ] + q−τ

Proof. Fix τ . As pointed in the proof of Shannon’s random coding theorem (Theorem 7.4), given
the compressor H, the optimal decompressor is the MAP decoder, i.e., g w argmaxx Hx w PX x ,
which outputs the most likely symbol that is compatible with the codeword received. Instead, let us
consider the following (suboptimal) decoder for its ease of analysis:

( ) = ∶ = ( )

g w

⎧⎪⎪x

e

∃

otherwise

!x ∈ Fnq ∶ w =Hx, x − h.p.

where we used the short-hand:

( ) =
⎪
⎨

⎩
⎪

x − h.p. (high probability) ⇔
1

logq ( )
< k − τ ⇔ P k+τ

X(x) ≥ q− .
PX x

Note that this decoder is the same as in the proof of Theorem 7.4. The proof is also mostly the
same, except now hash collisions occur under the linear map H. By union bound,

P [g(f( )) =
1

X e] ≤ P [logq PX(x)
> k − τ] + P [∃x′ − h.p. ∶ x′ /=X,Hx′ =HX]

(union bound) ≤ P [logq
1

k
PX(x)

> − τ] +∑PX
x

(x)
x

′
′

Now we use random coding to average the second term over all

− ′=
Hx

h.p.,x

∑
/

1{Hx
x

possible choices

=

of H.

}

Specifically,
choose H as a matrix independent of X where each entry is iid and uniform on Fq. For distinct x0

and x1, the collision probability is

PH[Hx1 =Hx0] = P

=

H

P

[Hx2 = 0

H H1 x2

]

[ ]

2 x

0

(

⋅ =

x x1 0 0
k iid

≜

rows

− ≠ )

where H1 is the first row of the matrix H, and each row of H is indep

(

endent.

)

This is the probability
that Hi is in the orthogonal complement of x2. On Fn

−
q , the orthogonal complement of a given

non-zero
− / =

vector
/

has cardinality qn 1. So the probabilit
/

y for the first row to lie in this subspace is
qn 1 qn 1 q, hence the collision probability 1 qk. Averaging over H gives

E k
H
x

∑ 1
h.p.,x x

{Hx′ =Hx} = P
x

′ ′ ′ ′ − k−τ −k −τ
′− ′=/ ′

Thus the bound holds.

− /
x

h.p.,x

∑
=

H H ∶ x − h.p., x
x

[ =/ x}∣q ≤ q
′

=Hx] = ∣{x q = q

Notes:

1. Compared to Theorem 7.4, which is obtained by randomizing over all possible compressors,
Theorem 7.5 is obtained by randomizing over only linear compressors, and the bound we
obtained is identical. Therefore restricting on linear compression almost does not lose anything.
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2. Note that in this case it is not possible to make all errors detectable.

3. Can we loosen the requirement on Fq to instead be a commutative ring? In general, no, since
zero divisors in the commutativ

/

e ring ruin the key proof item of low collision probability in
the random hashing. E.g. in Z 6Z

P

⎡
⎢
⎢

1

H

⎡
⎢

0
⎥
⎤ ⎤

0
0
⎥
⎥

6−k
⎢
⎢
⎡

⎥ ⎢
⎢
⎡ 2

but P H

⎤
⎥
⎥

⎤

⎢
⎢

⎥

⎢
⎢ ⎥

⎢

0

=
⎥
= ⎢

⎥
⎥
⎥
⎥ ⎢

⋮
⎥ ⎢

⎢
⎥

⎢
⎢

⎢ ⎢

0
⋮ ⎥
⎥ =

⎥
⎥ = −

⎢
⎢

⎢

k

3 2 0 in Z 6Z.

⎦
⎥
⎥

⎦
⎥
⎥

⎥

since 0 2

⎣
⎢ ⎢

⎢ ⎢
⎣

⎥
⎥

0

⎥
⎥

3 ,

⎣ ⎣
⎢

⎦ ⎦

7.3 Compression

⋅ = ⋅ =

with

/

Side Information at both compressor and
decompressor

Compressor Decompressor
X X ∪ {e}{0,1}k

Y

Definition 7.3 (Compression wih Side Information). Given PXY ,

• f

• g

∶ X

0,

×

1

Y

k

→ {0,1}k

• P

∶ e

[g

{ } ×Y → X ∪ { }

(f(X,Y ,Y X ε

• Fundamental

)

Limit:

) ≠ ]

ε

<

∗

Note: The side information Y

(X ∣Y, k) = inf{ε ∶ ∃(k, ε) − S.I. code

need not be discrete. The source

}

=

X is, of course, discrete.
Note that conditioned on Y y, the problem reduces to compression without side information

where the source X is distributed according to PX
and decompressor, they can use the best code tailored
in Definition 7.1, the optimal probability of error for

∣Y =y. Since Y is known to both the compressor
for this distribution. Recall ε X, k defined

∗( )

compressing X using k bits, whic

∗

h can also be
denoted by ε PX , k . Then we have the following relationship

( )

ε∗(X ∣Y, k) = Ey∼PY [ε
∗(PX ∣Y

whic

=y, k)],

h allows us to apply various bounds developed before.

Theorem 7.6.

P [
1

log
PX ∣Y (X ∣Y )

> k + τ] − 2−τ ≤ ε∗(X ∣Y, k) ≤ P [log2
1

PX ∣Y (X ∣Y )
> k − τ] + 2−τ , ∀τ > 0
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Corollary 7.2. (X,Y ) = (Sn, Tn) where (S1, T1), (S2, T2

lim

), . . . are iid pairs ∼ PST

n→∞
ε∗(Sn∣Tn, nR)

⎪
⎧⎪

= ⎨
⎪⎪

0 R H

1

> (S∣T

R

)

<H(S∣T )

Proof. Using the converse Theorem 7.2 and achiev

⎩

ability Theorem 7.4 (or Theorem 7.3) for com-
pression without side information, we have

P [
1

log
PX ∣Y (X ∣y)

> k + τ ∣Y = y] − 2−τ ≤ ε∗(PX ∣Y =y, k) ≤ P [log
1

PX ∣Y (X ∣y)
> k∣Y = y]

By taking the average over all y ∼ PY , we get the theorem. For the corollary

1

n
log

1

PSn∣Tn(Sn∣Tn)
=

1 1
log

i
∑
n

n =1 PS∣T (Si∣Ti)
Ð→H(S∣T ) (in probability)

as n→∞, using the WLLN.

7.4 Slepian-Wolf (Compression with Side Information at
Decompressor only)

Consider the compression with side information problem, except now the compressor has no access
to the side information.

Compressor Decompressor
X X ∪ {e}{0,1}k

Y

Definition 7.4 (S.W. code). Given PXY ,

• f ∶ X → {0,1}k

• g ∶ {0,1}k ×Y → X ∪ {e

• P

}

• Fundamen

[g(f(X), Y ) =/ X] ≤ ε

tal Limit: ε∗SW

No

= inf{ε k, ε -S.W. code

w the very surprising result: Ev

∶

en

∃(

without

)

side information

}

at the compressor, we can still
compress down to the conditional entropy!

Theorem 7.7 (Slepian-Wolf, ’73).

ε∗(X ∣
1

Y, k) ≤ ε∗SW(X ∣Y, k) ≤ P [log k
PX ∣Y (X ∣Y )

≥ − τ] + 2−τ
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Corollary 7.3.

lim
n→∞

ε∗SW

⎧

Note: Definition 7.4 does not incl

(
0 H T

Sn Tn, nR
⎪⎪ R

1 R

>

H

(S

S

∣

T

)

ude

∣

the zero-undected-error

) = ⎨
⎪⎪ < ( ∣

condition

)

(that is g f x , y x
or e). In other words, we allow for the possibility of

⎩

undetected errors. Indeed, if we require this
condition,
( )

the side-information savings will be mostly gone. Indeed, assuming PX,Y x,

(

y

( )

0 for

) =

all
x, y it is clear that under zero-undetected-error

{ }

condition, if f x1 f x2 c then g c e. Thus
except for c all other elements in 0, 1 k must have unique preimages.

( ) >

es not hold if one

( ) =

Similarly
Slepian-Wolf theorem do uses the setting of variable-length

( ) =

, one can
( )

sho
=

w that
lossless compression

(i.e. average length is H X not H X Y .)

Proof. LHS is obvious, since

( )

side information

( ∣ )

at the compressor and decoder is better than only at
the decoder.

∈ X

For
}

the RHS, first generate
( )

a random codebook with iid uniform codewords: C = {cx
x independently of X,Y , then define the compressor and decoder as

∈ {0,1}k ∶

f(x Cx

x !
g(

x Cx w,x h.p. y
w

)

, y

=

where w

)
⎪⎪
⎨

⎧⎪⎪

e

=
∃ ∶ =

⎩0 o.w.

− ∣

used the shorthand x−h.p.∣y⇔ log 1
2 PX∣Y (x∣y) < k − τ . The error probability of this scheme

is

E(C) = P [log
1

k
PX ∣Y (X ∣Y )

≥ − τ or J(X,C ∣Y ) =/ ∅]

≤ P [
1

log
PX ∣Y (X ∣Y )

≥ k − τ] + P [J(X,C ∣Y ) /= ∅]

= P [log
1

k τ PXY x, y 1{J
Y

(x,C
PX Y X x,y

∣y)=/∅}.

where J(x,C ∣y) ≜ {x′ ≠ x ∶ x h.p. y

∣

,

(

c

∣ )
≥ − ] +∑ ( )

x cx .

[

No
=

w av
]

eraging
= −

over C

′

and
−

′
applying
∣ =

the

′}

union bound: use ∣{x′ ∶ x′ − h.p.∣y}∣ ≤
≠

2k−τ and
P Cx′ Cx 2 k for any x x ,

PC[J(x,C ∣y) ≠ ∅] ≤ EC [
x

∑ 1
′

h.p.

2

{x
x

′− ∣y

k τ C C

} {
≠

1 Cx′=Cx}]

= − [ = ]

Hence the theorem follows as usual from tw

=

P
2−

x x

τ

′

o terms in the union bound.

7.5 Multi-terminal Slepian Wolf

Distributed compression: Two sources are correlated. Compress individually, decompress jointly.
What are those rate pairs that guarantee successful reconstruction?
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Compressor f1

Compressor f2

{0,1}k1

{0,1}k2

X

Y

( ˆ ˆX,Y )

Definition 7.5. Given PXY ,

• (f1, f2, g) is (

[( )

k
=/
1,
(

k , 1
2 ε)

)]

-co
≤

de if f1 0, 1 k , f k2 k1 k2
2 0, 1 , g 0, 1 0, 1 ,

P ˆ ˆ ˆ ˆs.t. X,Y X,Y ε, where
∶ X →

X,
{

Y
}

g f1 X
∶ Y

,
→

f2

{

Y
} ∶ { } ×{ } → X ×Y

• Fundamental limit: εSW X,Y, k1, k

(

2 inf

) =

ε

( ( ) ( )).

∗

Theorem 7.8. X,Y Sn,

(

Tn - iid pairs

) = { ∶ ∃(k1, k2, ε)-code}.

( ) =

lim

( )

0

→∞
ε∗

,
SW Sn

R1 R2 SW
, Tn, nR1, nR2

n

⎧⎪⎪

1

(

R1,R2

) ∈R

SW

where denotes

(

r

) = ⎨
⎪
⎩⎪ ( ) / R

RSW the Slepian-Wolf rate egion

∈

SW

⎪
⎧⎪
⎪⎪

R = ⎨
⎪⎪
( ∶

a H S T

⎪
⎩

a, b)

⎪

b T

a

≥

H

b

(

H

∣

S

S

)

≥ ( ∣ )

e:

+ ≥ , T

Note: The rate region

)

RSW typically looks lik

(

R2

Achievable
H(T ) Region

H(T |S)
R1

H(S|T ) H(S)

Since H(T ) −H(T ∣S) =H(S) −H(S

Pr

∣T ) = I(S;T ), the slope is −1.

oof. Converse: Take (R1,R2) ∈/ RSW. Then one of three cases must occur:

1. R1 < H(S∣T ). Then even if encoder and decoder had full Tn, still can’t achieve this (from
compression with side info result – Corollary 7.2).

2. R2 <H(T ∣S (same).

3. R1 +R2 <H

)

(S,T ). Can’t compress below the joint entropy of the pair (S,T ).
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Achievability: First note that we can achieve the two corner points. The point H S ,H T S
can be approached by almost lossless compressing S at entropy and compressing T with side informa-
tion S at the decoder. T S
lary ∶

o make this rigorous, let k1

( ( ) ( ∣ ))

S

n H δ and k2

7.1, there exist f n 0 k1 and g k1
1 ,1 1 0,1 n s.t. P g1 f1

Theorem 7.7, there exist f n k2 k1 n n
2 0, 1 and g2

=

0, 1

( ( )+ )

s.t.

=

P

( ( ∣ )+ )

εn 0. Now that Sn is not

→

av

{

ailable,

}

feed the

∶ {

S.W.

}

de

→

compressor

S [

with

( (

n H
n

g
))

T
S ≠

S δ . By Corol-
n S εn 0. By

→
2 f2 Tn

f

]

, Sn Tn

g Sn and

≤

define

→

the
joint decompressor by g w1

∶

,

T

w2

→ {

g1

}

w1 , g2 w2,

∶

g

{

1 w

}

1

×S → T [ ( ( ) ) ≠ ] ≤

( ( ))

( ) = ( ( ) ( ( ))) (see below):

f1 g1

f2 g2

Sn Ŝn

Tn T̂n

Apply union bound:

P [

=

g f1 Sn

[

, f2 Tn Sn, Tn

n n n n n

≤

P
P [

g f n n
1

g

( ( ) ( )) ≠ ( )]

2ε

(

f

))

( 1

0

( )) ≠ ] + [ ( ( ) ( ( ))) ≠ ( ( = ]

n

(

S

)) ≠

S

] +

P
[

g2

(

f2

(

T , g f1 S T , g f1 S S

≤ →

Sn Sn P g2 f2 Tn), Sn) ≠ Tn

.

]

Similarly, the point H S ,H T S can be approached.
To achieve other points in the region, use the idea of time sharing: If you can achieve with

v
(

anishing error

( ( ) ( ∣ ))

+ ¯λR1 λR1
′

probabilit
+ ′ )

y any two points R1,R2 and R1,R2 , then you can achieve for λ 0, 1 ,
¯ ¯, λR2 λR2 by dividing the blo

(

ck of length
) (

n in

′

to

′

t
)

wo blocks of length λn and λn
∈ [

and
apply the two codes respectively

]

Sn

(Sλn λn
1 , T1 )→ [

λnR1 ] using (R1,R2) code
λnR2

(
¯

+
1

1, T
n
λn+

λnR
λn 1)→ [

λ̄nR

′
′ ] using (R1

′ ,R2 co
2

′ de

(Exercise: Write down the details rigorously yourself!) Therefore, all

)

convex combinations of points
in the achievable regions are also achievable, so the achievable region must be convex.

7.6* Source-coding with a helper (Ahlswede-Körner-Wyner)

Yet another variation of distributed compression problem is compressing X with a helper, see
figure below. Note that the main difference from the previous section is that decompressor is only
required to produce the estimate of X, using rate-limited help from an observer who has access to
Y . Characterization of rate pairs R1,R2 is harder than in the previous section.

Theorem 7.

(

9 (Ahlsw

)

ede-Körner-Wyner). Consider i.i.d. source Xn, Y n PX,Y with X discrete.
ˆIf rate pair R1,R2 is achievable with vanishing probability of error P Xn Xn 0, then there

exists an
=

auxiliary random variable U taking values on alphabet

(

of cardinality

) ∼

1 such that
PX,Y,U PX,Y PU

[ ≠ ] →

∣X,Y and
R1 H X U ,R2 I Y ;U .

∣Y ∣ +

≥ ( ∣ ) ≥ ( ) (7.4)
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X̂

Furthermore, for every such random variable U the rate pair (H(X ∣U), I(Y ;U)) is achievable with
vanishing error.

Proof. We only sketch some crucial details.
First, note that iterating over all possible random variables U (without cardinality constraint)

the
=

set of
(

pairs 2 and
n)

R1,R satisfying (7.4) is convex. Next, consider a compressor W1 f1 Xn

ˆW2 f2 Y . Then
(

from
)

Fano’s inequality (5.7) assuming P ha
=

[Xn ≠Xn] = o(1) we ve

n

( )

H(X ∣W1,W2)) = o(n

Th

) .

us, from chain rule and conditioning-decreases-entropy, we get

nR1 ≥ I(X
n;W1∣W2) ≥H(Xn∣W2) − o(n) (7.5)

=
k

∑
n

=
H

1

(Xk∣W2,X
k−1 o n (7.6)

≥ ∑
n

=
H(Xk∣W2,X

k

) − ( )

k 1

−1, Y k−1 o n (7.7)

On the other hand, from (5.2) we have

) − ( )

nR2 ≥ I(W2;Y n) =
n

I W Yk Y
k

2; 1 (7.8)
k

∑
=1

I

( −

= ∑
n

=
(W2,X

k

∣ )

k 1

−1;Yk Y
k−1 (7.9)

n

I W2,X
k

∣

Y

)

k
k 1

−1, Y k−1; (7.10)

where (7.9) follo (

( ) ⊥⊥

ws from
− ∣

I
−
W ,Xk 1;Yk Y

k 1

= ∑
=

I 1
2 W

(

2;Yk Y
k I Xk

)

1;Yk W2, Y
k 1 and the fact

that W ,Y
= (

Xk 1 Y
−
k 1

2 k ; and 7.10

− ∣ − ) =
1
(

−
( ⊥⊥

)

) from Y k− Yk. Comparin

−

g (7.7

−

) and (7.10)

−

we notice that
denoting Uk W2,X

k 1, Y k 1 we have

∣ )+ ( ∣ )

(
1

R1,R2) ≥
n

H Xk Uk , I Uk;Yk
n k 1

and thus (from convexity) the rate pair must b

∑
=

elong

( (

to the

∣ )

region

(

spanned

))

by all pairs (H(X ∣U), I(U ;Y .

∣Y ∣ +

To show that without loss of generality the auxiliary random variable U can be taken to be
1 valued, one needs to invoke Caratheodory’s theorem on convex hulls. We omit the details.

))
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Finally, showing that for each U the mentioned rate-pair is achievable, we first notice that if there
were side information at the decompressor in the form

=

of
(

the i.i.d. sequence Un correlated to Xn,
then Slepian-Wolf theorem implies that only rate R1 H X ∣U) would be sufficient to reconstruct
Xn. Thus, the question boils down to creating a correlated sequence Un at the decompressor by
using the minimal rate R2. This is the con
below: It is sufficient to use rate I(U ;Y )

tent of the so called covering lemma, see Theorem 24.5
to do so. We omit further details.
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§ 8. Compressing stationary ergodic sources

We have examined the compression of i.i.d. sequence {Si}, for which

1
l

n
(f∗

lim ε

(Sn H S in prob. (8.1)

∗ Sn

))

, nR

→ ( )

0 R
(8.2)

n

>H(S
1 R H S

)

In this lecture, we shall examine

→

similar

∞
(

results

) =

for

{

ergodic

<

pro

(

cesses

)

and we first state the main
theory as follows:

Theorem 8.1 (Shannon-McMillan). Let {S1, S2, . . .} be a stationary and ergodic discrete process,
then

1

n
log

1

PSn(Sn)

P
Ð→H, also a.s. and in L1 (8.3)

where H = limn→∞
1H Sn is the entropy rate.n

Corollary
( )

8.1. For any stationary and ergodic discrete process S1, S2, . . . , (8.1) – (8.2) hold
with H S replaced by

( )

{ }

H.

Proof. Shannon-McMillan (we only need convergence in probability)
which tie together the respective CDF of the random variable l(f∗(

+ Theorem 6.4 + Theorem 7.1
Sn)) and log 1

PSn(sn) .

In Lecture 7 we learned the asymptotic equipartition property (AEP) for iid sources. Here we
generalize it to stationary ergodic sources thanks to Shannon-McMillan.

Corollary 8.2 (AEP for stationary
>

ergodic sources). Let S1, S2, . . . be a stationary and ergodic
discrete process. For any δ 0, define the set

{ }

T δn = {sn ∶ ∣
1

n
log

1
δ

n
Sn(S )

−H∣ ≤ } .
P

Then

1. P [Sn ∈ T δn]→ 1 as n→∞.

2. 2n(H−δ)(1 + o(1)) ≤ ∣T δn ∣ ≤ 2(H+δ)n(1 + o(1)).

Note:

• Convergence in probability for stationary ergodic Markov chains [Shannon 1948]

• Convergence in L1 for stationary ergodic processes [McMillan 1953]
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• Convergence almost surely for stationary ergodic processes [Breiman 1956] (Either of the last
two results implies the convergence Theorem 8.1 in probability.)

• For a Markov chain, existence of typical sequences can be understood by thinking of Markov
process as sequence of independent decisions regarding which transitions to take. It is then
clear that Markov process’s trajectory is simply a transformation of trajectories of an i.i.d.
process, hence must similarly concentrate similarly on some typical set.

8.1 Bits of ergodic theory

Let’s start with a dynamic system view and introduce a few definitions:

Definition 8.1 (Measure preserving transformation). τ ∶ Ω
precisely

→ Ω is measure preserving (more
, probability preserving) if

∀E ∈ F , P (E P τ−1E .

The set E is called τ -invariant if E = τ−

F

1E. The set

) =

of all

(

τ -inv

)

ariant sets forms a σ-algrebra (check!)
denoted inv.

Definition 8.2 (stationary pro
∶

cess). A process Sn, n 0, . . . is stationary if there exists a measure
preserving transformation τ Ω h

{

→ Ω suc that:
=

S = S − ○ τ = S ○ τ j

}

j j 1 0

Therefore a stationary process can be described by the tuple (Ω,F ,P, τ, S0) and Sk = S0 ○ τ
k.

Notes:

1. Alternatively, a random process (S0, S1, S2, . . . )
=

is
∀

stationary if its joint distribution is invariant
with respect to shifts in time, i.e., PSm PSmn +

+t , n,m, t. Indeed, given such a process we can
n t

define a m.p.t. as follows:
(s0, s1, . . .

So τ is a shift to the right.

)Ð→
τ

(s1, s2, . . . ) (8.4)

2. An event E ∈ F is shift-invariant if

(s1, s2, . . . ) ∈ E ⇒ ∀s0(s0, s1, s2, . . .

or equivalently E τ 1E (check!). Thus τ -invariant events are

)

also

∈ E

as
= called shift-invariant, when

τ is interpreted (8.4

−

).

3. Some examples of shift-invariant events are {∃n ∶ xi = 0∀
=

i ≥ n}, {lim supxi <
{ = = ⋯ = } ( ) ∈ (

1 etc. A non
shift-invariant event is A x0 x1 0 , since τ 1,0,0, . . . A but 1,0, . .

}

. A.

4. Also recall that the tail σ-algebra is defined as

) ∈/

tail σ Sn, Sn . . . .
n 1

+1,

It is easy to check that all shift-in

F

varian

≜

t

⋂
≥

even

{

ts belong to

}

Ftail. The inclusion is strict, as for
example the event

{∃n ∶ xi = 0,∀ odd i ≥ n}

is in Ftail but not shift-invariant.
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Proposition 8.1 (P
[

oincare
] >

recurrence). Let τ be measure-preserving for Ω, ,P . Then for any
measurable A with P A 0 we have

P[⋃
≥
τ A

(

−k A

F )

P τk ω A infinitely oftenA
k 1

Proof. Let B k 1 τ
kA. It is sufficien

∣ ] = [

t to

(

sho

) ∈

w that

− −

P A B P

∣

A

] = 1 .

= ⋃ ≥
− [ ∩ ] = [ ] or equivalently

P A B P B . (8.5)

To that end notice that τ−1A τ

[ ∪ ] = [ ]

∪ −1B = B and thus

P

but the left-hand side equals P A B

[τ−1(A ∪B)] = P[B] ,

[ ∪ ] by the measure-preservation of τ , proving (8.5).

Note: Consider τ mapping initial state of the conservative (Hamiltonian) mechanical system to its
state after passage of a given unit of time. It is known that τ preserves Lebesgue measure in phase
space (Liouville’s theorem). Thus Poincare recurrence leads to rather counter-intuitive conclusions.
For example, opening the barrier separating two gases in a cylinder allows them to mix. Poincare
recurrence says that eventually they will return back to the original separated state (with each gas
occupying roughly its half of the cylinder).

Definition
{

if ∀
}

8.3 (Ergodicity). A transformation τ is ergodic E ∈ Finv we have P E 0 or 1. A
process

[ ∞
S
∈
i is

] =

ergodic if all shift invariant events are deterministic, i.e., for any shift
[

inv
]

arian
=

t event
E, P S1 E 0 or 1.

Example:

• Sk k2 : ergodic but not stationary

•

{ = }

{Sk = S0}

= {(

: stationary
)}

but not ergodic (
[

unless
∞ ∈

S
]
0

=

is a
[

constant). Note
E s, s, . . . is shift invariant and P S1 E P S0 = s] ∈ (0,1)

that the singleton set
– not deterministic.

• {Sk} i.i.d. is stationary and ergodic (by Kolmogorov’s 0-1 law, tail events have no randomness)

• (Sliding-window construction of ergodic processes)
If {Si} is ergodic, then {Xi = f(Si, Si+1, . . . )} is also ergodic. It is called a B-process if Si is
i.i.d.
Example, Si ∼ Bern(1) i.i.d.,

]

Xk =

[
n 0 2 n 1Sk n 2Xk 1 mod 1. The marginal distribution2

of Xi is uniform on 0,1 . Note that

∞

Xk

−

’s

−

behavior
+

is
−
completely deterministic: given X0,

all the future X

∑ =

k’s are determined exactly. This

=

example shows that certain deterministic
maps exhibit ergodic/chaotic behavior under iterative application: although the trajectory
is completely deterministic, its time-averages converge to expectations and in general “look
random”.

• There are also stronger conditions than ergodicity. Namely, we say that τ is mixing (or strong
mixing) if

P[A ∩ τ−nB]→ P[A]P

W

[B] .

e say that τ is weakly mixing if

∑
n 1

k=1

P
n

∣ [A ∩ τ−nB] − P[A]P[B

Strong mixing implies weak mixing, which implies ergodicit

]∣

y

→ 0 .

(check!).
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• {Si}: finite irreducible Markov chain with recurrent states is ergodic (in fact strong mixing),
regardless of initial distribution.
Toy example: kernel P (0∣1) = P (1∣0) = 1 with initial dist. P (S0 = 0) = 0.5. This process only
has two sample paths: P [S∞1 = (010101 . . .)] = P [S∞1 = (101010 . . .)] = 1 . It is easy to verify2
this process is ergodic (in the sense defined above!). Note however, that in Markov-chain
literature a chain is called ergodic if it is irreducible, aperiodic and recurrent. This example
does not satisfy this definition (this clash of terminology is a frequent source of confusion).

• (optional)
E S

{ } ( ) =

[ 0Sn
∗]

Si : stationary zero-mean Gaussian process with autocovariance function R n
.

1
lim
n→∞ i

lim

[ S
t
∑
n

+
R

1 =
t 0 ergodic Si weakly mixing

n 0

→∞
R[n 0 mixing

n

] = ⇔ {

Si

} ⇔ { }

Intuitively speaking, an ergodic pro

] =

cess

⇔

can

{

ha

}

ve infinite memory in general, but the memory
is weak. Indeed, we see that for a stationary Gaussian process ergodicity means the correlation
dies (in the Cesaro-mean sense).

The spectr
{

al
(

me
)}

asure is defined as the (discrete time) Fourier transform of the autocovariance
sequence R n , in the sense that there exists a unique probability measure µ on [−1

2 ,
1

(

such2
that R n) = E exp(i2nπX) where X ∼ µ. The spectral criteria can be formulated as follo

]

ws:

{Si} ergodic⇔

{ } ⇔

spectral measure has no atoms (CDF is continuous)

Si B-process spectral measure has density

Detailed exposition on stationary Gaussian processes can be found in [Doo53, Theorem 9.3.2,
pp. 474, Theorem 9.7.1, pp. 494–494].1

8.2 Proof of Shannon-McMillan

We shall show the convergence in L1, which implies convergence in probability automatically. In
order to prove Shannon-McMillan, let’s first introduce the Birkhoff-Khintchine’s convergence theorem
for ergodic processes, the proof of which is presented in the next subsection.

Theorem 8.2 (Birkhoff-Khintchine’s Ergodic Theorem). If Si stationary and ergodic, function
f L

{ } ∀

∈ 1, i.e., E ∣f(S1, . . . )∣ <∞,

1
lim
n→∞ n

n

∑
k=1

f(Sk, . . . ) = E f(S1, . . . ). a.s. and in L1

In the special case where f depends on finitely many coordinates, say, f = f(S1, . . . , Sm), we have

lim
n→∞

1
∑
n

=
f(Sk, . . . , Sk+m−1) = E f(S1, . . . , Sm .

n k 1

) a.s. and in L1

Interpretation: time average
Example: Consider f = f(S1)

converges to ensemble average.

1Thanks Prof. Bruce Hajek for the pointer.
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• {Si} is iid. Then Theorem 8.2 is SLLN (strong LLN).

• {Si} is such that Si = S1 for all i – non-ergodic. Then Theorem 8.2 fails unless S1 is a constant.

Definition 8.4. {Si ∶ i ∈ N} is an mth order
=

Markov chain if PSt+ ∣
∣

St = PS t

∣
1 t 1 S for all t m. It

1 t m 1

is called time homogeneous if PS P m
t+1 St− +

Sm+1 S .
t m 1 1

+ ∣
− +

Remark 8.1. Showing (8.3) for an mth

≥

order time homogeneous Markov chain {Si} is a direct
application of Birkhoff-Khintchine.

1

n
log

1

PSn(Sn)
=

1

n

n

∑
t=1

log
1

PSt∣St−1(St∣St−1)

=
1

n
log

1

PSm(Sm)
+

1

n

n

∑
t=m+1

log
1

PSt∣St−1
t−m

(Sl∣S
l−1
l−m)

=
1

n
log

1

PS1(S
m
1 )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
→0

+
1

n

n

∑
t=m+1

log
1

PSm+1∣Sm1 (St∣St−1
t−m)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
→H(Sm+1∣Sm1 ) by Birkhoff-Khintchine

, (8.6)

where we applied Theorem 8.2 with f(s1, s2, . . .) = log 1
P

+ ∣ s + smm
.

S S m 1m 1 11

Now let’s prove (8.3) for a general stationary ergodic process

( ∣

{Si

)

which might have infinite
memory. The idea is to approximate the distribution
(finite memory) and make use of (8.6); then let m

}

(Markov approximation).
→

of
∞

that ergodic process by an m-th order MC
to make the the approximation accurate

Proof of Theorem 8.1 in L1. To show that (8.3) converges in L1, we want to show that

E∣
1

n
log

1

PSn(Sn

To this end, fix an m N. Define the following

)

auxiliary

−H∣→ 0, n→∞.

∈ distribution for the process:

Q(m)(S1
∞) = P m

Sm(S1 ) ∏
∞

= +
PSt∣St−−1 (St∣S

t
1 t m

t m 1

−1
t−m

stat.

)

= PSm(Sm t
1 ) ∏

∞

= +
P (S 1
Sm+1∣Sm t S1 1 t

t m 1
−
−
m

Note that under Q(m), {S } is an mth-order

∣ )

i time-homogeneous Markov chain.
By triangle inequality,

E∣
1

n
log

1

PSn(Sn)
−H∣ ≤E ∣

1

n
log

1

PSn(Sn)
−

1

n
log

1

Q
(m)
Sn (Sn)

∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≜A

+E ∣
1

n
log

1
H

Q
(m
Sn

)

B

( n)
− m

S
∣+ ∣

´
H
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
m

≜
¸
C

−
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
H
¶
∣

where H m
m H Sm 1 S1 .

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
≜
¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Now
≜ ( + ∣ )
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• C = ∣Hm − H∣ → 0 as m
H S Smm 1 1 H from abov

→

e
∞ by Theorem 5.4 (Recall that for stationary processes:

).

• As

(

sho

+

wn

∣

in

)→

Remark 8.1, for any fixed m, B 0 in L1 as n , as a consequence of
Birkhoff-Khintchine. Hence for any fixed m, EB

→ → ∞

→ 0 as n→∞.

• For term A,

E[A] =
1

n
EP ∣ log

dPSn

dQ
(m)
Sn

∣ ≤
1

n
D(PSn∥Q

(m)
Sn ) +

2 log e

en

where

1

n
D(PSn∥Q

(m)
Sn ) =

1 P
E

n

⎡
⎢
⎢
⎢
⎢

Sn

⎣

log
(Sn)

PSm(Sm)∏n
t=m+1 PSm+1∣S1

m(St∣St−1
t−m)

⎤
⎥
⎥
⎥
⎥
⎦

stat.
=

1
H

n
(− (Sn) +H(Sm) + (n −m)Hm

Hm as n

)

and the next Lemma 8.1.

→ −H →∞

Combining all three terms and sending n , we obtain for any m,

∣
1

lim sup
n→∞

E

→∞

n
log

1

PSn(Sn)
−H∣ ≤ 2(Hm −H).

Sending m→∞ completes the proof of L1-convergence.

Lemma 8.1.

EP [∣log
dP 2

D
dQ

∣] ≤ (P ∥Q) +
log e

e
.

Proof. ∣x logx∣ − x logx ≤ 2 log e , x 0, since LHS is zero if x 1, and otherwise upper bounded by

≤ ≤
e

2 sup0 x 1 x log 1

∀ > ≥

x =
2 log e
e .

8.3* Proof of Birkhoff-Khintchine

˜ ˜Proof of Theorem 8.2. function f L1, ε, there exists a decomposition f f h such that f is
bounded, and h 1, h 1 ε.
Let us first focus

∀ ∈ ∀

∈ L ∥ ≤

L

on the b
∥

ounded function f . Note that in
(

the

= +

Furthermore, 2 is a Hilbert space with inner product f, g
L ⊂ L ∈ L

) =

bounded domain 1 2, thus f 2.
E[f(S1

∞)g S1
∞ .

For the measure
( ) =

preserving
○

transformation τ that generates the stationary process Si , define
the operator T f f τ . Since τ is measure preserving, we know that

( )]

∥Tf∥2 2
2 = ∥f∥2,

unitary

{

thus
}

T is a
and bounded operator.

Define the operator
1

An(f) =
n

n

∑
k=1

f ○ τk

Intuitively:

An =
1 1

T
k

∑
n

k

n =1

=
n
(I − Tn)(I − T )−1
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Then, if f ⊥ ker(I − T ) we should have Anf → 0, since only components in the kernel can blow up.
This intuition is formalized in the proof below.

Let’s further decompose f into two parts f = f1 + f2, where f1 ∈ ker(I − T ) and f2 ∈ ker(I − T )⊥.
Observations:

• if g ∈ ker(I − T ), g must be
=

a constan
○ =

t function. This
[ ] =

is due to the ergodicity. Consider
indicator
=

function 1A, if 1A 1A τ 1τ 1A, then P A 0
g Tg and g is not constant, then at least

−

some set {g ∈ (

or 1. For a general case, suppose
a, b)} will be shift-invariant and

have non-trivial measure, violating ergodicity.

• ker(I − T ) = ker(I − T ∗

g Tg

). This is due to the fact that T is unitary:

= ⇒ ∥g∥2 = (Tg, g) = (g, T ∗g T ∗g, g g T ∗g T ∗g g

where in the last
=

step we used the fact that Cauc

)⇒

h

(

y-Schw

)

arz

= ∥

f

∥∥

, g

∥

f

⇒

g

=

only holds with
equality for g cf for some constant c.

( ) ≤ ∥ ∥ ⋅ ∥ ∥

• ker(I T ⊥ ker I T ∗ ⊥ Im I

• g ker

−

I

)

T

= ( − ) =

E

[

g

( − T )], where [Im(I − T )] is an 2 closure.

∈ ( − )⊥ ⇐⇒ [ ] = 0. Indeed, only zero-mean functions

L

are orthogonal to
constants.

With these observations,
approximate it by f2

and h1 1 h1 2 ε.

= ∈ [ ( − )]

= +

we know that
∈

f1

(

m
−

is
)

a const. Also, f2 Im I T so we further

∥ ∥ ≤ ∥ ∥ <

f0 h1, where f0 Im I T , namely f0 g g τ for some function g 2,
Therefore we have

= − ○ ∈ L

Anf1 = f1 E
1

[f

Anf0

= ]

=
n
(g − g ○ τn)→ 0 a.s. and L1

(since E[∑
n≥1

(
g ○ τn

n
)2] = E[g2]∑

1

n2
<∞ Ô⇒

1
g

n
○ τn → 0 a.s.

The proof completes by showing

)

P[
2

lim supAn
n

(h + h1) ≥ δ] ≤
ε
. (8.7)

δ

Indeed, then by taking ε→ 0 we will have shown

P lim supAn f E f δ 0
n

as required.

[ ( ) ≥ [ ] + ] =

Proof of (8.7) makes use of the Maximal Ergodic Lemma stated as follows:

Theorem 8.3 (Maximal Ergodic Lemma). Let (P, τ)
∈ ( )

be a probability measure and a measure-
preserving transformation. Then for any f L1 P we have

P [ > ] ≤
E[f1supn≥1A f

sup
n≥

Anf a
n

1

>a]

a
≤

∥f∥1

a

where Anf = 1 n
n ∑

−1
k=0 f ○ τ

k.
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Note: This is a so-called “weak L1” estimate for a sublinear operator supnAn . In fact, this
theorem is exactly equivalent to the following result:

Lemma
[∣

8.2
∣] <∞

(Estimate for the maximum of averages). Let {Zn, n = 1, . . .} be a stationary

(⋅)

process
with E Z then

P [
.

sup
n 1

∣Z1

≥

+ . . +Zn∣

n
> a] ≤

E[∣Z ∣]
a

a
∀ > 0

Proof. The argument for this Lemma has originally been quite involved, until a dramatically simple
proof (below) was found by A. Garcia.

Define

Sn =
n

k

L

∑
=
Zk (8.8)

1

n = max

Mn max

S

{

= {

0, Z1, . . . ,

+

Z1 (8.9)

2

+⋯ +Zn

0, Z2, Z Z3, . . . , Z2

}

n

+⋯ +Zn} (8.10)

Z∗ = sup
n≥1

(8.11)
n

It is sufficient to show that
E[Z11{Z∗

˜Indeed,

>0}] ≥ 0 . (8.12)

applying (8.12) to Z1 = ˜Z1 − a and noticing that Z∗ = Z∗ − a we obtain

E[Z11

from which Lemma follows by upper-bounding

{Z∗>a}] ≥ aP[Z∗ > a] ,

the left-hand
In order to show (8.12) we first notice that

[∣ ∣]

{Ln 0

Z1 Mn max S

>

1,

}

. .

↗

side with E Z1 .
Z∗ 0 . Next we notice that

+ = { . , S

{

n

> }

and furthermore

}

Z1 +Mn

Thus, we have
Z 1

= Ln on {Ln > 0}

1 {Ln

where we do not need indicator in the first

>0} = Ln −Mn1{Ln>0

term since Ln = 0 on

}

{Ln > 0}c. Taking expectation we
get

E[Z11{Ln>0}] = E[Ln] − [ ]

≥ [ ] −

E
[

Mn1

]

{Ln>0} (8.13)

where we used Mn 0, the fact that

=

E Ln E Mn

E[Ln] −E[Ln−1

Mn has the sam

] = E[Ln −Ln−1] ≥

(8.14)

0 , (8.15)

≥

→∞

e distribution as Ln−1, and Ln
in

≥ Ln−1,
respectively. Taking limit as n (8.15) we obtain (8.12).
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8.4* Sinai’s generator theorem

It turns out there is a way to associate to every probability-preserving transformation τ a number,
called Kolmogorov-Sinai entropy. This number is invariant to isomorphisms of p.p.t.’s (appropriately
defined).

Definition 8.5. Fix a probability-preserving transformation τ acting on probability space Ω, ,P .
Kolmogorov-Sinai entropy of τ is defined as

H( ) ≜
1

( F )

τ sup lim
nX0
→∞

H X0,X0 τ, . . . ,X n 1
0 τ

n
− ,

where supremum
F

is taken over all random variables

(

X0

○

Ω with

○

finite

)

range and measurable
with respect to .

Note that every random variable X

∶ → X X

0 generates a stationary process adapted to τ , that is

Xk X0 τk .

In this way, Kolmogorov-Sinai entropy of τ equals

≜ ○

the maximal entropy rate among all stationary
processes adapted to τ . This quantity may be extremely hard to evaluate, however. One help comes
in the form of the famous criterion of Y. Sinai. We need to elaborate on some more concepts before:

• σ-algebra
if for every

G

E
⊂ F F

∈ F

is P-dense in , or sometimes we also say mod P or even mod 0,
there exists E′ ∈ G s.t.

G = F G = F

P E∆E′ 0 .

• Partition Ai, i 1,2, . . . measurable

[

with

] =

A = { = } respect to F is called generating if

n
⋁
∞

=
σ

0

{τ−nA} = F mod P .

• Random variable Y ∶ Ω→ Y with a countable alphabet Y is called a generator of (Ω,F ,P, τ if

σ{Y,Y ○ τ, . . . , Y ○ τn, . . . mod P

)

Theorem 8.4 (Sinai’s generator theorem)
= { =

. Let
○

Y be the

}

=

gener

=

ator

F

of a p.p.t. Ω, ,P, τ . Let H Y
be the entropy rate of the process Y Y τkk Y , k 0, . . . . If H Y is finite,

(

then
F )

τ H
(

Y
)

.

Proof. Notice that since H(Y) is finite, we must have H Y

}

n
0

( ) H( ) = ( )

argue that τ H Y . If Y has finite alphabet, then it
(

is simply
let Y be Z ˜-valued. Define a truncated version Ym min Y,m

) <

,

∞

H( ) ≥ ( )

and thus H Y . First, we

= ( )

from the definition. Oth

+ ˜then since Ym

( )

→ Y

<

as

∞

m
have from lower semicontinuity of mutual information, cf. (3.9), that

→

e
∞

rwise
we

lim
→∞

I( ˜Y ;Ym) ≥H(Y ) ,
m

and consequently for arbitrarily small ε and sufficiently large m

H(Y ∣Ỹ ) ≤ ε ,
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Then, consider the chain

H(Y n) =H(Ỹ n, Y n ˜H n
0 0 0 Y n

0 H Y n ˜
0 Y0

= ( ) +∑
n

˜H Y n
0

) = ( ) + ( ∣ )

i=
H

0

(Yi

n
˜H Y n H Y

∣Ỹ n
0
−1

0 , Y
i

Ỹ

)

≤ ( 0 ) +
i
∑
=0

( i∣ i

˜H Y n ˜
0 nH Y Y

)

˜Thus, entropy rate of Y (which has

=

finite-alphab

( ) +

et)

( ∣

can

) ≤H(Ỹ n
0 ) + nε

H( ) ≥H( )

be made arbitrarily close to the entropy
rate of Y, concluding that τ Y .

The main part is
(

sho
)

wing that for any stationary
∶

pro
→ X

cess X adapted
X

to τ the entropy rate is
upper bounded

= {

b
○

y H Y
=

. To that end, consider X Ω with finite and define as usual the
process X X τk, k 0,1, . . .}. By generating propert

∞
y of Y we have that X (perhaps after

modification on a set of measure zero) is a function of Y0 . So are all Xk. Thus

H(X0) = I(X0;Y0
∞ lim I X0;Y n

0n

where we used the continuity-in-σ-algebra propert

)

y

=

of

→

m

∞

utual

(

information,

) ,

cf. (3.10). Rewriting the
latter limit differently, we have

lim H X0 Y
n

0 0 .
n

Fix ε > 0 and choose m so that H

∞
( ∣ ) =

(X0

→

∣Y m
0 ) ≤ ε. Then consider the following chain:

H(Xn
0 ) ≤H(Xn

0 , Y
n

0 ) =H(Y n
0 ) +H

H Y
i
∑
n

H

(Xn
0 ∣Y n

0 )

≤ (Y n
0 ) +

=
X n
i i

0

i
∑
n

H

( ∣ )

= (Y n
0 ) + n

=
H X0 Y

i
0

≤ ( ) +

0

Y

( −

H n
0 m log

∣

n

)

m ε ,

where we used stationarity of

∣X ∣ + ( −

(Xk, Yk) and the fact that H(X0∣Y
n

)

−i
0

by n and passing to the limit our argument implies
) < ε for i ≤ n−m. After dividing

H(X H

Taking here ε 0 completes the proof.

) ≤ (Y) + ε .

Alternative

→

proof: Suppose X0 is taking
>

values on a finite alphabet and X0 f Y0 . Then
(this is a measure-theoretic fact) for every ε 0 there exists m m

X = ( ∞

= (ε) and a function f ∶ Ym 1
ε

s.t.

)
+

P f Y Y m
0 fε 0 ε .

→ X

(This is just another way to say that
X̃ as

[

n
n

( ∞) ≠ ( )] ≤

⋃ σ{Y0 } is P-dense in σ Y0
∞ .) Define a stationary process

X̃j ≜
m jfε Yj

( )

n m

+ .

˜Notice that since Xn
0 is a function of Y0

+ we ha

(

ve

)

H(X̃n) ≤H(Y n
0

+m
0 ) .
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Dividing by m and passing to the limit we obtain that for entropy rates

(X̃H ) ≤H(Y

˜Finally, to relate X to X notice that by construction

) .

P[X̃j ≠Xj] ≤ ε .

Since both processes take values on a fixed finite alphabet, from Corollary 5.2 we infer that

∣H(X) −H(X̃)∣ ≤ ε log ∣X ∣ + h(ε

Altogether, we have shown that

) .

H X H Y ε log h ε .

Taking ε

+

→ 0 we conclude the proof.

( ) ≤ ( ) + ∣X ∣ ( )

Examples:

• Let Ω = [0,1], F–Borel σ-algebra, P = Leb and

τ

⎧

(ω) =
⎪ ω

2ω mod 1 =
⎪2 , ω < 1

2ω 1, ω 1

/2

2

It is easy to show that Y (ω) = 1{ω < 1/2} is a generator

⎨
⎪⎪⎩ −

and

≥

that

/

Y is an i.i.d. Bernoulli 1 2
process. Thus, we get that Kolmogorov-Sinai entropy is τ log 2.

• Let Ω be the unit circle S1, -algebra, P be the

H(

F – Borel σ normalized length

( / )

) =

and

τ(ω) = ω + γ

γi.e. τ is a rotation by the angle γ. (When is irrational, this is known to be an ergodic2π
p.p.t.). Here Y = 1{∣ω∣ < 2πε} is a generator for arbitrarily small ε and hence

H(τ) ≤H

This

(X) ≤H

is an example of a zero-entropy p.p.t.

(Y0) = h(ε)→ 0 as ε→ 0 .

Remark 8.2. Two p.p.t.’s Ω

−

( 1, τ1,P1 and Ω0, τ0,P0 are called isomorphic if there exists fi Ωi

Ω1 i defined Pi-almost everywhere and such that 1) τ1 i fi f1 i τi; 2) fi f1 i is identity on
Ω 1
i (a.e.); 3) Pi[f1

−
−iE] = P1−i[E]. It is

)

easy

(

to see that

)

Kolmogoro
− ○ = −

v-Sinai
○

entropies
−

of isomorp

∶

hic

→

p.p.t.s are equal. This observation was made by Kolmogorov in 1958. It was rev

○

oluationary, since it
allowed to show that p.p.t.s corresponding shifts of iid Bern 1 2 and iid Bern 1 3 procceses are
not isomorphic. Before, the only invariants known were those

(

obtained
/ )

from studying
( / )

the spectrum
of a unitary operator

Uτ ∶ L2(Ω,P)→ L2(Ω,P) (8.16)

φ x φ τ x . (8.17)

However, the spectrum of τ corresponding to an
unit

(

y

)↦

non-constan
circle, and thus is unable to distinguish Bern 1 2

(

from

( ))

( / )

t i.i.d. process consists of the entire
Bern(1/3).2

2To see the statement about the spectrum, let Xi be iid with zero mean and unit variance. Then consider φ(x∞1 )
defined as 1

√ ∑m iω
k=1 e

kxk. This φ has unit energy and as m → ∞ we have ∥U iω
τφm

− e φ∥L2 → 0. Hence every eiω

belongs to the spectrum of Uτ .
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§ 9. Universal compression

In this lecture we will discuss how to produce compression
X

s
→

chemes
{

that do not require apriori
knowledge of the distribution. Here, compressor is a map n 0,1
one fixed probability distribution P n

Xn on . The plan for this lecture
}∗. Now, however, there is no

is as follows:

1. We will start by discussing the earliest

X

example of a universal compression algorithm (of
Fitingof). It does not talk about probability distributions at all. However, it turns out to be
asymptotically optimal simulatenously for all i.i.d. distributions and with small modifications
for all finite-order Markov chains.

2. Next class of universal compressors is based on assuming that a the true distribution PXn

belongs to a given class. These methods proceed by choosing a good model distribution QXn

serving as the minimax approximation to each distribution in the class. The compression
algorithm is designed to work for QXn is made.

3. Finally, an entirely different idea are algorithms of Lempel-Ziv type. These automatically
adapt to the distribution of the source, without any prior assumptions required.

Throughout this section instead of describing each compression algorithm, we will merely specify
some distribution QXn and apply one of the following constructions:

• Sort all xn in the order of decreasing QXn(xn) and assign values from {0, 1}∗ as in Theorem 6.1,
this compressor has lengths satisfying

`(f(xn)) ≤
1

log
QXn(xn)

.

• Set lengths to be

`(f(xn)) ≜ ⌈log
1

QXn(xn

and apply Kraft’s inequality Theorem 6.5 to construct a

)

prefix

⌉

code.

• Use arithmetic coding (see next section).

The important conclusion is that in all these cases we have

`( (
1

f xn)) ≤ log
QXn(xn)

+ const ,

and in this way we may and will always replace lengths with log 1 .Q nX (xn) In this way, the only job
of a universal compression algorithm is to specify QXn.
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Remark
{ }∗

9.1. Furthermore, if we only restrict
0,1 defines a distribution Q (xn) = 2−

attention to prefix codes, then any code f n

` f
Xn

results on redundancy

( (xn (we assume the code’s tree is full). In this
way, for prefix-free codes , stated

))

in terms of optimizing the choice of

∶ X

QX

→

n ,
imply tight converses too. For one-shot codes without prefix constraints the optimal answers are
sligh

[ (

tly

(

differen

))] ≈

t,

(

how

)

ev

+

er.
∣X ∣−

(For example, the optimal universal code for all i.i.d. sources satisfies

E ` f Xn 3
H Xn

2 logn in contrast with
∣X ∣−1

logn for prefix-free codes.)2

9.1 Arithmetic coding

Constructing an encoder table from QXn may require a lot of resources if n is large. Arithmetic
coding provides a convenient workaround by allowing to output bits sequentially. Notice that to
do so, it requires that not only QXn but also its marginalizations QX1 ,QX2 , be easily computable.
(This is not the case, for example, for Shtarkov distributions (9.8)-(9.9), which are not compatible
for different n.)

⋯

Let us agree upon some ordering on the alphabet of (e.g. a b z) and extend this order
lexicographically to X n

≠

(that is for x x1, . . . , xn and y y1, . . . , yn , we say x y if xi yi for
the first i such that xi yi, e.g., baba babb

X < < ⋯ <

= ( ) = ( ) < <

< ). Then let

Fn(x
n Q n

Xn x .
yn xn

Associate to eac xn = [

[

h x
)

n an interval I F

) = ∑

n

<

(xn), Fn(x
n

(

) +Q

)

Xn(xn)). These intervals are disjoint
subintervals of 0,1 . Now encode

xn ↦ largest dyadic interval contained in Ixn .

Recall that dyadic intervals are intervals of the type m2 k, m 1 2 k where a is an odd integer.
Clearly each dyadic interval can be associated with a

[

bin

−

ary
(

stri
+

ng
)

in

− ]

{0,1}∗. We set f(xn) to be
that string. The resulting code is a prefix code satisfying

`(f( n)) ≤ ⌈
1

x log2 ⌉ 1
QXn(xn

exercise.)

)
+ .

(This is an
Observe that

F (xn) = F − (xn 1
n n 1

− ) +QXn−1(xn−1

y

and thus F xn can be computed sequentially if Q

) ∑

X

<
QXn∣ − (y −1

Xn 1 ∣xn

xn

)

n( ) n 1 and QXn Xn 1 are easy to compute. This
method is the method of choice in many modern compression

−

algorithms
∣ −

because it allows to
dynamically incorporate the learned information about the stream, in the form of updating QXn Xn 1

(e.g. if the algorithm detects that an executable file contains a long chunk of English text, it
∣
ma

−

y
temporarily switch to QX ∣Xn 1

n
− modeling the English language).

9.2 Combinatorial construction of Fitingof

Fitingof suggested that a sequence xn ∈ X n should be prescribed information Φ n
0

the
(x ) equal to

logarithm of the number of all possible permutations obtainable from xn (i.e. log-size of the
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type-class containing xn). From Stirling’s approximation this can be shown to be

Φ0(x
n) = nH(xT ) +O(logn T

P

∼ Unif

ˆnH xn O logn

)

,

[n] (9.1)

(9.2)

ˆwhere Pxn is the empirical distribution

=

of

(

the

)

sequence

+ (

x

)

n:

P̂xn(a) ≜
1 n

1 xi a . (9.3)
n i 1

Then Fitingof argues that it should be possible

∑
=

to

{

pro

=

duce

}

a prefix code with

` f xn Φ0 xn O logn . (9.4)

This can be done in many ways. In

(

the

(

spirit

)) =

of

(

what

) +

we

(

will do

)

next, let us define

QXn(xn

where cn is a normalization constant cn.

)

Coun

≜ exp{−Φ0(x
n)}cn ,

ting the number of different possible empirical
distributions (types), we get

cn = O(n−(∣X ∣−1)) ,

and thus, by Kraft inequalit
i.i.d.

taking expectation over Xn ∼

y, there must exist a prefix code with lengths satisfying (9.4). Now

PX we get

E[`(f(Xn))] = nH(PX) + (∣X ∣ − 1) logn +O

for

(1) ,

every i.i.d. source on X .

9.2.1 Universal compressor for all finite-order Markov chains

Fitingof’s idea can be extended as follows. Define now the 1-st order information content Φ1 xn

to be the log of the number of all sequences, obtainable by permuting xn with extra restriction
that the new sequence should have the same statistics on digrams. Asymptotically, Φ1 is just

(

the

)

conditional entropy

Φ xn1 nH xT xT 1 mod n O logn , T Unif n .

Again, it can be shown

(

that

)

there

= (

exists

∣ −

a code suc

) +

h that

(

lengths

) ∼ [ ]

`

This implies that for every 1-st order

(f(xn

stat

))

ionary

= Φ1(x
n) +O logn .

Markov

(

chain

)

X1

E ` f Xn nH X2 X1 O logn

→X2 → ⋯→Xn we have

This can be further contin

[

ued

( (

to define

))] =

Φ

( ∣ ) + ( ) .

2(x
n) and build a universal code, asymptotically

optimal for all 2-nd order Markov chains etc.
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9.3 Optimal compressors for a class of sources. Redundancy.

So we have seen that we can construct compressor f ∶ X n → {0,1}∗ that achieves

E[`(f(Xn H Xn o n ,

simultaneously for all i.i.d. sources (or eve

))]

n all

≤

r-th

(

order

) + (

Mark

)

ov chains). What should we do
next? Krichevsky suggested that the next barrier should be to optimize regret, or redundancy :

E[`(f

simultaneously for a class of sources. We

(Xn))] −H(Xn)→min

proceed to rigorous definitions.
Given a collection {PXn∣θ, θ ∈ Θ} of sources, and a compressor f n 0,1 ∗ we define its

redundancy as
supE[`(f(Xn

∶ X → { }

θ0

))∣θ = θ0] −H(Xn θ

1

∣ = θ0

Replacing here lengths with log

) .

n
n

we define redundancy of the distribution QX asQX

supD PXn Q
θ0

∣θ=θ0 Xn .

Thus, the question of designing the best univ

(

ersal compressor

∥ )

(in the sense of optimizing worst-case
deviation of the average length from the entropy) becomes the question of finding solution of:

Q∗
Xn = argmin supD

Q nX θ0

(PXn∣θ=θ0 QXn

e

) .

W therefore get to the following definition

∥

Definition
Θ =

9.1 (Redundancy in universal compression). Given a class of sources PXn θ θ0 , θ0

, n 1, . . .
{ ∣ = ∈

} we define its minimax redundancy as

Rn
∗ ≜ min supD

Q nX θ0

Note that under condition of finiteness of R

(PXn∣θ=θ ∥QXn
0

) . (9.5)

n
∗, Theorem 4.5 gives the maximin and capacity

representation

Rn
∗ = sup minD(PXn∣θ∥QXn ∣Pθ

θ

the

=

P
) (9.6)

Q nXθ

sup I ;Xn . (9.7)
Pθ

Thus redundancy is simply capacity of

(

the channel

)

θ Xn. This result, obvious in hindsight,
was rather surprising in the early days of universal compression.

Finding exact QXn-minimizer in (9.5) is a daunting task

→

even for the simple class of all i.i.d.
Bernoulli sources (i.e. Θ 0,1 , PXn θ Bernn θ ). It turns out, however, that frequently the
approximate minimizer has

=

a
[

rather
]

nice
∣ =

structure:
( )

it matches the Jeffreys prior.

Remark 9.2. (Shtarkov and Fitingof) There is a connection between the combinatorial method
of Fitingof and the metho

( )
d of optimality for a class. Indeed, following Shtarkov we may want to

S
choose distribution Q n so as to minimize the worst-case redundancy for each realization xn (notX
average!):

P
min

Q nX (xn)
Xn θ

sup log
θ0

∣ (x
n∣θ0)

QXn(xn)
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This leads to Shtarkov’s distribution:

Q
(S)

xn c 0 , (9.8)Xn supPXn

θ0
∣θ x

n θ

where
X

c is the normalization constant.

(

If class

) = ( ∣ )

{PXn∣θ, θ ∈ Θ} is chosen to be all i.i.d. distributions
on then

i.i.d. Q
(S
n
)
(xn) = c exp{−nH(P̂xn)} , (9.9)X

S
and thus compressing w.r.t. QXn recovers Fitingof’s construction Φ0 up to O logn differences

ˆbetween nH .

(

(P n
xn

)

) and Φ0(x ) If we take PXn∣θ to be all 1-st order Markov chains,

( )

then we get
construction Φ1 etc.

9.4* Approximate minimax solution: Jeffreys prior

In this section we will only consider the simple setting of a class of sources consisting of all i.i.d.
distributions on a given finite alphabet. We will show that the prior, asymptoticall

/

solving capacity
question (9.7), is given by the Dirichlet-distribution with parameters set to 1 2, namely the pdf

Pθ
∗ =

1
const√ .

d
j 0 θj

First, we give the formal setting as follows:

∏ =

• Fix X – finite alphabet of size ∣X d 1, which we will enumerate as 0, . . . , d .

• Θ = {(

X

θj , j = 1, . . . , d) ∶ ∑dj=1 θj ≤ 1,

∣

θ

=

j

+

0 – is the collection of all probabili

X =

ty

{

distributions

}

on
. Note that Θ is a d-dimensional simplex.

≥ }

We will also define

θ0 ≜ 1 −
d

θj .
j
∑
=1

• The source class is

∣ ( ∣ ) ≜∏
n

exp{
1

PXn θ x
n θ

j=
θxj

1

= −n
a

∑
∈X
θa log ,

P̂xn a

ˆ

}

where as before Pxn is the empirical distribution of xn, cf. (9.3).

( )

In order to derive the caod Q∗
Xn we first propose a guess that the caid Pθ in (9.7) is some

distribution with smooth density on Θ (this can only be justified by an apriori belief that the caid
in such a natural problem should be something that employs all θ’s). Then, we define

QXn xn PXn∣θ x
n θ′ Pθ θ

′ dθ . (9.10)
Θ

′

Before proceeding further, we recall

( )

the

≜ ∫

following

(

metho

∣ )

d

(

of

)

approximating exponential integrals
ˆ(called Laplace method). Suppose that f(θ) has a unique minimum at the interior point θ of Θ
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and that Hessian Hessf is uniformly lower-bounded by a multiple of identity (in particular, f θ is
strongly convex). Then taking Taylor expansion of π and f we get

( )

∫ π
Θ

(θ)e−nf(θ)dθ = ∫ ( (ˆπ θ) + (ˆ
e−

1

O(∥t∥)) n(f θ)−
2
tTHessf(θ̂)t+o(∥t∥2))dt (9.11)

= π(θ̂)e−nf(θ̂)∫
Rd
e−x

THessf(θ̂)x dx
√
nd

(1 +O(n−1/2)) (9.12)

= π(θ̂)e−nf(θ̂) (
2π

n
)

d
2 1
√ 1

ˆdet Hessf(θ
( +

)
O(n−1/2)) (9.13)

where in the last step we computed Gaussian integral.
Next, we notice that

P ∣ ( ∣
ˆ

xn∣θ′) = e−n(D(P̂ n nx ∥PX θ θ
X

= ′)+H
θ

(Px
n

)) log e ,

and therefore, denoting
θ̂(xn) ≜ P̂xn

we get from applying (9.13) to (9.10)

d
logQ n(xnX ) = −nH(θ̂) +

2
log

2π

n log e
+ log

Pθ(θ̂)
√

detJF (θ̂)
+O(n−

1
2 ) ,

where we used the fact that Hessθ′D(P̂ ∥PX ∣θ=θ′) =
1

log eJF (θ
′) with JF – Fisher information matrix,

see (4.13). From here, using the fact that under Xn ∼ PXn∣θ=θ′ the random variable θ̂ = θ′ +O(n−1/2)
we get by linearizing JF (⋅) and Pθ(⋅)

D(PXn∣θ=θ′∥QXn) = n(E[H(θ̂)]−H(X ∣θ = θ′))+
d

2
logn− log

Pθ(θ
′)

√
detJF (θ′)

+const+O(n−
1
2 ) , (9.14)

where const is some constant (independent of prior Pθ or θ′). The first term is handled by the next
Lemma.

ni.i.d. ˆLemma 9.1. Let X ∼ P on finite alphabet X and let P be the empirical type of Xn then

E[D(
1

P̂ ∥P )] =
∣X ∣ −

2n
log e + o(

1

n
) .

Proof. Notice that
√

∣X

ˆn(P − P )

∣

converges in distribution to 0,Σ , where Σ diag P PP T ,
where P is an -by-1 column vector. Thus, computing second-order

N ( )

Taylor expansion
= (

of
cf.

)

D
−

(⋅∥P ),
(4.15), we get the result.

Continuing (9.14) we get in the end

D(PXn∣θ=θ′∥QXn) =
d

2
logn − log

Pθ(θ
′)

√
detJF (θ′)

+ const +O(n−
1
2 ) (9.15)

under the assumption of smoothness of prior Pθ and that θ is not too close to the boundary.
Consequently, we can see that in order for the prior

′

Pθ(θ
′) ∼

√

Pθ be the saddle point solution, we should have

detJF (θ′) ,
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provided that such density is normalizable. Prior proportional to square-root of the determinant of
Fisher information matrix is known as Jeffreys prior. In our case, using the explicit expression for
Fisher information (4.16) we get

Pθ
∗ = Beta(

1
1/2,1/2,⋯,1/2) = cd√

where

∏
, (9.16)

d
j=0 θj

cd is the normalization constant. The corresponding redundancy is then

Rn
∗ =

d

2
log

n
log

2πe
− cd o

Remark

+ (1) . (9.17)

9.3. In statistics Jeffreys prior is justified as being invariant to smooth reparametrization,
as evidenced by (4.14). For example, in answering “will the sun rise tomorrow”, Laplace proposed
to
∈

estimate
[ ]

the

√

probability by modeling sunrise as i.i.d. Bernoulli process with a uniform prior on
θ
=

0,1 . Ho
=

wever, this is clearly not very logical, as one may equally well postulate uniformity of
α θ10 or β θ. Jeffreys prior θ ∼ 1√

θ(1−θ)
is invariant to reparametrization in the sense that if

one computed
√

detJF (α) under α-parametrization the result would be exactly the pushforward of
the 1√

θ(
along

1−θ)
the map θ ↦ θ10.

Making the arguments in this subsection rigorous is far from trivial, see [CB90, CB94] for details.

9.5 Sequential probability assignment: Krichevsky-Trofimov

From (9.16) it is not hard to derive the (asymptotically) optimal universal probability assignment
QXn . For simplicity we consider Bernoulli case, i.e. d = 1 and θ ∈ [0,1] is the 1-dimensional
parameter. Then,1

Pθ
∗ =

1

π
√
θ(1 − θ)

(9.18)

Q∗
Xn(xn) =

(2t0 − 1)!! ⋅ (2t1 − 1)!!
, ta # j n xj a (9.19)

2nn!

This assignment can now be used to create a universal compressor

= {

via

≤

one

∶

of

=

the

}

methods outlined
in the beginning of this lecture. However, what is remark

=

able

∫

is that it has a very nice sequential
interpretation (as does any assignment obtained via QXn PθPXn∣θ with Pθ not depending on n).

1

QXn∣Xn−1(1∣xn−1) =
t1 + 2

n
, t1 = #{j ≤ n − 1 ∶ xj = 1} (9.20)

QXn∣Xn−1(0∣xn−1) =
t0 +

1
2 , t0

n
= #{j

This is the famous “add 1/2” rule of Krichevsky and Trofimov.

≤ n − 1 ∶ xj = 0} (9.21)

Note that this sequential assignment
is very convenient for use in prediction as well as in implementing an arithmetic coder.

1This is obtained from identity ∫
1

0
θa(1−θ)b
√
θ(1−θ)

dθ = π 1⋅3⋯(2a−1)⋅1⋅3⋯(2b−1)

=
for integer a, b 0. This identity can be

2a+b(a+b)!

derived by change of variable z θ

≥
and

1−
using the standard keyhole contour on the complex plain.

θ
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Remark 9.4. Notice that attaining the first order term d logn in (9.17) is easy. For example,2
taking QXn to be the result of uniform Pθ does achieve this redundancy. In the Bernoulli (d
case, the corresponding successive probability is given by

t 1

= 1)

Q
n∣Xn−1(1∣xn−1) =

1
X

+
#

“add

+
, t1

1
= {j

n

This is known as Laplace’s 1” rule.

≤ n − 1 ∶ xj = 1} .

9.6 Lempel-Ziv compressor

So given a class of sources {PXn∣θ, θ ∈ Θ} we have shown how to produce an asymptotically optimal
compressors by using Jeffreys’ prior. Although we have done so only for i.i.d. class, it can be
extended to handle a class of all r-th order Markov chains with minimal modifications. However,
the resulting sequential probability becomes rather complex. Can we do something easier at the
expense of losing optimal redundancy?

In principle, the problem is rather straightforward: as we observe a stationary process, we may
ˆestimate with better and better precision the conditional probability PXn

ˆthe basis for arithmetic coding. As long as P converges to the actual conditional
n 1

∣Xn−1
n−

and then use it as
r

probability, we
will get to the entropy rate of H(Xn∣Xn−

−
r ). Note that Krichevsky-Trofimov assignment (9.21) is

clearly learning the distribution too: as n grows, the estimator QXn Xn 1 converges to the true
PX (provided sequence is i.i.d.). So in some sense the converse is also
compression scheme is inherently learning the true distribution.

∣
true:
−

any good universal

The main drawback of the learn-then-compress approach is the following. Once we extend the
class of sources to include those with memory, we invariably are lead to the problem of learning
the joint distribution PXr−1 of r-blocks. However, the number of samples required to obtain a good

0

estimate of PXr−1 is exponential in r. Thus learning may proceed rather slowly. Lempel-Ziv family
0

of algorithms works around this in an ingeniously elegant way:

• First, estimating probabilities of rare substrings takes longest, but it is also the least useful,
as these substrings almost never appear at the input.

• Second, and most crucial, observation is that a great estimate of the PXr xr is given by the
reciprocal of the distance to the last observation of xr in the incoming stream.

( )

• Third, there is a prefix code2 mapping any integer n to binary string of length roughly log2 n:

fint Z 0,1 +, ` fint n log2 n O log logn . (9.22)

Thus, by encoding the

∶ {

(

poin

+ → }

)

ter to the last observ

( (

ation

)) =

of xr via

+

suc

(

h a code

)

we get a string of
length roughly logP r xrX automatically.

There are a number of variations of these basic ideas, so we will only attempt to give a rough
explanation of why it works, without analyzing any particular algorithm.

We proceed to formal details. First, we need to establish a Kac’s lemma.

2For this just notice that ∑ −
≥ 2− log2 k 2 log2 log
k 1

(k+1) <∞ and use Kraft’s inequality.
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Lemma
= { >

9.2
∶

(Kac)
=

. Consider
}

a finite-alphabet stationary ergodic process . . . ,X 1,X0,X1 . . .. Let
L inf t 0

[

X
=
−t

]

X
>

0 be the last appearance of symbol X0 in the sequence X 1
−
. Then for any u

such that P X0 u 0 we have
−∞
−

[
1

E L∣X0 = u] = .
P[X0 = u

In particular, mean recurrence time E L suppPX .

]

Proof. Note that from stationarity the

[

follo

] =

wing

∣

probabilit

∣

y

P[∃t ≥ k

does not depend on k Z. Thus by continuity of

∶Xt = u]

∈ probability we can take k to get

P[∃t ≥ 0 X

= −∞

∶ t u P t Z Xt

However, the last event is shift-invariant and

= ]

th

=

us

[∃

must

∈

ha

∶

ve

= u] .

probability zero or one by ergodic
assumption. But since P[X0 = u] > 0 it cannot be zero. So we conclude

P t 0 Xt u 1 . (9.23)

Next, we have

[∃ ≥ ∶ = ] =

E[L∣X0 = u] =
t
∑P
≥1

[L t

1

≥ ∣X0 = u] (9.24)

=
P[X0 = u]

∑
t≥1

P[L ≥ t,X0 = u] (9.25)

=
1

P[X0 = u]
∑
t≥1

P[X−t+1 ≠ u, . . . ,X−1 ≠ u,X0 = u] (9.26)

=
1

P X u, . . . ,Xt 2 u,X u (9.27)
P[X0 = ] ≥

[ 0
t
∑

1

≠ − ≠ t−1
u

= ]

=
1

P[X0 = u]
P[∃t ≥ 0 ∶Xt = u] (9.28)

=
1

,

expression

[
(9.29)

P X0 = u

where (9.24) is the standard for

]

the expectation of a Z+-valued random variable, (9.27)
is from stationarity, (9.28) is because the events corresponding to different t are disjoint, and (9.29)
is from (9.23).

The following proposition serves to explain the basic principle behind operation of Lempel-Ziv:

Theorem 9.1. Consider a finite-alphabet stationary ergodic process . . . ,X 1,X0,X1 . . . with entropy
rate

(

H. Suppose that X−∞
−1 is known to the decoder. Then there exists a

−

− − )

sequence of prefix-codes
fn xn 1

0 , x−∞
1 with expected length

1
E

n
[`(fn(X

n−1
0 ,X∞

−1))]→H ,
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Proof. Let Ln be the last occurence of the block xn−1
0 in the string x−−∞

1 (recall that the latter is
known to decoder), namely

Ln = inf{t > 0 ∶ x−−
t n 1 n 1

( )
t x

n

+ −
0 .

Then, by Kac’s lemma applied to the process Y Xt+

=

= n 1

−

t t
− we

}

have

E[Ln∣X
n−1
0 = xn−1

0 ] =
1

]
.

P[Xn−1
0 = xn−1

0

We kno
[−

w
−

enco
+

de
−

L
]
n using

[

the
−

co
]

de (9.22). Note that there
−

is crucial subtlety: even if Ln n and
thus t, t n 1 and 0, n 1 overlap, the substring xn 1

0 can be decoded from the knowledge
<

of
Ln.

We have, by applying Jensen’s inequality twice and noticing that 1
nH(Xn−1

0 ) ↘ H and
1 logHn (Xn−1

0 )→ 0 that

1

n
E[`(fint(Ln))] ≤

1

n
E[log

1
o

0

− 1 H .
PXn−

1
1 Xn

0

From Kraft’s inequality we know that for any prefix code

(

we

)

m

]

ust

+ (

ha

)

v

→

e

1

n
E[`(fint(Ln))] ≥

1
H

n
(Xn−1

0 ∣X−∞
−1 ) =H .
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Part III

Binary hypothesis testing
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§ 10. Binary hypothesis testing

10.1 Binary Hypothesis Testing

Two possible distributions on a space X

H0 ∶ X ∼ P

H1 X Q

Where under hypothesis H0 (the null hypothesis)

∶

X

∼

is distributed according to P , and under H1

(the alternative hypothesis) X is distributed according to Q. A test between two distributions
chooses either H0 or H1 based on an observation of X

• Deterministic test: f

Randomized

∶ X → 0,1

• test: PZ X

{

0

}

Let

∣ ∶ X → { ,1}, so that PZ

Z 0 denote that the test chooses P , and Z 1 when

∣X(0∣x) ∈ [0,1].

= the test chooses Q.
Remark: This setting is called “testing simple

=

hypothesis against simple hypothesis”. Simple
here refers to the fact that under each hypothesis

∼

there is only one distribution that could generate
the data. Composite hypothesis is when X P and P is only known to belong to some class of
distributions.

10.1.1 Performance Metrics

In order to determine the “effectiveness” of a test, we look at two metrics. Let πi
othesis

∣j denote the
probability of the test choosing i when the correct hyp is j. With this

α =

=

π0

π0

∣0 = P

β 1 Q

[ = ] ( )

Remark: P Z 0 is

∣

a sligh

= [

Z

=

0

] (

Probability of success given H0 true

Z 0 Probability of error given H1 true

[ = ]

[ − ( )]

t abuse of notation, more accurately P Z 0

)

x

EX PX 1 f x . Also, the choice of these two metrics to judge the
many oth

[

test
=

is
]

not
= ∑

unique,
er pairs from π ,π , π , π .

∈X P x P x

∼
Z X 0

{

we can
∣

use

0∣0 0∣1 1∣0 1 1

( ) ( ∣ ) =

So for any test P

∣

Z∣X there is an associated

}

(α,β). There are a few ways to determine the “best
test”

• Bayesian: Assume prior distributions P[H0

Pb min
tests

] = π0 and P[H1

π0π1 0 π1π0 1

] = π1, minimize the expected error

∗ = ∣ + ∣
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• Minimax: Assume there is a prior distribution but it is unknown, so choose the test that
preforms the best for the worst case priors

Pm
∗ = min maxπ0π1 0 π1π0 1

tests π0
∣ + ∣

• Neyman-Pearson: Minimize error β subject to success probability at least α.

In this course, the Neyman-Pearson formulation will play a vital role.

10.2 Neyman-Pearson formulation

Definition 10.1. Given that we require P Z 0 α,

βα P,Q

[ =

inf

] ≥

Q Z 0
P Z 0 α

Definition 10.2. Given P,Q , the region

( )

of

≜

ac

[

hiev

= ]≥

able

[

poin

=

ts

]

( ) for all randomized tests is

R(P,Q) = ⋃ {(P 0
Z

[Z Z (10.1)
P ∣

= 0],Q[ = ])} ⊂ [0,1]2

X

R(P,Q)

β

βα(P,Q)

α

Remark 10.1. This region encodes a lot of useful information about the relationship between P
and Q. For example,1

P = Q⇔R(P,Q) = P ⊥ Q⇔R(P,Q) =

Moreover, TV(P,Q maximal length of vertical line intersecting the lower half of P,Q (HW).

Theorem 10.1 (Prop

) =

erties of P,Q ).

R( )

1. R(P,Q) is a closed, convex

R(

subset

)

of [0,1]2.

2. R(P,Q) contains the diagonal.

1Recall that P is mutually singular w.r.t. Q, denoted by P ⊥ Q, if P [E] = 0 and Q[E] = 1 for some E.
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3. Symmetry: (α,β

Pr

) ∈R P,Q 1 α,1 β P,Q .

oof. 1. For convexity, supp

(

ose

)⇔

α

(

0, β

−

0 , α

−

1, β

)

1

∈R(

P,Q

)

, then each specifies a test PZ0 X , PZ1 X

respectively. Randomize b
(

¯etween these two test to get the test λPZ0 X λPZ1 X for λ
∣

0,1
∣
,

¯ ¯which achieves the point λα0

(

λα

) ( ) ∈R(

+ 1, λβ0 R(P,Q

)

+ λβ1) ∈ ).
∣ + ∣

Closedness will follow from the explicit determination of all boundary points via Neyman-

∈ [ ]

Pearson Lemma – see Remark 10.2. In more complicated situations (e.g. in testing against
composite hypothesis) simple explicit solutions similar to Neyman-Pearson Lemma are not
available but closedness of the

{ ∶

region
X → [

can
]}

frequently be argued still. The basic reason is that
the collection of functions g 0,1 forms a weakly-compact set and hence its image
under a linear functional g

est

∫ g

T

↦ ( dP, ∫ gdQ is closed.

2. by blindly flipping a coin, i.e., let Z ∼ Bern

)

1 α X. This achieves the point α,α .

3. If (α,β
(

ho

( −

) ∈R(P,Q), then form the test that
−

c oses
−

P

)

whenev

⊥⊥ ( )

Q whenever PZ∣X choses P , which gives 1 α,1 β) ∈R(

er PZ∣X choses Q, and chooses
P,Q).

The region R(P,Q) consists of the operating points of all randomized tests, which include
deterministic tests as special cases. The achievable region of deterministic tests are denoted by

Rdet(P,Q) =⋃{(P E
E

( ),Q E . (10.2)

One might wonder the relationship
R (

bet
)

ween these two region

(

s

)}

. It turns out that
by the closed convex hull of det P,Q .

We first recall a couple of notations:

R(P,Q) is given

• Closure: cl E the smallest closed set containing E.

• Convex hull:

( )

co

≜

(E) ≜ the smallest convex = {∑
∈ ∈ } ( (

set
)

con
(

taining
)) ∈

E
∀

n
i=1

(

α
[

n
ix
[
i ∶

(

α
)]
i ≥ 0,∑

(
i=1 αi

1,
(

xi
(

E
))

, n N . A useful example: if f x , g x E, x, then E f X ,E g X
cl co E .

=

)]) ∈

Theorem 10.2 (Randomized test v.s. deterministic tests).

R(P,Q

Conse Q

) = cl(co

quently, if P and are on a finite alphabet

(Rdet(P,Q))).

X , then R(P,Q) is a polygon of at most 2
vertices.

∣X ∣

Pr
R(

oof. “⊃
)

”: Comparing (10.1) and (10.2), by definition, P,Q det P,Q . By Theorem 10.1,
P,
⊂

Q is closed convex, and we are done with the direction.
“ ”: Given any randomized test PZ∣X , put g

R( ) ⊃R (

⊃

(x) = PZ=0∣X=x. Then g is a

))

measurable function.
Moreover,

P [Z = 0] = ∑ g(x

Z

)P
x

Q

(x) = EP

0 g x Q x EQ

[g

g

(X ∫
1

0

1
X

)] = P

Q

[g(X) ≥ t]dt

[ = ] = ∑
x

( ) ( ) = [ ( )] = ∫
0

[g(X) ≥ t]dt

114



where we applied the formula E[U] = ∫ P [

]) ∈R ( [ ( ) ≥

U t dt for U 0. Therefore the point P Z 0 ,Q Z
0 is a mixture of points P g X t ,Q g X t det, averaged according to t uniformly
distributed on the unit interval. Hence cl

≥ ] ≥ ( [ = ] [ =

The last claim follows because there

] [ ( ) ≥ ]) ∈R

R

are
⊂

at
(co(Rdet)).

most 2∣X ∣ subsets in (10.2).

Example: Testing Bern(p) versus Bern(q), p < 1

=

q. Using Theorem 10.2, note that there are2
22 4 events E ,

<

= ∅ {0},{1},{0,1}. Then

0

1

β

1
α

( qp, q)
B
er

n
))

B
er

n(
),

(

p

R(
(p,̄ q̄)

10.3 Likelihood ratio tests

Definition 10.3. The log likelihood ratio (LLR) is F = log dP R . The likelihooddQ

ratio test (LRT) with threshold τ

∶ X → ∪ {±∞}

∈ R is 1{log dP
dQ ≤ τ}. Formally, we assume that dP = p(x)dµ and

dQ = q(x)dµ (one can take µ = P +Q, for example) and set

F (x) ≜

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

log
p(x)

+∞

qq(x) , p(x) > 0, x 0

−∞

, p(

(

x) >

) =

0, q(x

>

) = 0

, p x

( )

n a, p

( ) >

Notes:

/ (x) =

0, q x

0, q(x) =

0

0

• Q x
LRT is a deterministic test. The intuition is that upon observing x, if

( )
exceeds a certainP x

threshold, suggesting Q is more likely, one should reject the null hypothesis
( )

and declare Q.

• The rationale for defining extended values ±∞ of F (x

x,

) are the following observations:

∀ ∀τ ∈ R ∶ (p(x

p x

q x

) − exp }q(x

exp

{τ

τ q x

exp τ p

)) {

( ( ) − {

1 F (

} (

x) > }

)) { ( ) ≥

τ

}

0

( ( ) − {− } (

1 F x τ 0

( (

x))

) − {− } ( ))

1{F (x) <

{ ( ) ≤

τ

≥

q x exp τ p x 1 F x τ

≥

} ≥

} ≥

0

0

This leads to the following useful consequence: For any g 0 and any τ R (note: τ is
excluded) we have

EP [
[

g(

(

X)

)

1{

{

F

≥ =

g

≥ τ

∈ ±∞

EQ X 1 F τ

}] ≥ { } ⋅ [ ( ) { ≥ }]

≤ }] ≥

exp τ EQ g X 1 F τ (10.3)

exp{−τ} ⋅EP [g(X)1{F ≤ τ}] (10.4)
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Below, these and similar inequalities are only checked for the cases of F not taking extended
values, but from this remark it should be clear how to treat the general case.

• Another useful observation:

Q[F = +∞] = P [F = −∞] = 0 . (10.5)

Theorem 10.3.

1. F is a sufficient statistic for testing H0 vs H1.

2. For discrete alphabet X and when Q≪ P we have

Q[F = f] = exp(−f)P [F f

More generally, we have for any g R

=

R

] ∀f ∈ R ∪ {+∞}

EQ

∶ ∪ {±∞}→

[g

EP g

( )] = (−∞) [ = −∞] + [ {− } ( )]

Proof. (2)

[ (

F g Q F EP exp

F )] = g(+∞)P [F = +∞] +

F g F (10.6)

EQ[exp{F}g(F )] (10.7)

QF (f) =∑
X
Q(x)1{

P
log

(x)

Q(x)
= f} =∑

X
Q(x)1{efQ(x) = P (x)}

= e−f∑
X
P (x)1{log

P (x)
f

Q(x

To prove the general version (10.6), note that

)
= } = e−fPF (f)

EQ[g(F )] = ∫{−∞< ( )<∞}
dµ q(x g

F x
) (F (x)) + g(−∞)Q[F = −∞] (10.8)

= ∫{−∞< ( )<∞}
dµ p(x) exp{−F (x)}g(F (x)) + g(−∞)Q F

F
[ = −∞] (10.9)

= EP

is

[exp

where we used (10.5) to justify
(1) To show F a s.s, w

{

x

−F}g(F )] + g(−∞)Q[F , (10.10)

restriction to finite values of F .
e need to show PX ∣F = Q

= −∞]

X ∣F . For the discrete case we have:

PX ∣
PX x PF X f x

F (x∣f) =
( ) ∣ ( ∣ )

PF (f)
=
P (x)1{

P (x)
Q(x) = e

f}

PF (f)
=
efQ(x)1{

P (x)
Q(x) = e

f}

PF (f)

=
QXF (xf)

e−fPF (f)

(2)
=
QXF

Q
QF

= X ∣F (x∣f).

The general argument is done similarly to the proof of (10.6).

From Theorem 10.2 we know that
R

to
(

obtain
)

the achievable region P,Q , one can iterate over
all subsets and compute the region det P,Q first, then take its closed
formidable task if the alphabet is huge or infinite. But we know that

R

the

(

conv
)

ex hull. But this is a
LLR log dP

dQ is a sufficient

statistic. Next we give bounds to the region R(P,Q) in terms of the statistics of log dP . As usual,dQ
there are two types of statements:

• Converse (outer bounds): any point in R(P,Q) must satisfy ...

• Achievability (inner bounds): the following point belong to R(P,Q)...
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10.4 Converse bounds on

α

R P,Q

Theorem 10.4 (Weak Converse). ∀( , β

( )

) ∈R(P,Q),

d(α∥β) ≤D(P

d β α D Q

∥ )

where d is the binary divergence.

( ∥ ) ≤ ( ∥

Q

P )

Proof. Use

(⋅∥⋅)

data processing with PZ∣X .

Lemma 10.1 (Deterministic tests). ∀E, ∀γ > 0 ∶ P [E] − γQ[E] ≤ P [ log dP logdQ > γ

Proof. (Discrete version)

]

P [E] − γQ[E] = ∑
∈
p(x) − γq(x p

x E

) ≤
x

∑
∈E

( (x) − γq(x

dP
P log

))1{p(x)>γq(x)}

= [
dQ

> log γ,X ∈ E] − γQ[ log
dP

dQ
> log γ,X ∈ E] ≤ P [ log

dP
log γ .

dQ

=

(General version) WLOG, suppose P,Q ≪ µ for some measure µ (since we can alw

>

ays

]

take
µ P Q). Then dP p x dµ, dQ q x dµ. Then

P

+ = ( ) = ( )

[E] − γQ[E] = ∫ dµ p x γq x
E

d
P

(

P
log

( ) − ( )) ≤ ∫ dµ p(x) − γq(x))1 p
E

( { (x)>γq(x)}

= [
dQ

> log γ,X ∈ E] −Q[ log
dP

dQ
> log γ,X ∈ E] ≤ P [ log

dP

dQ
> log γ].

where the second line follows from p
q =

dP
dµ
dQ
dµ

= dP .dQ

[So we see that the only difference between the discrete and the general case is that the counting
measure is replaced by some other measure µ.]

Note: In this case, we do not need P Q, since is a reasonable and meaningful value for the
log likelihood ratio.

Lemma 10.2 (Randomized tests). P

≪ ±∞

[Z = 0] − γQ[Z = 0] ≤ P [ log dP
d > log γ .Q

Proof. Almost identical to the proof of the previous Lemma 10.1:

]

P [Z = 0] − γQ[Z = 0] = ∑PZ∣X(0
x

∣x

dP
P log

)(p(x) − γq(x)) ≤∑PZ∣X(0∣x)(p(x) − γq γq
x

(x))1{p(x)> (x)}

= [
dQ

> log γ,Z = 0] −Q[ log
dP

dQ
> log γ,Z = 0]

≤ P [ log
dP

dQ
> log γ].

Theorem 10.5 (Strong Converse). ∀(α,β) ∈R(P,Q

d
α

),∀γ > 0,

− γβ ≤ P [
P

log
dQ

> log γ] (10.11)

β −
1 d
α

γ
≤ Q[

P
log log

dQ
< γ] (10.12)
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Proof. Apply Lemma 10.2 to (P,Q, γ) and (Q,P,1/γ).

Note: Theorem 10.5 provides an outer bound for the region P,Q in terms of half-spaces. To
see this, suppose one fixes γ

R( )

> 0 and lo
∗
oks at the line α − γβ = c and slowing increases c from zero,

there is going to be a maximal c,
∗
say c , at which poin

[

t the line touches the lower boundary of the
region. Then (10.11) says that c cannot exceed P log dP log γ . Hence must lie to the leftdQ

of the line.
R

Simil
(

arly, (10.12) provides bounds for the upper boundary. Altogether Theorem 10.5
states that P,Q is contained in the intersection of a collection

> ]

of half-spaces

R

indexed by γ.
Note: To apply the

)

strong converse Theorem 10.5, we need to know the CDF of the LLR, whereas
to apply the weak converse Theorem 10.4 we need only to know the expectation of the LLR, i.e.,
divergence.

10.5 Achievability bounds on P,Q

Since we know that the set P,Q is convex, it is natural to try to find all of its supporting lines
(hyperplanes), as it is well kno

R(

wn th
)

at closed

R

con

(

vex set

)

equals the intersection of the halfspaces
correposponding to all supporting hyperplanes. So thus, we are naturally lead to solving the problem

max α tβ α,β P,Q .

This can be done rather simply:

{ − ∶ ( ) ∈R( )}

α∗ − tβ∗ =
(
max
α,β

where the last equalit

)

y

∈R

follo

(α − tβ) = max
PZ∣X x

∣
+

ws from the

∑
∈X

(x PZ X

fact

(P (x )) (0∣x

to

) =
x

that

) − tQ

we are free choose

∑
∈X

∣P (x

P

) − tQ(x)∣

Z∣X(0∣x), and the best
choice is obvious:

PZ∣X(0∣x) = 1{
P

log
(x)

log
Q(x)

≥ t .

Thus, we have shown that all supporting hyperplanes are parameterized

}

by LLR-tests. This
completely recovers the region P,Q except for the points corresponding to the faces (linear
pieces) of the region. To be precise,

R(

we
)

state the following result.

Theorem 10.6 (Neyman-Pearson Lemma). “LRT is optimal”: For any α, βα is attained by the
following test:

PZ∣X(0∣x

⎧⎪⎪⎪
) =

⎪⎪

P

⎨

1 log d

⎪
⎪⎪⎪
⎪
⎩

dQ > τ

λ log dP
dQ = τ

0 log dP
dQ < τ

(10.13)

where τ ∈ R and λ ∈ [0,1] are the unique solutions to α = P [log dP
dQ > τ] + λP [log dP τ .dQ

Proof of Theorem 10.6. Let t = exp(τ). Given any test PZ∣X , let g(x) = PZ∣X 0 x

=

0, 1

]

. We want
to show that

)]
d

α =
P

( ∣ ) ∈ [ ]

P [Z = 0] = EP [g(X = P [
dQ

> t] + λP [
dP

dQ
= t] (10.14)

⇒ β = Q[Z = 0] = EQ[g(X)]
goal
≥ Q[

dP d
t

dQ
> ] + λQ[

P
t

dQ
= ] (10.15)
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Using the simple fact that EQ[f(X)1{ dP t
t

dQ
≤ }] ≥

−1EP [f(X)1{ dP for
t

dQ
≤ }] any f ≥ 0 twice, we have

β = EQ[g(X)1{ dP
dQ

≤t}] +EQ[g(X)1{ dP
dQ

>t}]

≥
1

t
EP [g(X)1{ dP

dQ
≤t}]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

+EQ[g(X)1{ dP t
dQ

> }]

(10
=
.14) 1

t
(EP [(1 − g(X))1{ dP

dQ
>t}] + λP [

dP
E

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

t Q g X 1
d

)

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
Q

= ] ) + [ (

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
{ dP

dQ
>t}]

≥ EQ[(1 − g(X))1{ dP
dQ

>t}] + λQ[
dP

dQ
= t] +EQ[g(X)1{ dP

dQ
>t}]

= Q[
dP d

t
dQ

> ] + λQ[
P

dQ
= t].

Remark 10.2.
R(

As
)

a consequence of the Neyman-Pearson lemma, all the points on the boundary of
the region P,Q are attainable. Therefore

R(P,Q) = {(α,β) ∶ βα ≤ β ≤ 1 − β1 α .

Since α ↦ βα is convex on [0,1], hence continuous, the region

− }

P,Q is a closed convex set.
Consequently, the infimum in the definition of βα is in fact a minimum.

Furthermore, the lower half of the region Q

( )

R(P,

R

) is the convex hull of the union of the following
two sets:

⎧⎪⎪
⎨
⎪⎪

α = P [ log dP

⎩

dQ > τ]

β = Q[ log dP
dQ > τ]

τ ∈ R ∪ {±∞}.

and
⎧⎪⎪
⎨
⎪⎪⎩

α = P [ log dP
dQ ≥ τ]

β = Q[ log dP
τ R .

τdQ

Therefore it does not lose optimality to restrict

≥

our

]

atten

∈

tion

∪ {

on

±∞

tests

}

of the form 1{log dP
dQ ≥ τ} or

1{log dP τdQ > }.

Remark 10.3. The test (10.13) is related to LRT2 as follows:

t

1

P [log dP
dQ > t]

α

τ
t

1

P [log dP
dQ > t]

α

τ

1. Left figure: If α = P [log dP

=

τdQ > ] for some τ , then λ = 0, and (10.13) becomes the LRT
Z 1{log dP

dQ
≤τ}.

2. Right figure: If α ≠ P [log dP
dQ > τ] for any τ , then we have λ ∈ (0,1), and (10.13) is equivalent

to randomize over tests: Z = 1{log dP
¯with

τ
dQ

≤ } probability λ or 1{log dP
dQ

<τ} with probability λ.

2Note that it so happens that in Definition 10.3 the LRT is defined with an ≤ instead of <.
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Corollary 10.1. ∀τ ∈ R, there exists (α,β) ∈R(P,Q) s.t.

α = P [
dP

log τ
dQ

β

> ]

≤ exp(−τ)P [
dP

log τ
dQ

> ] ≤ exp(−τ)

Proof.

Q[
dP

log
dQ

> τ] =∑Q(x)1{
P (x)

e
Q(x)

> τ}

≤∑P (x)e−τ1{
P (x)

Q(x)
> eτ} = e−τP [ log

dP

dQ
> τ].

10.6 Asymptotics

Now we have many samples from the underlying distribution

H0 ∶
i.i.d.

X1, . . . ,Xn ∼ P

i.i.d.
H1 X1, . . . ,Xn Q

We’re interested in the asymptotics of the

∶

error probabilities

∼

π0 1 and π1 0. There are two main
types of tests, both which the convergence rate to zero error is ex

∣
ponential.

∣

1. Stein
≤

Regime: What is the best exponential rate of convergence for π0∣1 when π1∣0 has to be
ε?

⎧⎪⎪
⎨
⎪⎪

π1∣0 ≤ ε

⎩π0∣1 0

2. Chernoff Regime: What is the trade off between

→

exponents of the convergence rates of π1 0

and π0∣1 when we want both errors to go to 0?
∣

⎧⎪⎪
⎨
⎪⎪

π1∣0 → 0

⎩π0∣1 → 0
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§ 11. Hypothesis testing asymptotics I

Setup:

H0 ∶X
n ∼ PXn H1 ∶X

n ∼ QXn

test PZ

specification

∣X ∶ X nn → {0,1

1 − α

}

= π1∣0 β

Stein’s

= π0∣1

11.1 regime

1 − α = π1∣0 ≤ ε

β = π0

Note: interpretation of this specification,

∣ →
nVε

1 0 at the rate 2−

∣

usually a “miss”(0 1) is much worse than a “false alarm”
(1 0).

Definition 11.1 (ε-optimal exponent). V

∣

ε is called an ε-optimal exponent in Stein’s regime if

Vε

Vε

= sup{E ∶ n nE
0, n n0, PZ Xn s.t. α 1 ε, β 2 ,

⇔ =
1

lim

∃ ∀ ≥ ∃ ∣ > − < −

inf
n

}

→∞ n
log

1

β1 ε PXn ,QXn

where βα(P,Q

: Chec

= min

− ( )

Exercise

) PZ∣X ,P (Z=0

k the equivalence.

)≥αQ(Z = 0).

Definition 11.2 (Stein’s exponent).

V = lim
→
Vε.

ε 0

Theorem 11.1 (Stein’s lemma). Let PXn = PnX i.i.d. and QXn = QnX i.i.d. Then

Vε =D(P ∥Q), ∀ε ∈ (0,1

Consequently,

).

V =D(P ∥Q).

Example: If it is required that α ≥ 1 − 10−3, and β ≤ 10−40

≳ −
−

, what’s the number of samples needed?
log 10 40

Stein’s lemma provides a rule of thumb: n .D(P ∥Q)
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Proof. Denote F = log dP dP, and FndQ = log nX

dQXn
= ∑ni=1 log dP

dQ(Xi) – iid sum.

Recall Neyman Pearson’s lemma on optimal tests (likelihood ratio test): τ ,

α = P F τ , β Q F τ e

∀

−τ

Also notice that by WLLN, under P ,

(

as

>

n

) = ( > ) ≤

→∞,

1

n
Fn =

1

n

n

∑
i=1

log
dP (Xi)

dQ(Xi)

P
Ð→EP [log

dP
D

dQ
] = (P ∥Q). (11.1)

Alternatively, under Q, we have

1

n
Fn

P
Ð→EQ[log

dP
D Q P (11.2)

dQ

1. Show V ) =

=
ε ≥

(

D(P ∥

−

Q
)

D.

] = − ( ∥ )

Pick τ n D δ , for some small δ 0. Then the optimal test achieves:

α P

>

= (Fn

β e−n(D−
> n(D − δ))→ 1, by (11.1)

δ)

then pick n large enough (depe

≤

≥

nds
→

on ε, δ) such that α 1 ε, we have the exponent E D δ
achievable, Vε E. Further let δ 0, we have that Vε

≥ − = −

≥D.

2. Show Vε D P Q D.

a) (weak

≤

con

(

v

∥

erse)

) =

∀(α,β) ∈R(PXn ,QXn), we have

−h(α) +
1

α log
β
≤ d(α∥β) ≤D(PXn∥QXn) (11.3)

where the first inequality is due to

d(α∥β) = α log
α

β
+ ᾱ log

ᾱ 1
h

β̄
= − (α) + α log

β
+ ᾱ log

1

β̄

and the second is due to the weak converse Theorem 10.4 pro

≥ 0 and
´
≈
¹¹¹¹¹¹¹¹¸

0 for
¹¹¹¹¹¹¹¹¹¶

small β

ved in the last lecture (data
pro
∀

cessing inequality for divergence).
achiev

≥

able

−

exponent

≤

E <
−
Vε, by definition, there exists a sequence

≤

of tests PZ Xn such

that αn 1 ε and βn 2 nE . Plugging it in (11.3) and using h log 2, we have
∣

− log 2 + (1 − ε)nE ≤ nD(P ∥Q)⇒ E ≤
D(P ∥Q)

1 − ε
+

log 2
.

→
´
n
¹¹¹¹¹¹¹¹¹¹¹¹¹
(1
¸
−
¹¹¹¹¹¹¹¹¹¹¹¹¹
ε

0, as n→

)

Therefore

¶
∞

Vε ≤
D(P ∥Q)

1 ε

Notice that
→

this is weaker than what we hoped to prove, and this weak converse result is
tigh

(

t
∥

for
)

ε 0, i.e., for Stein’s exponent we di

−

d have the desired result V lim
D

= ε→0 Vε
P Q .

≥
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b) (strong converse) In proving the weak converse, we only made use of the expectation of
Fn in (11.3), we need to make use of the entire distribution (CDF) in order to obtain
stronger results.

Recall the strong converse result which we showed in the last lecture:

∀(α,β) ∈R(P,Q),∀γ, α γβ P F log γ

Here, suppose there exists a sequence of tests P nE
Z X

−

n
whic

≤

h

(

achiev

>

e αn

)

1 ε and βn 2− .
Then

1 − ε − γ2 nE α γβ

∣

n n PXn F

≥ − ≤

log = n(D +

n log γ .

Pick γ δ), by (11.1)

−

the

≤

RHS

−

goes to

≤

0, an

[

d w

>

e have

]

1 ε 2n(D+δ)2 nE

1

− o 1

⇒D

− − ( )

+ δ −E

≤

≥ log
n

(1 − ε + o(1))→ 0

⇒E ≤D as δ →

⇒

0

Vε ≤D

Note: [Ergodic] Just like in last section of data compression. Ergodic assumptions on PXn and
QXn allow one to show that

Vε =
1

lim
n→∞

D PXn QXn

n

the counterpart of (11.3), which is the key for picking

(

the

∥

app

)

ropriate τ , for ergodic sequence Xn is
the Birkhoff-Khintchine convergence theorem.
Note: The theoretical importance of knowing the Stein’s exponents is that:

E n, P nVε o n
Xn E 1 ε QXn E 2− + ( )

Thus knowledge of Stein’s

∀

exp

⊂ X

onent Vε

[

allo

]

ws

≥

one

−

to

⇒

prove

[

exp

] ≥

onential bounds on probabilities of
arbitrary sets, the technique is known as “change of measure”.

11.2 Chernoff regime

We are still considering i.i.d. sequence Xn, and binary hypothesis

H0 ∶X
n ∼ PnX H1 Xn QnX

But our objective in this section is to have both types

∶

of error

∼

probability to vanish exponentially
fast simultaneously. We shall look at the following specification:

1 − α

β

=

=

π nE
1∣0 →

→

0 at the rate 2 0

π0∣1 0 at the rate 2

−

−nE1

Apparently, E0 (resp. E1) can be made arbitrarily big at the price of making E1 (resp. E0)
arbitrarily

(

small.
)

So the problem boils down to the optimal tradeoff, i.e., what’s the achievable
region of E0,E1 ? This problem is solved by [Hoeffding ’65], [Blahut ’74].
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The optimal tests give the explict error probability:

αn = P [
1

n
Fn > τ] , βn = Q [

1
Fn

n
> τ

and we are interested in the asymptotics when n

]

→∞, in which scenario we know (11.1) and (11.2)
occur.

Stein’s regime corresponds to the corner points. Indeed, Theorem 11.1 tells us that when fixing
αn 1 ε, namely E0 0, picking τ D P Q δ (δ 0) gives the exponential convergence rate

(

of βn as E1 D P Q . Similarly, exchanging the role of P and Q, we can achieves the point
E0

=

,E1

− = = ( ∥ ) − →

points,

= ( ∥ )

Here

)

w
=

e need
Note:

(D(Q P ,0 . More generally, to achieve the optimal tradeoff between the two corner
to

is

∥

i
)

ntro
)

duce a powerful tool – Large Deviation Theory.
a roadmap of the upcoming 2 lectures:

1. basics of large deviation (ψX , ψX
∗ , tilted distribution Pλ)

2. information projection problem

∶
min

[ ]≥
D(Q∥P ) = ψ γ

Q EQ X γ

∗( )

3. use information projection to prove tight Chernoff bound

P [
1

X
k

∑
n

k γ
n 1

≥ ] = 2−nψ
∗(γ)+o(n)

=

4. apply the above large deviation theorem to (E0,E1 to get

(E0(θ) = ψP
∗ (θ), E1

)

(θ) = ψP
∗ (θ) − θ) characterize the achievable boundary.

11.3 Basics of Large deviation theory

Let Xn be an i.i.d. sequence and Xi ∼ P . Large deviation focuses on the following inequality:

[∑
n

P X o
i

i 1

≥ nγ] = 2−nE(γ)+ (n)

what is the rate function E

=

(γ) = − limn→∞
1
n logP [∑

n
i=1Xi γn ≥ ]? (Chernoff’s ineq.)
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To motivate, let us recall the usual Chernoff bound: For iid Xn, for any λ 0,

P [∑
n

P
=

[
n

Xi ≥ nγ] = exp λ

≥

i 1

(
i
∑
=
Xi

1

) ≥ exp(nλγ

Markov

)]

≤ exp

exp

(− X
i
∑
n

nλγ)E [exp(λ i
1

nλγ n logE exp

=

λX

)]

Optimizing over λ 0 gives the non-asymptotic

= {−

upp

+ [ ( )]} .

≥ er bound (concentration inequality) which holds
for any n:

P [ X
i
∑
n

=
i

1

≥ nγ] ≤ exp{ − n sup
λ≥

λγ
0
( − logE [exp(λX

log MGF

)])}.

Of course we still need to show the lower bound.

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Let’s first
(

in
)

troduce the two key quantities: log MGF (also known as the cumulant generating
function) ψX λ and tilted distribution Pλ.

11.3.1 log MGF

Definition 11.3 (log MGF).

ψX λ log E exp λX , λ R.

Per the usual convention, we will also

( )

denote

= (

ψ

[

P λ

(

ψ

)])

X λ if

∈

X P .

Assumptions: In this section, we shall restrict

( )

to

=

the

(

distribution

) ∼

PX such that

1. MGF exists, i.e., ∀λ ∈ R, ψX(λ) <∞,

2. X

Example

≠const.

:

• Gaussian: X ∼ N (
2

0,1)⇒ ψX(λ) = λ .2

• Example
( ) =∞

of
∀

R.V.
] ≠

such that ψ 3
X

ψ
(λ) does not exist: X = Z with Z ∼ Gaussian. Then

X λ , λ 0.

Theorem 11.2 (Properties of ψX).

1. ψX is convex;

2. ψX is continuous;

3. ψX is infinitely differentiable and

ψX
′ (λ) =

E[XeλX]
e

E eλX
−ψX(λ)E XeλX .

In particular, ψX(0) = 0, ψ

[ ]
= [ ]

X
′ 0 E X .

4. If a

( ) = [ ]

≤X ≤ b a.s., then a ≤ ψX
′ ≤ b;
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5. Conversely, if
A = inf

∈
ψX
′ (λ), B = supψ

λ R λ∈
X

R

′ (λ),

then A X B a.s.;

6. ψX is strictly

≤ ≤

convex, and consequently, ψX
′ is strictly increasing.

7. Chernoff bound:
P X γ exp λγ ψX λ , λ 0.

Remark 11.1. The slope of log MGF

( ≥

enco

) ≤

des the

(−

ran

+

ge of

(

X

))

. Indee

≥

d, 4) and 5) of Theorem 11.2
together show that the smallest closed interval containing the support of PX equals (closure of) the
range of ψX

′ . In other words, A and B coincide with the essential infimum and supremum (min and
max of RV in the probabilistic sense) of X respectively,

A

B

= essinfX ≜ sup{a ∶X ≥ a a.s.

esssupX inf b X b a.s.

}

Proof. Note: 1–4 can be proved righ

=

t now. 7 is

≜

the

{

usual

∶ ≤

Chernoff

}

bound. The proof of 5–6 relies
on Theorem 11.4, which can be skipped for now.

1. Fix θ ∈ (0,1). Recall Holder’s inequality:

[∣ ∣] ≤ ∥ ∥ ∥ ∥ ≥
1

E UV U p V q, for p, q 1,
p
+

1
1

q

where
/

the
=

L -norm of RV is defined by ∥U∥ = (

= /

E∣U ∣p)1/p. Applying

=

to E[e(
¯θλ1

p
+θλ2 X

p
) with

¯p 1 θ, q 1 θ, we get

E[exp((λ /p + ∥
¯

λ /q)X)] ≤ ∥ exp(λ X/p)∥ exp(λ X/q)∥ = E[exp(λ X)]θ

]

1 2 1 p 2 q 1 E exp λ2X
θ,

¯ ¯
i.e., eψX(θλ1+θλ2

[ (

) ≤ eψX(λ1)θeψX(λ2

)]

)θ.

2. By our assumptions on X, domain of ψX is R, and by the fact that convex function must be
continuous on the interior of its domain, we have that ψX is continuous on R.

3. Be careful when exchanging the order of differentiation and expectation.

Assume λ > 0 (similar for λ 0).
First, we show that E

≤

[∣XeλX ∣] exists. Since

e∣X

Xe

∣

λX

≤ X

∣

e + e−X

∣ ≤ e∣(λ+1)X ∣ ≤ e(λ+1)X + e−(λ+1)X

by assumption on X, both of the summands are absolutely integrable in X. Therefore by
dominated convergence theorem (DCT), E XeλX exists and is continuous in λ.

Second, by the existence and continuity of

[∣

E
∣]

[∣XeλX ∣], u↦ E[∣XeuX ∣] is integrable on [0, λ],
we can switch order of integration and differentiation as follows:

eψX(λ) = E[eλX] = E [1 + ∫
λ λ
XeuXdu]

Fubini
= 1 + ∫ E

(
0

ψ

[XeuX

)

0
]du

⇒ X
′ (λ eψX λ) = E[XeλX]
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thus ψX
′ (λ) = e−ψX(λ)E[XeλX] exists and is continuous in λ on R.

Furthermore,
↦ [ ]

using similar application of DCT we can extend to λ C and show that
λ E eλX is a holomorphic function. Thus it is infinitely differentiable.

∈

4.

a ≤X ≤ b⇒ ψ′ (
E

X λ) =
[XeλX]

E[eλX]
∈ [a, b].

5. Suppose PX[X > B
But then Pλ X B
know from Theorem

]

11.4

> 0 (for contradiction), then PX
ε 0 for λ (see Theorem

.2 that EPλ X ψX

[ > ε >
[ ≤

X > B + 2ε] 0 for some small 0.

Pλ might still have some

+ ]→

very small

→

mass

∞

[ ] =

at

′ ( ≤

11.4.3 below). On the hand, we
λ)

other
B. This is not yet a contradiction, since

− >

a very negative value. To show that this cannot
happen, we first assume that B ε 0 (otherwise just replace X with X − 2B). Next note that

B ≥ EPλ[X] = EPλ[
≥ [

X1 X

EPλ

<B−ε

X1

{

X B ε

}] +EPλ[ ] + [ ]

{ < − }] +EPλ
EPλ X 1 X B ε

[

X1{B ≤B+ε} EPλ X1{X

X1 X

−ε X > +ε

B

≤

ε ]

B }

≥ − [∣ ∣ (B

{

{ < − }] + + ε)

>

Pλ

+

[X

}

> B + ε

1

] (11.4)

therefore we will obtain a contradiction if we can show

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

that

¹¹¹¹¹¹¹¹¹¹
→
¸

EP

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

λ
X 1 X B ε 0 as λ .

To
′ (

that
) ≥

end,
−

notice that convexity of ψX implies that ψX
B ε

′
[∣ ∣

↗ B. Thus,
{

for
ψ λ

< −
all

}
λ λ0 we ha

∞

ve

X

]→ →

≥

2 . Thus, we have for all λ ≥ λ0

ψX(λ) ≥ ψX(λ0) + (λ − λ0)(B −
ε

2
) = c + λ(B −

ε
,

2
) (11.5)

for some constant c. Then,

E [∣X ∣1{X < B − ε}] = E[∣X ∣eλX ψ
Pλ

− X(λ)1{X < B − ε}]

≤

(11.6)

E[∣X ∣eλX−c−λ(B−
ε
2
)1{X < B − ε}] (11.7)

≤ E[∣X ∣eλ(B−ε)−c−λ(B−
ε
2
)] (11.8)

= E[∣X ∣]e−λ
ε c
2
− → 0 λ (11.9)

where the first inequality is from (11.5) and the second from X

→∞

< B − ε. Thus, the first term
in (11.4) goes to 0 implying the desired contradiction.
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6. Suppose ψX is not strictly convex. Since we know that ψX is convex, then ψX must be
“flat”

(

(affine)
+ ) =

near
(

some
) +

point, i.e., there
∈

exists a small neighborhood of some λ0 such that
ψX λ0 u ψX λ0 ur for

[

some
( −

r
)] =

R. Then ψPλ u ur for all u in small neighborhood
of

[

zero,
=

or
] =

equivalently E
[

u X r
Pλ

=

e
] =

1 for u small. The
X

(

11.1 implies
Pλ r 1, but then P

) =

following Lemma
X r 1, contradicting the assumption X ≠ const.

Lemma 11.1. E[euS

Proof. Expand in Taylor

] = 1 for all u ε, ε then S 0.

series around

∈ (−

u

)

0 to obtain

=

E S 0, E S2 0. Alternatively, we can
extend the argument we gave for differentiating ψ the function z zS

X λ to show that E e is
holomorphic on the entire complex plane1

=

. Thus by uniqueness,

[ ] = [ ] =

( )

E
↦ [ ]

[euS] = 1 for all u.

Definition 11.4 (Rate function). The rate function ψX R R is given by the Legendre-
Fenchel transform of the log MGF:

∗ ∶ → ∪ {+∞}

ψX
∗ (γ) = supλγ ψX

λ

Note i a

∈R

: The maxim zation (11.10) is nice convex optimization

− (λ) (11.10)

problem since ψX is strictly convex,
so we are maximizing a strictly concave function. So

∗
we can find the maximum by taking the

derivative and finding the stationary point. In fact, ψX is the dual of ψX in the sense of convex
analysis.

Theorem 11.3 (Properties of ψX
∗ ).

1. Let A = essinfX and B = esssupX. Then

ψX
∗ (γ)

⎪
⎧⎪⎪ λγ − )

= ⎨

ψX(λ for some λ s.t. γ = ψ′

⎪

X(λ , A

⎪⎪

1
< γ < B

⎩

log

)

+∞
P ( BX=γ) γ = A or

, γ A or γ B

2. ψX
∗ is strictly convex and strictly positive except ψX

∗ (E[X 0.

< >

3. ψX
∗ is decreasing when γ ∈ (A,E X

]) =

[ ]), and increasing when γ ∈ [E[X],B)

1More precisely
{

,
∶
if
∣

we
∣
only [ ] ∣ ∣ ≤
< }

know that E eλS is finite for λ 1 then the function z S] is holomorphic in
the vertical strip z

↦ E
Rez

[ez
1 .
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Proof. By Theorem 11.2.
−

4, since ≤ ≤ ≤ ′ ≤

↦ ( )

A X B a.s., we have A ψX B. When γ A,B , the strictly
concave function

>

λ
<

λγ ψ
↦
X λ

−

has a
(

single
)

stationary point which achieves the unique
When B

)

maxim
γ (resp. A), λ λγ ψX λ

∈ (

um.

≤

increases (resp. decreases) without bounds. When γ = B,
since X B a.s., we have

ψX
∗ (B) = sup

∈
λB − log(E[exp(λX)]) = − log inf

∈
E B

λ
[exp X

R λ R
(λ

log lim

(

= −
→∞

E[exp(λ(X −B))] = − logP (X = B),
λ

− ))]

by monotone convergence theorem.
By Theorem

∗
11.2.6, since ψX is strictly con

(

v
)

ex,
=

the derivativ
∗
e
(

of
)

ψ
≥
X and ψX are inverse to each

other. Hence ψ
[
X

]

is
=

strictly
′ ( )

convex. Since ψX 0 0, we have ψX γ 0. Moreo

∗

ver, ψX
∗ (E[X

.
]) 0

follows from E X ψX 0
=

11.3.2 Tilted distribution

As early as in Lecture 3, we have already introduced tilting in the proof of Donsker-Varadhan’s
variational characterization of divergence (Theorem 3.6). Let us formally define it now.

Definition 11.5 (Tilting). Given X P , the tilted measure Pλ is defined by∼

Pλ(dx) =
eλx

P dx eλx λ

eλX
−ψX

E
( )P dx (11.11)

In other words, if P has a pdf p,

{

then

∶

the

[

pdf

]

of

(

Pλ

) =

is given by p λx

}

λ

(

x

)

e ψX λ

∈

p x .

Note: The set of distributions Pλ λ R parametrized by λ is called a

−

standar

( )

d exponential
family, a very useful model in statistics. See [Bro86, p. 13].

( ) = ( )

Example:

• Gaussian: P = N (0,1) with density p(x) = 1√
2π

exp(−x2/2). Then Pλ has density
exp(λx)

exp(λ2/2)
1√
2π

exp(−x2/2) = 1√ exp x λ 2 2 . Hence Pλ2π

• Binary : P is uniform on 1 . Then

(−(

Pλ

−

1

) / )

eλ

= N (λ,1).

{± } ( ) =
eλ+e−λ which puts more (resp. less) mass on 1 if

λ > 0 (resp. < 0). Moreover, Pλ
D
Ð→δ1 if λ→∞ or δ−1 if λ→ −∞.

• Uniform: P is uniform on [0, 1]. Then Pλ is also supported on [0, 1] with pdf pλ(x) =
λ exp(λx)

.
eλ 1

Therefore as λ increases, Pλ becomes increasingly concentrated near 1, and Pλ δ1 as λ
.

−
.

Similarly, Pλ δ0 as λ

So we see that Pλ shifts

→

the mean

→ −∞

of P to the right (resp. left) when λ > 0 (resp. < 0).

→

Indeed,

→

this

∞

is a general property of tilting.

Theorem 11.4 (Properties of Pλ).

1. Log MGF:
ψPλ(u

2. Tilting trades mean for divergence:

) = ψX(λ + u) − ψX(λ)

EPλ
D Pλ

[

P

=

(

X]

∥ ) =

ψX E
ψX

′

∗
(λ)

(

P X if λ 0. (11.12)

ψX
′
≷ [ ] ≷

(λ)) = ψX
∗ (EPλ[X]). (11.13)
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3.

P (X > b

P X a

) > 0⇒ ∀ε > 0, Pλ(X ≤ b − ε)→ 0 as λ

0 ε 0, Pλ X a ε 0 as λ

→∞

D D
Therefore if Xλ Pλ,

(

then

< ) > ⇒ ∀ > ( ≥ + )→

∼ XλÐ→ essinfX = A as λ→ −∞ and Xλ

→

esssup

−∞

X B as λ .

Proof. 1. By definition. (DIY)

Ð→ = →∞

2. EPλ[X] =
E[X exp(λX)]
E[exp(λX)] = ψ′X(λ), which is strictly increasing in λ, with ψ′X(0) = EP [X].

D(Pλ∥P ) = EPλ log dPλ
dP = EPλ log

exp(λX)
λ λ ψE exp λX EPλ X ψX λ λψX ψX λ ψX X λ ,

where the last equality follows from
[

Theorem
( )] =

11.3
[

.1.
]− ( ) = ′ ( )− ( ) = ∗ ( ′ ( ))

3.

Pλ(X ≤ b − ε) = EP [eλX−ψX λ

≤ [

1 X b ε

E eλ(b−ε ψ
P

( )

)− X(λ
[

)1

≤ − ]]

[X ≤ b

e−λεeλb−ψX

λε

(λ)
− ]]

≤

ε

≤
e−

exp(−
the

→ 0
P [X > b

where

]
as λ→∞

λb
[ > ] ≤

+

last inequality is due to the usual Chernoff bound (Theorem 11.2.7): P X b
ψX(λ)).
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§ 12. Information projection and Large deviation

12.1 Large-deviation exponents

Large deviations problems make statements about the tail probabilities
[
of a sequence of distri-

butions. We’re interested in the speed of decay for probabilities such as P 1 n
n k 1Xk γ for iid

Xk.
In the last lecture we used Chernoff bound to obtain an upper bound on the

∑

exp

=

onen

≥

t

]

via the
log-MGF and tilting. Next we use a different method to give a formula for the exponent as a convex
optimization problem involving the KL divergence (information projection). Later in Section 12.3
we shall revisit the Chernoff bound after we have computed the value of the information projection.

Theorem 12.1. Let Xni.i.d.∼ P . Then for any γ ∈ R,

1
lim
n→∞ n

log
1

P [ 1
n ∑

n
k=1Xk > γ]

= inf
Q∶EQ[X]>γ

D(Q∥P ) (12.1)

lim
n→∞

1

n
log

1

P [ 1
D

Q
n ∑

inf
n
k=1Xk ≥ γ]

=
∶EQ[X]≥γ

(Q∥P ) (12.2)

Proof. We first prove (12.1). Set P [En] = P [ 1

[ ]

n Xkn
Lo on

∑k=1

wer Bound P En : Fix a Q such that EQ
> ]

Q E

[X

n

Q

]

γ
>

.
γ. Let Xn be iid. Then by WLLN,

[ n

data

= [
k

Now the processing inequality giv

]

es

∑
=
Xk

1

> nγ] = 1 − o(1).

d Q En P En D QXn PXn nD Q P

And a lower bound for the binary

( [ ]∥

divergence

[ ]) ≤

is

( ∥ ) = ( ∥ )

d(Q[En]∥ E ])
1

P [ n ≥ −h(Q[En]) +Q[En] log
P [En]

Combining the two bounds on d(Q[En]∥P [En]) gives

P [En] ≥ exp(
−nD(Q∥P ) − log 2

(12.3)
Q[En

Optimizing over Q to give the best bound:

]
)

1
lim sup
n→∞ n

log
1

∶
inf

P [En]
≤
Q EQ[X]>

D
γ

(Q∥P ).
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Upper Bound on P [En]: The key observation is that given any X and any event E, PX(E) > 0
can be expressed via the divergence between the conditional and unconditional distribution as:
log 1

PX(E) =D(PX ∣X∈E∥PX). Define P̃Xn = PXn∣∑Xi>nγ , under which ∑Xi > nγ holds a.s. Then

log
1 ˜

w

[
D

En]
= (PXn

P

We kno show that the last problem

∥PXn

[ Xi]>
D QXn PXn (12.4)

Q nX EQ nγ

“single-letterizes”,

) ≥
∶

inf
∑

i.e. need

(

to

∥

be

)

solved only for n = 1.
Consider the following two steps:

D(QXn∥
n

PXn) ≥
j
∑
=
D

1

(QXj∥P ) (12.5)

≥ nD(Q̄∥P ) ¯, Q ≜
1 n

QX (12.6)
n j ,
j 1

where the first step follows from Corollary 2.1 after noticing that

∑
=

PXn Pn, and the second step is
by convexity of divergence Theorem 4.1. From this argument we conclud

=

e that

inf
Q nX ∶

D QXn

EQ

inf
Q

[∑Xi]>nγ

D

(

QXn

E X nγ

∥PXn) = n ⋅ inf
Q∶

D Q P (12.7)
EQ X γ

PXn n inf

[ ]>

D Q
i Q E

∥

P

)

(12.8)
nX Q Q X γ

(

In particular, (12.4) and (12.7

∶ [

)

∑

imply

]≥

the

(

required

∥ )

lo

=

wer

⋅

bound

∶ [ ]

in

≥

(12.1

( ∥

).

)

Next we prove (12.2). First, notice that the lower bound argument (12.4) applies equally well,
so that for each n we have

1

n
log

1

P [ 1
inf D Q P .

n
n k 1Xk γ Q EQ X γ

To get a matching upper bound we consider

∑ =

tw

≥

o

]

cases:

≥
∶ [ ]≥

( ∥ )

• Case I: P [X > γ] =
[∑ ≥ ]

0.
=

If
[

P X γ 0, then both sides of (12.2) are . If P X γ 0,
then

( ∥

P
D Q P
Q

<

Xk nγ
[ ≥ ] = +∞ [ = ] >

X γ

= = = ] = [ = ]

) ∞

1, i.e.,
Ô⇒

P
≪

X1

Q P
Q δγ . Then

Ô⇒

. . .
(

Xn

≤

γ
) =

P X γ n. For the right-hand side, since

( = ) = =

Q X γ
(

1,
∥

the
) =

only possibility for E X ≥ γ that

[
Q

1
[ is

infEQ X]≥γD Q P log
]

P (X=γ) .

• Case II: P [X > γ] > 0. Since P[∑Xk ≥ γ] ≥ P[∑Xk > γ] from (12.1) we know that

lim sup
n→∞

1

n
log

1

P [ 1 ∑ = ≥ ]
≤

∶
inf
[ ]>

D Q
n
k 1Xk γ Q EQ X γ

n

( ∥P ) .

We next show that in this case

Q

˜

∶
inf D

EQ[X]>γ
(Q∥P ) = inf

Q∶EQ[X]≥
D

γ

Indeed, let P P which is well defined since P X

(Q∥P ) (12.9)

=

[
X X γ

E ˜ ˜
Q X] ≥ γ, set Q P

εD

= εQ¯
∣ >

˜εD P P ¯ Q P ε 1

[ > ] >

+ ε satisfies EQ̃
log

[ >

γ

X]

0. For any Q such that

( ∥ ) = ( ∥ ) +

γ. Then by convexity, D(Q∥P ) ≤ εD¯ (Q∥P ) +

P [X>γ] . Sending ε→ 0, we conclude the proof of (12.9).
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12.2 Information Projection

The results of Theorem 12.1 motivate us to study the following general information projection
problem: Let be a convex set of distributions on some abstract space Ω, then for the distribution
P on Ω, we wan

E

t

inf
Q∈E

D(Q∥P

Denote the minimizing distribution Q by Q

)

∗
∗

.
E

The next result shows that intuitively the “line”
between P and optimal Q is “orthogonal” to .

E

Q∗

P

Distributions on X

Q

Theorem 12.2. Suppose ∃Q∗ ∈ E such that D(Q∗∥P

D Q P D Q Q

) = minQ (Q

D Q

∈E D

P

∥P ), then ∀Q ∈ E

( ∥ ) ≥ ( ∥ ∗

of.

) + ∗

Pro If D

( ∥ )

that D Q
the minimizer

( ∗
(Q∥P ) =∞

∥ ) <

, then
P ∞. For θ ∈ [

we’re done, so we can assume that D Q P , which also implies

( ∥

¯0,1]
)

, form the convex combination Q(θ

of D Q P , then1

(
)
∥

= θ
)

Q
<
∗
∞

+ θQ ∈ E . Since Q∗ is

0 ≤
∂

∂θ
∣
θ=0

D(Q(θ)∥P ) =D(Q∥P ) −D(Q∥Q∗) −D(Q∗∥P )

and we’re done.

∗
Remark: If we view the picture above in the Euclidean setting, the “triangle” formed by P ,

Q and Q (for Q∗,Q in a convex set, P outside the set) is always obtuse, and is a right triangle
only when the convex set has a “flat face”. In this sense, the divergence is similar to the squared
Euclidean distance, and the above theorem is sometimes known as a “Pythagorean” theorem.

E =

The
{ ∶

interesting
[ ] ≥ }

set of Q’s that
∶ →

we will particularize to is the “half-space” of distributions
Q EQ X γ , where X Ω R is some fixed function. This is justified by relation (to be

established) with the large deviation exponent in Theorem 12.1. First, we solve this I-projection
problem explicitly.

Theorem 12.3. Given distribution P on Ω and X ∶ Ω→ R let

A = inf ψX
′ = essinfX = sup{a ∶X ≥

= ′ = = { ∶ ≤

a P -a.s. (12.10)

B supψX esssupX inf b X b P -a.s.

}

} (12.11)

1This can be found by taking the derivative and matching terms (Exercise). Be careful with exchanging derivatives
and integrals. Need to use dominated convergence theorem similar as in the “local behavior of divergence” in
Proposition 4.1.
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1. The information projection problem over E = {Q ∶ EQ[X

0 γ

] ≥ γ} has solution

⎪

⎪⎪
⎨
⎪⎪
⎪⎪
⎪⎪
⎪
⎧ EP X

( ∥ ) =
ψ∗(γ) EP X γ B

∶
min D Q P 1

Q E log

< [

Q[X]≥γ

]

[ ] ≤ <

⎪⎪⎪⎪⎪
⎩⎪

(12.12)

+∞

γP (X=B) = B

γ B

= ψ∗(γ)1 γ

>

{ ≥ EP [X]} (12.13)

2. Whenever the minimum is finite, minimizing distribution is unique and equal to tilting of P
along X, namely2

dPλ = exp{λX − ψ(λ

3. For all γ EP X ,B

)} ⋅ dP (12.14)

∈ [ [ ]

min
E

) we have

Q[X]≥
D

γ

Note: An alternative expression is

(Q∥P ) = inf D Q P min D Q P .
EQ[X]>γ

( ∥ ) =
EQ[X]=γ

( ∥ )

∶
min

[ ]≥
= sup

≥
λγ − ψX λ .

Q EQ X γ λ 0

Proof.

( )

First case: Take Q = P .
Fourth case: If EQ[X] > B, then Q[X ≥ B + ε] >

( ≤

0 for some ε >
) = ≪/ Ô⇒ ( ∥ ) =∞

0, but P
P

[X
1,

≥ B ε
X B by Theorem 11.2.5. Hence Q D Q P

+ ] = 0, since
P .

Third case: If P (X = B) = 0, then X <

∞ (

B a.s.
=

u
)

nder
>

P , and Q≪/

( ∥

P for any Q s.t. EQ X B.
Then
( ≤

the
)

minim
=

um is . Now assume P X B
[

0.
]

Since
≥

D Q P
X

) Q P
Q B (

( ∥

1.
) =

Therefore the only possibility for EQ X B is that Q X B

[ ]

< ∞ Ô⇒

= ) = 1, i.e., Q

≥

= δB.
Then D Q P log 1

≪ Ô⇒

P (X=B) .

Second
= (

case: Fix EP [X] ≤ γ < B, and find the unique λ such that ψX
′ (

− ( ))

λ γ EPλ X where
dPλ exp λX ψX λ dP . This corresp

≥

onds to tilting
∗
P
( )

far
=

enough
− (

to
)

the
) =

righ
=

t to increase its
mean

[ ]

from
≥

EPX to γ, in particular λ 0. Moreover, ψX γ λγ ψX λ . Take any Q

[

suc

]

h that
EQ X γ, then

D(Q∥P ) = EQ [
dQdPλ

log
dPdPλ

] (12.15)

=D(Q∥Pλ) +EQ[log
dPλ

(12.16)

=
dP

≥

D(

(

Q P

]

∥ λ

D Q Pλ

D Q P

) + )]

∥ )

EQ[λX − ψX(

+

λ (12.17)

=

λγ ψX λ (12.18)

∗
( ∥

≥ ( )

λ) + ψX

ψ

∗ γ

( )

( ) (12.19)

X γ ,

−

(12.20)

where the last inequality holds with equality if and only if Q Pλ. In addition, this shows the
minimizer
( = )

is
>

unique, proving the second claim. Note
=

that even in corner case of γ = B
P X B

=

the (assuming

→

0)
Pλ δB as λ→

the
∞

minimizer is a point mass Q δB, which is also a tilted measure (P∞), since
, cf. Theorem 11.4.3.

2Note that unlike previous Lecture, here P and Pλ are measures on an abstract space Ω, not on a real line.
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Another version of the solution, given by expression (12.13), follows from Theorem 11.3.
For the third claim, notice that there is nothing to prove for γ

have just shown
ψX γ min D Q P

< EP [X], while for γ ≥ EP [X] we

∗
Q EQ X γ

while from the next corollary we have

( ) =
∶ [ ]≥

( ∥ )

inf D Q P inf
′
ψX .

Q

∗ γ
EQ X γ γ γ

′

The final step is to notice that ψ

∶ [ ]>
( ∥ ) =

>
( )

X is increasing and continuous by Theorem 11.3, and hence the
right-hand side infimum equalis ψ

∗

X
∗ (γ). The case of minQ∶EQ[X]=γ is handled similarly.

Corollary 12.1. ∀Q with EQ[X] ∈ (A,B), there exists a unique λ ∈ R such that the tilted distribu-
tion Pλ satisfies

EPλ
D Pλ

[

P

[

(

X] = EQ ]

∥ ) ≤D

and furthermore the gap in the last inequality equals

(

X

Q∥P

D

)

(Q Pλ D Q P D

Proof. Same as in the proof of Theorem 12.3, find the unique

∥ ) =

λ

(

s.t.

∥

E

)

P

−

λ
X

(Pλ∥P .

[ ] =

( ∥ ) = ∗ ( [ ]) = [ ] − ( )

ψX
Then P

′

)

(λ) = EQ
D Pλ ψX

D Q P D Q Pλ

[X].

( ∥ ) = ( ∥ ) +

EQ X λEQ X ψX λ . Repeat the steps (12.15)-(12.20) obtaining
D(Pλ∥P ).

Remark: For any Q, this allows us to find a tilted measure Pλ that has the same mean yet
smaller (or equal) divergence.

12.3 Interpretation of Information Projection

The following picture describes many properties of information projections.

b

b

b

• Each set {Q ∶ EQ[X] = γ} corresponds to a slice. As γ varies from A to B, the curves fill the
entire space minus the corner regions.
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EQ[X ] = γ
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• When γ < A or γ > B, Q

• As γ varies, the Pλ’s trac

≪/ P .

e out a curve via ψ∗(γ) = D(Pλ∥P ). This set of distributions is
called a one parameter family, or exponential family.

Key Point: The one parameter
∗ ∈ E

family curve intersects each γ-slice Q EQ X γ
“orthogonally” at the minimizing Q , and the distance from P to Q is given by ψ λ . To see
this, note that applying Theorem 12.2 to the convex set gives us D Q

∗

P

E

D

=

Q

{

Q

∶
∗

D

[

Q

] =

P

}

.
Now thanks to Corollary 12.1, we in fact have equality D Q

∗
( )

E ( ∥ ) ≥ ( ∥ )+ ( ∗

for some tilted measure.

∥ )

( ∥P ) =D(Q∥Q∗)+D(Q∗∥P ) and Q∗ = Pλ

Chernoff bound revisited: The proof of upper bound in Theorem 12.1 is via the definition of
information projection. Theorem 12.3 shows that the value of the information projection coincides
with the rate function (conjugate of log-MGF). This shows the optimality of the Chernoff bound
(recall Theorem 11.2.7). Indeed, we directly verify this for completeness: For all λ ≥ 0,

P [∑
n

X nγλ λX n
k ≥ nγ] ≤ e

1

− (EP [e e
k

]) = −n(λγ−ψX(λ))

where we used iid Xk’s in the

=

expectation. Optimizing over λ ≥ 0 to get the best upper bound:

sup
≥
λγ − ψX(λ) = supλγ ψX λ ψX

λ 0 λ R

∗ γ

where the first equality follows since γ ≥ EP [X ,

∈
− ( ) = ( )

] therefore λ↦ λγ − ψX λ is increasing when λ 0.
Remark: The Chernoff bound is tight precisely because, from information projection, the lower

bound showed that the best change of measure is to change to the tilted

( )

measure Pλ.

≤

12.4 Generalization: Sanov’s theorem

ˆTheorem 12.4 (Sanov’s Theorem). Consider observing n samples X1, . . . ,Xn
ˆthe empirical distribution, i.e., P 1

∼

=

iid P . Let P be

∑nj=1 δXj . Let E
E

be a convex set of distributions. Then undern
regularity conditions on and P we have

P[P̂ ∈ E] = e−nminQ∈E D(Q∥P )+o(n)

Note:
X

Examples of regularity conditions: space is finite and is closed with non-empty interior;
space is Polish and the set is weakly closed

X

and has non-empt
E

y interior.

Proof sketch. The lower bound

E

is proved as in Theorem
[

12.1: Just take an arbitrary Q and
n ˆapply a suitable version of WLLN to conclude Q P 1 o 1 .

For the upper bound c
∈ E] = + (

E

we an again adapt the proof from Theorem
)

12.1. Alternatively,

∈

w

E

e can
write the convex

{

set
∶

as an intersection of half spaces. Then we’ve already solved the problem
for half-spaces Q

∗
EQ X γ . The general

Theorem 12.2: if Q is projection of P onto
projection of P onto 1

[

2:

] ≥ }

E

case follows by the following consequence of

1 and Q∗∗ is projection of Q∗

E ∩ E

on E2, then Q∗∗ is also

D(Q∗∗∥P ) =
Q

⎧
D Q∗ P min ∈E D Q P

∈
D(

Q
min
E1∩E

Q∥P )⇐
⎪⎪
⎨
⎪

1

2 ⎩⎪D

( ∥ ) =

(Repeated pro

(Q∗∗∥Q∗) = minQ

jection property)

∈E2

(

D

∥

Q

)

( ∥Q∗)
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Indeed, by first tilting from P to Q∗ we find

P [P̂ ∈ E1 ∩ E2] ≤ ˆ

≤

2−nD(Q∗∥P )Q∗[P
− ( ∥ ) ∗

∈ E

[ ∈ E

1

and

]

(12.21)

2 nD

∩ 2

Q∗ P ˆQ P 2

E ]

(12.22)

from here proceed by tilting from Q∗ to Q∗∗ and note that D(Q∗∥P )+D(Q∗∗∥Q∗) =D(Q∗∗∥P ).

Remark: Sanov’s theorem tells us the probability that, after observing n iid samples of a
distribution, our empirical distribution is still far away from the true distribution, is exponentially
small.
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§ 13. Hypothesis testing asymptotics II

Setup:

H0 ∶X
n ∼ P n

∶

X

X

n

n
ecification:

→

H1 ∶X ∼ QX (i.i.d.

test PZ

)

∣
n

Xn

n
sp

{

n

0,1

1 − α = π
(

2
1

}

)
∣0 ≤ −nE0 β = π

0
( )
∣1 ≤ 2−nE1

Bounds:

• achievability (Neyman Pearson)

α = 1 − π1∣0 = PXn[Fn > τ], β = π0∣1 = QXn[Fn > τ

• converse (strong)

]

∀(α,β) achievable, α − γβ

where

≤ PXn[F > log γ]

F =
dPXn

log
dQ

(Xn ,
Xn

)

13.1 (E0,E1)-Tradeoff

Goal:
1 α 2

Our

−nE0 , β 2

goal

−nE1 .

in the Chernoff regime is to find the best tradeoff, which we formally define as follows
(compare to Stein’s exponent in Lectur

−

e 11

≤

)

≤

E1
∗(E0) ≜ sup{E1 ∶ ∃n0,∀n ≥ n0,

1
lim

∃PZ∣Xn s.t. α > 1 − 2−nE0 , β < 2−nE1 ,}

= inf
n→∞ n

log
1

β1−2−nE0 (Pn,Qn)

Define

T = log
dQ dQ

X
dP

( ), Tk = log
dP

(Xk), thus log
dQn n

Xn Tk
dPn k 1

Log MGF of T under P (again assumed to be finite and also T

( ) = ∑
=

≠ const since P ≠ Q):

ψP (λ) = logEP [eλT ]

ψP θ

= log∑P (x 1−λQ x λ log dP 1 dQ

∗ ( )

x

−λ λ

= sup
∈
θλ − ψP

R

) ( ) = ( ( )

λ

∫ )

(λ)
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Note that since ψP (0) = ψP (1) =

≪ ≪

0 from convexity ψP λ is finite on 0 λ 1. Furthermore,
assuming

( )

P Q and Q P we also have that λ ψP λ continuous everywhere on 0,1 (
on 0,1 it follows from convexity, but for boundary poin

( )

ts we need more

≤

detailed

≤

arguments).
Consequently, all the results in this section apply under

↦

just

(

the

)

conditions of P Q and Q

[ ]

P .
However, since in previous lecture we were assuming that log-MGF exists for all

≪

λ, we will
≪

only
present proofs under this

Theorem 13.1. Let P ≪

extra assumption.

Q, Q≪ P , then

E0(θ

p

) = ψP
∗ (θ), E1

arametrized by

(θ) = ψP
∗ (θ) − θ (13.1)

achievable E0,E1

Note: The geometric

−

( )

D θ
.
(P ∥Q) ≤ ≤ D Q P characterizes the best exponents on the boundary of

interp
( )

retation
∗ (

of

(

the

∥

ab

)

ove theorem is shown in the following picture, which rely
on the properties of ψP λ and
(Properties of ψX

∗ ), θ θ
) ( ) = ) =

↦ E0

(

( )

ψP θ . Note that
↦

ψ
(
P

)

0 ψP 1 0. Moreover, by Theorem 11.3
is increasing, θ E1 θ is decreasing.

Remark 13.1 (Rényi divergence). Rényi defined a family of divergence indexed by λ ≠ 1

Dλ(P ∥Q) ≜
1

λ − 1
logEQ [(

dP

dQ
)
λ

] ≥ 0.

which generalizes Kullback-Leibler ( ∥ ) Ð
λ
Ð
→
→
1

( ∥ )

( − ) ( ∥ ) = − ( ∥ )

divergence since Dλ P Q D P Q . Note that ψP λ
λ 1 Dλ Q P λD1−λ P Q . This

′
pro
( )

vides
= −

another
( ∥ )

explanation
′ ( ) =

that
(

ψ
∥
P is negative between 0

and 1, and the slope at endpoints is: ψP 0 D P Q and ψP 1 D Q P .

( ) =

Corollary 13.1 (Bayesian criterion). Fix a prior π0, π1 such that π0 π1 1 and 0 π0 1.
Denote the optimal Bayesian (average) error probability

)

(

by
) + = < <

Pe
∗(n) ≜ inf π π π π

PZ∣

0 1
n

∣0
X

+ 1 0∣1

with exponent

≜
1

E lim
n→∞ n

log
1

.
Pe
∗(n

Then
E

)

= max min(E0(θ),E1(θ)) = ψP
∗ (0) = − inf

∈
ψP λ ,

θ λ R

regardless of the prior, and ψP
∗ (0 C

( )

) ≜ (P,Q) is called the Chernoff exponent.
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Proof of Theorem 13.1. The idea is to apply the large deviation theory to iid sum n
k 1 Tk. Specifi-

cally, let’s rewrite the bounds in terms of T :
∑ =

• Achievability (Neyman Pearson)

let τ = −
n

nθ,
(n) n

∣ =
n

π P [ T
k

∑
=

k nθ
0

1

≥ ] π
1 0

( )
∣1 = Q [

k

∑
=
Tk

1

< nθ]

• Converse (strong)

let γ = 2−nθ, π1∣0 + 2−nθπ0∣1 ≥ P [∑
n

k=
Tk nθ

1

≥ ]

Achievability: Using Neyman Pearson test, for fixed τ = −nθ, apply the large deviation
theorem:

1 − α = π
(

∑
n

n) (
∣ = P [ n)

=
T ≥ nθ] = 2−nψ

∗ oP (θ
k

)+ , for θ T
0

EP D P Q
1

k 1

=
( n
n
∣

nψ θ o nβ π Q T nθ 2 Q

≥ = − (

P

∥ )

k , for θ QT D Q
0 1

)

k

( )+

=1

)

Notice that b

[

of

∑
− (

y the

=
∗

E

definition T we

<

hav

]

e

= ≤ = ( ∥ )

ψ (λ) = logE eλ log Q P

⇒

Q Q logEP e λ 1 log Q P ψP λ 1

ψQ
∗ (θ) = sup

∈
θλ

[

ψP

(

λ

/

1

)] =

ψP θ

/

R

[ ( + ) ( )

λ

∗ θ

] = ( + )

thus E0,E1 in (13.1) is achievabl

−

e.

( + ) = ( ) −

(

Con
(

verse:
)

We want to show that any achievable (

(

E )

) ( ))
0,E1 pair must be below the curve

E0 θ ,E1 θ in the above Neyman-Pearson test with parameter θ. Apply the strong converse
bound we have:

2−nE0 + 2−nθ2−nE1 ≥ 2−nψ
∗ (θ)+o nP

⇒min(E0,E

≤

1 + θ) ≤

(

ψP
∗

∗
(θ), ∀

⇒ ) ≤

n,
∗
θ

(

,

)

D P Q θ D Q P

either E0 ψP θ or E1 ψP

(

θ

∥ ) ≤ ≤ ( ∥ )

(θ

−

) −

13.2 Equivalent forms of Theorem 13.1

Alternatively, the optimal (E0,E1)-tradeoff can be stated in the following equivalent forms:

Theorem 13.2. 1. The optimal exponents are given (parametrically) in terms of λ 0,1 as

E0 =D(Pλ P , E1 D Pλ Q

∈ [

(13.2)

]

wher
=

e the distribution Pλ is tilting of P

∥

along

)

T , cf.

=

(12.14

( ∥

),

)

which moves from P0 P to
P1 Q as λ ranges from 0 to 1:

=

dPλ = (dP )1−λ(dQ)λ exp
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2. Yet another characterization of the boundary is

E1
∗(E0) = min

Q′∶D(Q′
D Q

P E0

′ Q , 0 E0 D Q P (13.3)

Proof. The first part is verified trivially. Indeed,

∥ )≤

if

(

we

∥

fix

)

λ and let

≤

θ

≤

(λ) ≜ E

(

P

∥

λ
[T

)

], then from (11.13)
we have

D(Pλ∥P

whereas

) = ψP
∗ (θ) ,

D(Pλ∥Q) = EPλ[
dPλ

log
dQ

] = EPλ[log
dPλ
dP

dP
D Pλ P EPλ T ψP

∗ θ θ .
dQ

Also
( ∥

from
)

(11.12) we know that as λ ranges in 0, 1 the

] =

mean

(

θ

∥ )

E

−

P

[ ] =

λ
T ranges from

( ) −

D P Q to
D Q P .

To prove the secon
=

d claim (13.3), the key observ

[ ]

ation is the

=

following:

[ ]

Since Q is itself

− (

a

∥

tilting

)

of P along T (with λ 1), the following two families of distributions

dPλ

dQλ′

= { − ( )} ⋅

are in fact the same family with Qλ P

=

exp

{

λT
′ −

ψP

(

λ dP (13.4)

exp λ T ψQ λ′)} ⋅ dQ (13.5)

λ

ose Q∗
1.

Now, supp that achieves

′

the
=

minim

′+
um in (13.3) and that Q Q, Q P (these cases

should be verified separately). Note that we have not shown that this minim

∗

um

∗

is achieved, but it
will be clear that our argument can be extended to the case of when Qn is

≠

a sequen

≠

ce achieving the
infimum. Then, on one hand, obviously

′

D(Q∗∥Q) = min
Q′∶

D Q Q D P Q
D Q′ P E0

′

On the other hand, since E0 ≤D(Q∥P ) we

(

also

∥ )≤

have

( ∥ ) ≤ ( ∥ )

D(Q∗∥P

Therefore,

) ≤D(Q∥P ) .

EQ∗[T ] = EQ∗[
dQ

log
∗

dP

dQ

dQ∗ ] =D(Q∗∥P ) −D(Q∗∥Q) ∈ [−D(P ∥Q),D(Q∥P )] . (13.6)

Next, we have from Corollary 12.1 that there exists a unique Pλ with the following three properties:1

EPλ[T ] =

( ∥ ) ≤

EQ
D P

∗

λ P D

D P

[

λ

(Q

Q D Q

∗
T ]

∥

(13.7)

∗
P (13.8)

Q

)

(13.9)

Thus, we immediately conclude that minimization

( ∥ ) ≤

in

(

(13.3

∥

)

)

{ ∈ }

can be restricted to Q belonging to the
family of tilted distributions Pλ, λ R . Furthermore, from (13.6) we also conclude

∗

that λ 0,1 .
Hence, characterization of E1

∗
∈ [ ]

(E0) given by (13.2) coincides with the one given by (13.3).

1Small subtlety: In Corollary 12.1 we ask EQ∗[T ] ∈ (A,B). But A,B – the essential range of T – depend on the
distribution under which the essential range is computed, cf. (12.10). Fortunately, we have Q P and P Q, so
essential range is the same under both P and Q. And furthermore (13.6) implies that EQ∗

≪ ≪
[T

141

] ∈ (A,B).



Note: Geometric
−

interpretation of (13.3) is as follows: As λ increases from 0 to 1, or equivalently,
θ increases from D P Q to D Q P , the optimal distribution traverses down the curve. This
curve is in essense a geodesic connecting P to Q and exponents E0,E1 measure distances to P and
Q. It may initially sou

(

nd

∥

stran

)

ge

(

that

∥ )

the sum of distances to endpoints actually varies along the
geodesic, but it is a natural phenomenon: just consider the unit circle with metric induced by the
ambient Euclidean metric. Than if p and
point to endpoints do not sum up to d(

q are two antipodal points, the distance from intermediate
p, q) = 2.

13.3* Sequential Hypothesis Testing

Review: Filtrations, stopping times

• A sequence of nested σ-algebras F0 ⊂ F1 ⊂ F2⋯ ⊂ Fn⋯ ⊂ F

F

is called a filtration of
.

• A random variable τ is
Z+ and b) for every n ≥

called a stopping time of a filtration n if a) τ is valued in
0 the event

F

{τ ≤ n

-algebra

∈ Fn.

• The σ

}

Fτ consists of all events E such that E ∩ {τ ≤ n n for all n 0.

• When Fn = σ{X1, . . . ,Xn} the interpretation is that τ is a time

} ∈

that

F

can be deter-

≥

mined by causally observing the sequence Xj , and random variables measurable
with respect to F

(
τ are precisely

of knowing X1, . . . ,Xτ

• Let Mn be a martingale

)

those whose value can be determined on the basis
.

adapted to F
=

n, i.e. Mn is

(
n-measurable and E M

)
n k

˜Mmin n,k . Then Mn Mmin n,τ is also a martingale. If collection Mn is uniformly
integrable then

( )

F [ ∣F ] =

E

{ }

[Mτ E M0 .

• For more details, see [Ç11, Chapter V].

] = [ ]
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Different realizations of Xk are informative to different levels, the total “information” we receive
follows a random process. Therefore,

(

instead of fixing the sample size n, we can make n a stopping
time τ , which gives a “better” E0,E1

•

) tradeoff. Solution is the concept of sequential test:

Informally: Sequential test Z at each step declares either “H0”, “H1” or “give me one more
sample”.

• Rigorous
F

defi
≜

nition
{

is as follo
}

ws: A sequential hypothesis
∈ {

tes
}

t is a stopping time τ of the

F

filtration n σ X1, . . . ,Xn and a random variable Z 0,1 measurable with respect to

τ .

• Each sequential test has the following performance metrics:

α P Z

l0

= [ = ] = [ = ]

= EP[τ

The easiest way to see why sequential tests

]

0 , β Q Z 0 (13.10)

, l1 EQ τ (13.11)

=

may b

=

e dramatically

[ ]

superior to fixed-sample size
tests is the following example: Consider P 1

2δ0 +
1
2δ1 and Q = 1

2δ0 +
1

⊥/

δ 1. Since P Q, we also2
have Pn Qn. Consequently, no finite-sample-size test can achieve zero

−
error rates under both

hypotheses. However, an obvious sequential test (wait for the first appearance of 1) ac

⊥/

hieves zero
error probability with finite average number of samples (2) under both hypotheses.

±

This advantage
is also seem very clearly in achievable error exponents.

Theorem 13.3. Assume bounded LLR:2

∣
P

log
(x)

c0, x
Q x

where c0 is some positive constant. If the error

(

pr

)
∣

ob

≤

abilities

∀

satisfy:

π1∣0 ≤ 2−l0E0 , π0∣
l1E1

1 2−

for large l0, l1, then the following inequality for the exponents

≤

holds

E0E1 ≤D(P ∥Q)D(Q∥P ).

2This assumption is satisfied for discrete distributions on finite spaces.
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with optimal boundary achieved by the sequential probability ratio test SPRT(A,B) (A, B are large
positive numbers) defined as follows:

τ = inf{n ∶ Sn B or Sn A

τ B
Z = {

0, if S
1, if S

≥ ≤ − }

τ

≥

< −A

where

Sn = ∑
n P

k=
log

1

(Xk)

Q(Xk

is the log likelihood function of the first k observations.

)

Note: (Intuition on SPRT) Under the usual hypothesis testing setup, we collect n samples, evaluate
the LLR Sn, and

{

compare
∶ ≥ }

it to the threshold to give the optimal test. Under the sequential setup
with iid

−

data,
( ∥ )

Sn n 1 is a random walk, which has positive (resp. negative) drift D P Q
(resp. D Q P ) under the null (resp. alternative)! SPRT test simply declare P if the random
walk crosses the upper boundary B, or Q if the random walk crosses the upper boundary

( ∥ )

−A.

Proof. As preparation we show two useful identities:

• For any stopping time with EP [τ] <∞ we have

EP [Sτ ] = EP [τ

and

]D(P ∥Q) (13.12)

similarly, if EQ[τ] <∞ then

EQ[Sτ ] = −EQ[τ]D(Q∥P ) .

To prove these, notice that
Mn = Sn − nD(P

is

∥Q

clearly a martingale w.r.t.

)

Fn. Consequently,

M̃n ≜Mmin

is also a martingale. Thus

(τ,n)

E M̃n E M̃0 0 ,

or, equivalently,

[ ] = [ ] =

E[Smin τ,n

This holds for every n 0. From

(

b

)

∣

oun

] = E[min(τ, n)]D(P ∥Q) . (13.13)

dedness assumption we have Sn nc and thus
Smin(n,τ)

≥ ∣

∣ ≤

→

nτ
∞

, implying that collection {Smin(n,τ), n ≥ 0} is uniformly integrable.
in

∣

Th
can

≤

us, we
take n (13.13) and interchange expectation and limit safely to conclude (13.12).

• Let τ be a stopping time. The Radon-Nikodym derivative of P w.r.t. Q on σ-algebra Fτ is
given by

dP∣Fτ exp
dQ∣Fτ

w

= Sτ} .

Indeed, what e need to verify is that for every ev

{

ent E

E

∈ Fτ we have

P [1E] = EQ[exp{Sτ}1E] (13.14)
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To that end, consider a decomposition

1E 1E
n 0

∩{τ=n} .

By monotone convergence theorem applied

= ∑

to

≥

(13.14) it is sufficient to verify that for every n

EP [1E∩{τ n EQ exp Sτ 1E τ n . (13.15)

dP
This, however, follows from the fact

=

th

}

at

] =

E

[ } ∩{ = }]

∩ {τ

{

= n} ∈ F and
∣Fn

n expQ∣Fn
= {Sn} by the veryd

definition of Sn.

We now proceed to the proof. For achievability we apply (13.14) to infer

π1∣0 = P[Sτ ≤ −A]

= EQ[exp{Sτ}1{S
−

τ ≤ −A

e A

}]

Next, we denot τ0 = inf{n ∶ Sn ≥ B and observe that τ τ0, whereas expectation of τ0 we estimate
from (13.12):

≤

EP

} ≤

[τ] ≤ EP [τ0] = EP [Sτ0] ≤ B + c0 ,

where in the last step we used the boundedness assumption to infer

Sτ0 ≤ B + c0

Thus

l0 = EP[τ] ≤ EP[τ0] ≤
B + c0

D(P ∥Q)
≈

B

D(P ∥Q)
for large B

Similarly we can show π0∣1 ≤ e
−B and l1 ≤

A
D(Q∥P

this shows the achievability.
) for large A. TakeB = l0D(P ∥Q),A = l1D(Q∥P ),

Converse: Assume (E0,E1) achievable for large l0, l1 and apply data processing inequality of
divergence:

d(P(Z = 1)∥Q(Z = 1)) ≤D

EP

(P∥Q)∣

= [

Fτ
Sτ ] = EP[τ]D(P ∥Q) from (13.12)

l0D P Q

notice
( ∥

that
)

for l0E0 and l1E1 large,

= (

we

∥

ha

)

≲

ve d P Z 1 Q Z 1 l1E1, therefore l1E1

l0D P Q . Similarly we can show that l E l D Q P , finally we have

E0E1 ≤D(

0 0 1

P ∥Q)D(Q

( ( = )∥ ( = )) ≈ ≲

( ∥ )

∥P ), as l0, l1 →∞
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Part IV

Channel coding
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§ 14. Channel coding

Objects of study so far:

1. PX - Single distribution, Compression

2. PX vs QX - Comparing two distributions, Hypothesis testing

3. Now: PY ∣X (called a random transformation) - A collection of distributions

14.1 Channel

∶ X →

Co

Y

ding

Definition 14.1. An M -code for PY ∣X is an encoder/decoder pair (f, g) of (randomized) functions1

• encoder f ∶ [M

• decoder g

]→ X

∶ Y → [M e

Notation: [M] ≜ {1,

]

. .

∪

.

{

,M

}

}.
In most cases f and g are deterministic functions, in which case we think of them (equivalently)

in terms of codewords, codebooks, and decoding regions

• ∀i

• i

∈ [M] ∶ ci = f(i are codewords, the collection c1, . . . , cM is called a codebook.

∀ ∈ [M],D = g−1
i

) C = { }

({i}) is the decoding region for i.

c1

cM

b
b

b

b

b

b b

b
b b

b

D1

DM

Figure 14.1: When X = Y, the decoding regions can be pictured as a partition of the space, each
containing one codeword.

Note: The underlying probability space for channel coding problems will always be

Ð
f
→

P
Ð
Y
→
∣X

Ð
g

W X Y → Ŵ

1For randomized encoder/decoders, we identify f and g as probability transition kernels PX∣W and PŴ ∣Y .
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When the source alphabet is [M], the joint distribution is given by:

(general) P ˆWXYW (m,a, b, m̂) =
1

M
PX ∣W (a∣m)PY ∣X(b∣a)PŴ ∣Y (m̂∣b)

(deterministic f, g) PWXY Ŵ (m,cm, b, m̂) =
1
PY ∣X

e

(b∣cm
M

Throughout the notes, these quantities will b called:

)1{b ∈Dm̂}

• W - Original message

• X - (Induced) Channel input

• Y - Channel output

• Ŵ - Decoded message

14.1.1 Performance Metrics

Three ways to judge the quality of a code in terms of error probability:

1. Pe ≜ P[W =/ Ŵ ] - Average error probability.

2. Pe,max ≜ maxm∈[M] P[Ŵ /=m∣W =m] - Maximum error probability.

3. In the special case when M = 2k, think of W = Sk ∈ Fk2 as a length k bit string. Then the
bit error rate is Pb ≜

1 ∑kj=1 P[Sj =/ Ŝj], which means the average fraction of errors in a k-bitk
block. It is also convenient to introduce in this case the Hamming distance

dH(Sk ˆ, Sk) ≜ #{i ∶ ˆSi ≠ Sj} .

Then, the bit-error rate becomes the normalized expected Hamming distance:

Pb =
1
E dH Sk ˆ, Sk .

k

To distinguish the bit error rate Pb from the

[

previously

( )]

defined Pe and Pe,max, we will also
call the latter the average (resp. max) block error rate.

The most typical metric is average probability of error, but the others will be used occasionally
in the course as well. By definition, Pe Pe,max. Therefore maximum error probability is a more
stringent criterion which offers uniform protection

≤

for all codewords.

14.1.2 Fundamental Limit of PY X

Definition 14.2. A code f, g is an M

∣

, ε -code for PY X if f M , g M e , and
Pe ≤ ε. Similarly, an (M,ε

Then

) ( ) ∣
ε.

the fundamental

(

)max-code must satisfy Pe,max

limits of channel codes are defined

∶ [ ]→ X ∶ Y → [ ] ∪ { }

≤

as

M∗

∗
(ε) = max{M

Mmax ε max M

∶ ∃(

( ) = { ∶ ∃(

M,ε

M, ε

) − }

Remark: log2M gives the maximum number of bits that

)

code

max − code

we can pump

}

through a channel PY X

while still having

∗

the error probability (in the appropriate sense) at most ε.
∣
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Example: The random transformation BSC(n, δ) (binary symmetric channel) is defined as

X = {0,1 n

Y = {0,1

}

}n

where the input Xn is contaminated by additive noise Zn ⊥⊥Xn and the channel outputs

Y n Xn Zn

where Zn
i.i.d.
∼ Bern(δ). Pictorially, the BSC

= ⊕

(n, δ) channel takes a binary sequence length n and flips
the bits independently with probability δ:

0 1 0 0 1 1 0 0 1 1

PY n|Xn

1 1 0 1 0 1 0 0 0 1

Question: When δ = .11, n
Ideas:

= 1000, what is the max number of bits you can send with Pe ≤ 10−3?

0. Can one send 1000
bit =

bits with Pe 10 3? No and apparently the probability that at least one
is flipped is Pe 1

≤

− n

−

(1 − δ) ≈ 1. This implies that uncoded transmission does not meet
our objective and coding is necessary – tradeoff: reduce number of bits to send, increase
probability of success.

1. Take each bit and repeat it l times (l-repetition code).

0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0

f

l

With ma
≤

jorit
=

y decoding, the probabilit
≤ −

y of error of this scheme is Pe kP Binom l, δ l 2
and kl n 1000, which for P 10 3

e gives l 21, k 47 bits.
≈ [ ( ) > / ]

2. Reed-Muller Codes (

(

1,
−

r).
)

Interpret a message

=

a

=

+

r
0, . . . , ar−1 ∈

∑ −
F2 as the polynomial (in this

case, a degree-1 and r 1 -variate polynomial)
−

r 1
i 1 aixi a0, then codewords are formed b

evaluating the polynomial at all possible xr 1 F
bits,

∈ r
2

has minimum distance 2r 2. For r 7, there is

=
−1. This code, which maps r bits to 2r

a 64,7,32 Reed-Muller code and it can

−
y
1

be shown that the MAP
=

≤ ⋅

decoder

−

−
of this code passed over the BSC n 64, δ 0.11 achieves

probability of error 6 10 6. Thus, we can use 16 such

[

blocks

]

(each carrying 7 data bits and
occup

≲

ying
−

64 bits on the channel) o
⋅

ver
=

the BSC 1024, δ , and still h

(

ave

=

(union

=

bound)

)

overall
Pe 10 4. This allows us to send 7 16 112 bits
of

(

in 1024
)

channel uses, more than double that
the repetition code.
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3. Shannon’s theorem (to be shown soon) tells us that over memoryless channel of blocklength n
the fundamental limit satisfies

logM∗ =

)

nC o n (14.1)

as n → ∞ and for arbitrary ε ∈ (0,1 . Here C
single-letter hav

+ ( )

= maxX I
channel. In our case we e

(X1;Y1) is the capacity of the

I(X;Y ) = max I(
1

X;X +Z) = log 2 h
X

− (δ
P

) ≈ bit
2

So Shannon’s expansion (14.1) can be used to predict (non-rigorously, of course) that it should
be possible to send around 500 bits reliably. As it turns out, for this blocklength this is not
quite possible.

4. Even though calculating logM
is doubly exponential in block

∗ is not computationally feasible (searching over all codebooks
length n), we can find bounds on logM that are easy to

compute. We will show later in the course that in fact, for BSC(1000, .11

∗

414 logM∗ 416

)

5. The first codes to approach the bounds on log

≤

M

≤

engine – where exhaust is fed back in to power

∗ are called Turbo codes (after the turbocharger
the engine). This class of codes is known as

sparse graph codes, of which LDPC codes are particularly well studied. As a rule of thumb,
these codes typically approach 80 . . .90% of logM∗ when n ≈ 103 . . .104.

14.2 Basic Results

Recall that the object of our study is M∗(ε) = max

14.2.1

{M ∶ ∃(M,ε) − code}.

Determinism

1. Given any encoder f
(MAP) decoder, or equiv
are equiprobable:

∶ [M]→ X , the decoder that minimizes Pe is the Maximum A Posteriori
alently, the Maximal Likelihood (ML) decoder, since the codewords

g∗(y) = argmax
m∈[M]

P [W =m Y y

argmaxP Y y W

∣ =

m

]

m M

Furthermore, for a fixed f , the MAP

=

deco

∈[

der

]

g

[

is deterministic

= ∣ = ]

2. For given M , PY ∣X , the Pe-minimizing encoder is deterministic.

Proof. Let f M be a random transformation. We can always represent randomized
encoder as deterministic

˜the

∶ [ ]→ X

encoder with auxiliary randomness. So instead of f a m , consider
deterministic encoder f(m,u), that receives external randomness u. Then

(

lo
∣

oking
)

at all
possible values of the randomness,

ˆ ˆPe P W W EU P W W U EU Pe U

Each u in the expectation

=

giv

[

es a

=/

deterministic

] = [ [

enco

=/

der,

∣

hence

] =

there

[ (

is

)]

a deterministic encoder
ˆthat is at least as good as the average of the collection, i.e., ∃u0 s.t. Pe(u0) ≤ P[W ≠W ]
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Remark: If instead we use maximal probability of error as our performance criterion, then
these results

=

don’t hold; randomized encoders and decoders may improve performance. Example:
consider M 2 and we are back to the binary hypotheses testing setup. The optimal decoder (test)
that minimizes

{ −

the maximal Type-I and II error probability, i.e., max 1 α,β , is not deterministic,
if max 1 α,β not

− }

} is achieved at a vertex of the region P,Q .
{

14.2.2 Bit Error Rate vs Block Error Rate

R( )

Now we give a bound on

(

the a

)

verage

=

probabilit

Ô⇒

y of error in terms of the bit error probability.

Theorem 14.1. For all f, g , M 2k Pb ≤ Pe ≤ kPb

Remark: The most often used direction Pb ≥
1
kPe is rather loose for large k.

Proof. Recall that M = 2k gives us the interpretation of W = Sk sequence of bits.

1
∑
k k

ˆ
=

1{ ˆSi =/ Ŝi} ≤ 1 S
k

{Sk =/ k

1

} ≤ 1 Si Si
i i

Where w

∑
1

the first inequality is obvious and the second follo from

=

the

{

union

=/ }

bound. Taking expectation
of the above expression gives the theorem.

Theorem 14.2 (Assouad). If M = 2k then

Pb ≥ min{P[Ŵ = c′W c c, c′ Fk2, dH c, c′ 1 .

Proof. Let ei be a length k vector that is 1

∣

in

=

the

] ∶

i-th p

∈

osition,

(

and

)

zero

= }

everywhere else. Then

∑
k k

ˆ
i=

1 Si Si 1 Sk Ŝk ei
1

Dividing

{ =/ } ≥
i
∑
=1

by k and taking expectation gives

{ = + }

Pb ≥
1

k

k

∑
i=1

P[Sk = Ŝk + ei]

≥ min{P[Ŵ = c′∣W = c] ∶ c, c′ ∈ Fk2, dH(c, c′) = 1} .

Similarly, we can prove the following generalization:

Theorem 14.3. If A,B ∈ Fk2 (with arbitrary marginals!) then for every r ≥ 1 we have

Pb =
1 k
E[dH

B

(A,B)]
1
Pr,min (14.2)

k

=

r

c′∣

1

Pr,min ≜ min{P[ A

≥ (
−

−
)

= c] ∶ c, c′ ∈ Fk2, dH(c, c′

observ

= r} (14.3)

Proof. First, e that

)

P[dH(
k

A,B) = r∣A = a] =
∶
∑
( )=

PB∣A(b∣a) ≥ ( )Pr,min .
rb dH a,b r

Next, notice
dH(x, y) ≥ r1{dH(

∼ ∼

x, y

and

= r

take the expectation with x A, y B.

) }
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Remark: In statistics, Assouad’s Lemma is a useful tool for obtaining lower bounds on the
minimax risk of an estimator. Say the data X is distributed according to Pθ parameterized by θ Rk

ˆ ˆ ˆand let θ θ X be an estimator for θ. The goal is to minimize the maximal risk supθ Θ Eθ θ θ 1 .
ˆA lower b

=

ound
(

(Ba
)

yesian) to this worst-case risk is the average risk E θ θ 1 , where θ is distributed

∈

to any prior. Consider θ uniformly distributed on the hypercube 0, ε k with side length

∈

ε em

[∥

b

−

edded

∥ ]

in the space of parameters. Then

[∥ − ∥ ]

kε

{ }

inf sup E ˆ
θ̂ θ∈{ }

θ
0,ε

[∥ − θ∥1
k

] ≥
4

min
dH(θ,θ′)=1

(1 −TV(Pθ, Pθ′)) . (14.4)

This can be proved using similar ideas to Theorem 14.2. WLOG, assume that ε = 1.

E[∥θ − θ̂∥1]
(a)
≥

1

2
E[∥θ − θ̂dis∥1] =

1
E

2
[dH( ˆθ, θdis)]

≥
1 1ˆ

=
min

i
∑
k

2 = ˆ ˆ1 θi θi(X)
P[θi ≠ θi]

(
=
b)

4

k

∑
i=1

(1 −TV(PX ∣θi=0, PX ∣θi=1))

(c)
≥
k

TV

ˆ

(
min

4 dH θ,θ′)=
1 Pθ, Pθ

1
′ .

ˆ ˆHere θ the

(

dis is discretized version of θ,

−

i.e.

(

the closest

))

∣ − ∣ ≥

point on the hypercube to θ and so
ˆ(a) follows from θi θ 1
i 21{∣θi−θ̂i∣>1/2} = 1

21{θi≠θ̂dis,i}, (b) follows from the optimal binary hy-

pothesis testing for θi given X, (c) follows from the convexity of TV: TV(PX ∣θi=0, PX ∣θi=1) =

TV( 1
2k−1 ∑θ∶θi=0 PX ∣θ,

1
2k−1 ∑θ∶θi=1 PX ∣θ) ≤ 1

k−1 ∑θ∶θi=0 TV(PX ∣θ, PX ∣θ⊕ei)
/
≤ maxdH(θ,θ 1 TV Pθ, Pθ .

2
i ˆ ˆAlternatively, (c) also follows from by providing the extra information θ and allowing

′)=
θi

( )

= θi(X,θ

′

/i

in the second line.
)

14.3 General (Weak) Converse Bounds

Theorem 14.4 (Weak converse).

1. Any M -code for PY ∣X satisfies

Y
log ≤

sup ;
M X I(X ) + h(Pe)

1 − Pe

2. When M = 2k

logM ≤
supX I(X;Y )

log 2 h Pb

Y → ˆProof. (1) Since W →X → W , we have the following

−

c

(

hain

)

of inequalities, cf. Fano’s inequality
Theorem 5.4:

sup I
X

(X;Y ) ≥ I(X;Y ) ≥ I( ˆW ;W )

≥ d(P[W = Ŵ ]∥
1

≥

M
)

−h(P[W =/ Ŵ ]) + P[W = Ŵ ] logM
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→

ˆPlugging in Pe = P[W =/ W finishes the first proof.
(2) Now Sk ˆX → ˆ ˆY

]

→ Sk. Recall from Theorem 5.1 that for iid Sn, ∑ I(Si;S
k

i) ≤ I(S
k;S ).

This gives us

sup I
X

(X;Y ) ≥ S
1

( ˆ
i
∑
k

I(X;Y ) ≥
=
I Si, i)

≥
1

k
k
∑d(P[Si = Ŝi]∥

1

2
)

≥ kd(
1 1

P
i
∑
k

k =1

[Si = Ŝi]∥
2
)

= kd(1 − Pb∥
1

log

5.4

) = k 2 h Pb
2

where the second line used Fano’s inequality (Theorem ) for binary

(

random

− ( ))

variable (or divergence
data processing), and the third line used the convexity of divergence.

14.4 General achievability bounds: Preview

Remark: Regarding differences between information theory and statistics: in statistics, there is
a parametrized set of distributions on a space (determined by the model) from which we try to
estimate the underlying distribution from samples. In data transmission, the challenge is to choose
the structure on the parameter space (channel coding) such that, upon observing a sample, we can
estimate the correct parameter with high probability. With this in mind, it is natural to view

PY
log

∣X=x
PY

as an LLR of a binary hypothesis
=

test,
○

where we compare the hypothesis X x to the distribution
induced by our codebook: PY PY ∣X PX (so compare ci to “everything else”). To decode, we
ask M different questions of this form. This motivates importance of the random

=

variable (called
information density):

i(X;Y ) =
PY

log
∣X(Y ∣X)

PY Y

, where PY = PY ∣X ○ PX . (Note: I(X;Y ) = E i

( )

[ (X;Y )]).

∀

Shortly
∃( )

,
−

we will show a result (Shannon’s Random Coding Theorem), that states: PX ,
τ , M,ε code with

∀

ε ≤ P[i

Details in the next lecture.

(X;Y ) ≤ logM + τ] + e−τ
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§ 15. Channel coding: achievability bounds

Notation: in the following proofs, we shall make use of the independent pairs (X,Y ) ⊥⊥ (X,Y )

X → Y (X ∶ sent codeword)

X → Y (X ∶ unsent codeword

The joint distribution is given by:

)

PXYXY (a, b, a, b) = PX(a)PY ∣X(b∣a)PX(a)PY ∣X(b∣a).

15.1 Information density

Definition 15.1 (Information density). Given joint distribution PX,Y we define

iPXY (x; y) =
PY

log
∣X(y∣x)

PY (y)
= log

dPY ∣X=x(y)
(15.1)

dPY y

and we define iPXY x; y for all y in the singular set where PY X x is not absolutely continuous
w.r.t. PY . We also define all

( )

( ) = +∞

iPXY x; y for y such that dPY
∣
X

=
x dPY equals zero. We will

almost always abuse notation and write i x; y dropping the subscript PX,Y , assuming that the
joint distribution defining i ;

(

is clear

) = −∞

from the context.

∣ = /

Notice that i x; y depends on the underlying

(

P

)

(⋅ ⋅)

( ) X and PY ∣X , which should be understood from the
context.

Remark 15.1 (Intuition). Information density is a useful concept in understanding decoding. In
discriminating between two codewords, one concerns with (as we learned in binary hypothesis

P
testing) the LLR, log Y ∣X=c1

( )
∣ =

. In M -ary hypothesis testing, a similar role is played by informationPY X c2

density i c1; y , which, loosely speaking, evaluates the likelihood of c1 against the average likelihood,
or “everything else”, which we model by PY .

Remark 15.2
(⋅ ⋅)

(Joint measurability). There is a measure-theoretic subtlety in (15.1): The so-defined
function i ; may not be a measurable function on the product space . For resolution, see
Section 2.6* and Remark 2.4 in particular.

Remark 15.3 (Alternative definition). Observe that for discrete 15.1

X ×

X ,Y , ( )

Y

is equivalently written
as

i(
X

x; ) =
P ,Y

y log
(x, y)

PX(x)PY (y)
= log

PX ∣Y (x∣y)

PX(x

For the continuous case, people often use the alternative definition,

)

X ×Y

which is symmetric in X and Y
and is measurable w.r.t. :

i(
,Y

x; ) =
dPX

y log x,
dPX × PY

( y) (15.2)
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Notice a subtle difference between (15.1) and (15.2) for the continuous case: In (15.2) the Radon-
Nikodym deriv

( (

ativ
)

e
>

is
)

only defined up to sets of measure zero, therefore whenever PX x 0 the
value of PY i x, Y t is undefined. This problem does not

( ) =

X Y

occur with definition (15.1), and that
is why we prefer it. In any case, for discrete , , or under other regularity conditions, all the
definitions are equivalent.

Proposition 15.1 (Properties of information density).

1. E[i(X;Y )] = I(X;Y ). This justifies the name “(mutual) information density”.

2. If there is a bijective transformation (

( )

X,Y A,B , then almost surely iPXY X;Y
iPAB A;B and in particular, distributions of

)

i
→ (

and
)

(X;Y ) i(A;B coincide.
( ) =

3. (Conditioning and unconditioning trick) Suppose that f

)

(y) =

( ) = −∞

0 and g
i

) = 0 whenever
x; y

(x
, then1

E[

[

f

g(

Y )] = E
E

(

X E
[ {− (

)] = [

exp

{

i X x

i(

x;Y f Y , x (15.3)

exp − X; y

)}

g

(

X

)∣

Y

=

y

]

,

∀

y (15.4)

4. Suppose that f

)} ( )∣ = ] ∀

(x, y) = 0 whenever i(x; y) = −∞, then

E[f(X,Y )] = E[exp{−i(X;Y )}f(X,Y )] (15.5)

E[f(X,Y )] = E[exp{−i(X;Y )}f(X,Y )] (15.6)

Proof. The proof is simply change of measure. For example, to see (15.3), note

Ef(Y ) = ∑
y∈Y

PY (y)f(y) = ∑
y∈Y

PY ∣X(y∣x)
PY (y)

f y
PY X y x

notice
(

that by the assumption on f , the summation is valid

∣

ev

(

en

∣ )

if

(

for

)

some y we have that
PY ∣X y x 0. Similarly, E f x, Y E exp i x;Y f x,Y X x . Integrating over x PX
gives (15.5

)

). The

(⋅)

∣ =

rest are by
[

in
(

terchanging
)] = [

X
{

and
− (

Y .
)} ( )∣ = ] ∼

Corollary 15.1.

P[i(x;Y ) > t] ≤ exp(−t) (15.7)

P[i(X;Y t exp t (15.8)

Proof. Pick f Y

) > ] ≤ (− )

( ) = 1{i(x;Y ) > t} in (15.3).

Remark 15.4. We have used this trick before: For any probability measure P and any measure Q,

Q[ log
dP

t
dQ

≥ ] ≤ exp

h

( t). (15.9)

for example, in yp

−

that ∣{x ∶ logPX(x)
othesis
≥ }∣ ≤

testing
(− )

(Corollary 10.1). In data compression, we frequently used the fact
t exp t , which is also of the form (15.9) with Q = counting measure.

1Note that (15.3) holds when i(x; y) is defined as i = log
dPY ∣X

PY
, and (15.4) holds when i(x; y) is defined as

i = log
dPX∣Y . (15.5) and (15.6) hold under either of the definitions. Since in the following we shall only make use of
PX

(15.3) and (15.5), this is another reason we adopted definition (15.1).
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15.2 Shannon’s achievability bound

Theorem 15.1 (Shannon’s achievability bound). For a given PY ∣X , ∀PX , ∀τ > 0, ∃(M,ε)-code
with

ε ≤ P[i X;Y logM τ exp τ . (15.10)

Proof. Recall that for a given codebo

(

ok

) ≤ + ] + (− )

{c1, . . . , cM}, the optimal decoder is MAP, or equivalently,
ML, since the codewords are equiprobable:

g∗(y) = argmax
∈[ ]

PX
m M

∣Y (cm y

= argmax
∈[ ]

PY ∣X(y c

∣ )

m M
∣ m

argmax i cm; y .

)

m M

The step of selecting the maximum likeliho

=

od

∈[

can

]

mak

(

e an

)

alyzing the error probability difficult.
Similar to what we did in almost loss compression (e.g., Theorem 7.4), the magic in showing the
following two achievability bounds is to consider

(

a
)

suboptimal decoder. In Shannon’s bound, we
consider a threshold-based suboptimal decoder g y as follows:

g(y

Interpretation: i cm; y logM

) = {
m, !cm s.t. i cm; y logM τ
e,

∃ (

o.w.
) ≥ +

τ PX Y cm y M exp τ PX cm , i.e., the likelihood of cm
being the transmitted codeword conditioned on receiving y exceeds some threshold.

For a given co

(

debook

) ≥

(c1, . . . ,

+

c

⇔ ∣

M , the error

(

probabilit

∣ ) ≥

y is:

( ) ( )

Pe(c1, . . . , cM

)

) = P[{i(cW ;Y ) ≤ logM + τ} ∪ {∃m ≠W, i(cm;Y ) > logM τ

where W is uniform on

+ }]

[M].
We generate the codebook (c1, . . . , cM randomly with cm PX i.i.d. for m M . By symmetry,
the error probability averaging over all

)

possible codebooks
∼

is given by:
∈ [ ]

=

E
E
[

[

Pe c1, . . . , cM

= [{

Pe c1, . . . , cM W 1

P i

( )]

( )∣ = ]

(c1;Y ) ≤ logM + τ} ∪ {∃m ≠ 1, i(cm, Y ) > logM + τ}∣W = 1]

≤ P[i(c1;Y ) ≤ logM + τ ∣W = 1] +
M

∑
m=2

P[i(cm;Y ) > logM + τ ∣W = 1] (union bound)

= P [i(X;Y ) ≤ logM + τ] + (M − 1)P [i(

≤ P Y

)

(X;

> + ]

[i ) ≤ logM + τ] + (

X;Y logM τ (random codebook)

M − ) (−(

≤ [ ( ) ≤ + ] + ) +

1

(

exp

− )

logM + τ)) (by Corollary 15.1)

P i X;Y logM τ τ exp τ

Finally, since the error probability averaged over the random codebook satisfies the upper bound,
there must exist some code allocation whose error probability is no larger than the bound.

Remark 15.5 (Typicality).
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• The property of a pair x, y satisfying the condition i x; y γ can be interpreted as “joint
typicality”. Suc

∼

h version of joint typicality is useful when random coding is done in product
spaces with cj PnX (i.e.

(

co

)

ordinates of the codeword

{ (

are iid).

) ≥ }

• A popular alternative to the definition of typicality is to require
≈

that the empirical joint
ˆdistribution is close to the true joint distribution, i.e., Pxn,yn PXY , where

1
P̂xn,yn(a, b) = j

n
⋅#{j ∶ x = a, yj b .

This
{ ∶

definition
≈

is natural for cases when random coding is d

=

one

}

with cj uniform on the set
xn P̂xn PX} (type class).

∼

15.3 Dependence-testing bound

Theorem 15.2 (DT bound). ∀PX , ∃(M,ε)-code with

ε ≤ E [exp{−(i(
1

X; ) −
M

Y log
−

(15.11)
2

)
+

where x

}]

+ ≜ max(x,0).

Proof. For a fixed γ, consider the following suboptimal decoder:

m, for the smallest m s.t. i
g y

(cm; y) ≥ γ
e, o/w

Note that given a codebook

( ) = {

{c1, . . . , cM

P

}, we have by union bound

[Ŵ ≠ j∣W = j] = P[i(cj ;Y

P

) ≤ γ∣W = j

i cj ;Y γ W j

] + P[i ;Y

j−
(cj

1

P i ck

)

;Y

> γ,∃k ∈ [j − 1], s.t. i(ck;Y ) > γ]

Averaging over the randomly

≤ [ (
k

generated

) ≤ ∣

co

=

deb

]

o

+

ok,

∑
=

.
1

[ ( ) > γ∣W = j

the expected error probabilit

]

y is upper bounded
by:

E[
1

Pe(c1, . . . , cM)] =
M

M

∑
j=1

P[Ŵ ≠ j∣W = j]

≤
1 j

P
j
∑
M

M =1

( [i(X;Y ) ≤ γ] +∑
−1

P
k=1

[i(X;Y ) > γ])

= P[i(X;Y ) ≤ γ] +
M − 1

2
P[i(X;Y ) > γ]

= P[i(X;Y ) ≤ γ] +
M − 1

E[

−

exp(−i(X;Y ))1{i(X;Y ) > γ}] (by (15.3))

= E[1{i(
1

X;Y ) ≤ } +

2
M

γ
2

exp(−i(X;Y ))1{i(X,Y ) > γ}]

= E[min (1,
M − 1

2
exp(−i(X;Y )))] (γ = log

M − 1

−

minimizes the upper bound)

=

2

E [exp{−(i(X;Y ) −
M 1

log
2

)
+
}] .
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To optimize over γ, note the simple observation that U1E +

≥ [ ( ) ≤ ] +

V 1{
−

Ec} ≥ min{U,V }, with equality iff

U V on E. Therefore for any x, y, 1 i x; y γ M 1
2 e−i(x;y)1[i(x; y) > γ] ≥ min(1, M−1

2 e−i(x;y)),

achieved by γ = log M−1
2 regardless of x, y.

Note: Dependence-testing: The RHS of (15.11) is equivalent to the minimum error probability of
the following Bayesian hypothesis testing problem:

H0 ∶X,Y ∼ PX,Y versus H1 ∶X,Y ∼ PXPY

prior prob.: π0 =
2

M + 1
, π1 =

M − 1

M + 1
.

Note that X,Y ∼ PX,Y and X,Y ∼ PXPY , where X is the sent codeword and X is the unsent
codeword. As we know from binary hypothesis testing, the best threshold for the LRT to minimize
the weighted probability of error is log π1 .π0

Note: Here we avoid minimizing over τ in Shannon’s bound (15.10) to get the minimum upper
bound in Theorem 15.1. Moreover, DT bound is stronger than the best Shannon’s bound (with
optimized τ).
Note: Similar to the random coding achievability bound of almost lossless compression (Theorem
7.4), in Theorem 15.1 and Theorem 15.2 we only need the random codewords to be pairwise
independent.

15.4 Feinstein’s Lemma

The previous achievability results are obtained using probabilistic methods (random coding). In
contrast, the following achievability due to Feinstein uses a greedy construction. Moreover,
Feinstein’s construction holds for maximal probability of error.

Theorem 15.3 (Feinstein’s lemma). ∀PX , ∀γ > 0, ∀ε ∈ (0,1 , M,ε max-code such that

M ≥ γ ε

) ∃( )

( − P[i(X;Y

Remark 15.6 (Comparison with Shannon’s bound).

)

(

W

< log γ (15.12)

e can

])

also interpret (15.12) as for fixed M ,
there exists an M,ε)max-code that achieves the maximal error probability bounded as follows:

ε ≤ P[i(
M

X;Y ) < log γ] +
γ

Take log γ logM τ , this gives the bound of exactly the same form in (15.10). However, the
two are pro

=

ved in seemingly
+

quite different ways: Shannon’s bound is by random coding, while
Feinstein’s bound is by greedily selecting the codewords. Nevertheless, Feinstein’s bound is stronger
in the sense that it concerns about the max error probability instead of the average.

Proof. The idea
∈

is
X

to construct the codebook of size M in a greedy way.
For every x , associate it with a preliminary decode region defined as follows:

Ex y i x; y log γ

Notice that the preliminary decoding regions

≜ { ∶ (

Ex

)

ma

≥

y be

}

overlapping, and we denote the final
decoding region partition regions by Dx .

We can assume that P i X;Y log γ ε,

{

for

}

otherwise the R.H.S. of (15.12) is negative and
there is nothing to prove.

{ }

[

W
(

e first
) <

claim
]

that
≤

there exists some c such that PY [Ec∣X c
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Show b
[

y
(

contradiction.
) ≥

Assume that c , P i c;Y log γ X c 1 ε, then pick c PX , we
have P i X;Y log γ 1 ε, which is

Then we construct the codebook in

∀

a
th

∈

c
e

X

ontradiction.
follo

[

wing

( ) ≥ ∣ = ] < − ∼

] < −

greedy way:

1. Pick c1 to be any codeword such that PY [Ec1 ∣X = c1 1 ε, and set D1 Ec1 ;

2. Pick c2 to be any codeword such that PY Ec2 D1 X

] ≥ − =

[ / ∣ = c2] ≥ 1 − ε, and set D2

. . .
= Ec2/D1;

3. Pick cM
−
to be any codeword such that PY [EcM

E M 1
cM j=1 Dj . We stop if no more codeword can

stopping condition:

/ ∪M=
e

−1
j 1 Dj

b found,

∣X = cM
i.e., M

] ≥ −

/ ∪

1 ε, and set DM

is determined by the

=

x0 , PY E M
x0 j 1 Dj X x0 1 ε

Averaging over x0 ∼ PX , the

∀

stopping

∈ X

condition

[ / ∪

giv

=

es

∣

that

= ] < −

P({i(X;Y

by union bound P A B P A P B

) ≥ log γ}/{Y M
j 1Dj 1 ε

( / ) ≥ ( ) − ( ), we have

∈ ∪ = }) < −

P(i(X;Y ) ≥ log γ) −∑
M

=
PY Dj

j 1

M

) < 1 − ε

⇒P i

(

( (X;Y ) ≥ log γ) − 1
γ

< − ε

where the last step makes use of the following key observation:

PY (Dj) ≤ PY (Ecj) = PY (i(cj ;Y ) ≥ log γ) <
1

γ
, (by Corollary 15.1).
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§ 16. Linear codes. Channel capacity

Recall that last time we showed the following achievability bounds:

Shannon’s: Pe ≤ P [i(X;Y ) ≤

⇑

logM + τ] + exp{−τ}

DT: Pe ≤ [
1

E exp{−(i( ;Y ) −
M

X log
−

2
)
+

Feinstein’s: Pe,max P i X;Y logM τ exp

}]

τ

This time we shall use a shortcut to prove

≤

the

[

ab

(

ove

)

bounds

≤

an

+

d in

] +

whic

{

h

−

case

}

Pe = Pe,max.

16.1 Linear coding

Definition 16.1 (Linear code). Let X = Y = Fn k

∶ → ∀ ∈
q , M = q . Denote the codebook by C ≜ {cu ∶

= ∈

u Fkq .

A code f Fkq Fnq is a linear code if u Fkq , c n
u uG (row-vector convention), where G Fkq

.

∈

is
a generator matrix

×
}

Proposition 16.1.

c ∈ C

⇔ c row span of G

c

∈

KerH, for some H F(n−k)×n
q s.t. HGT 0.

Note: For linear codes, the

⇔

co

∈

debook is a k-dimensional

∈

linear subspace

=

of Fnq (ImG or KerH). The
matrix H is called a parity check matrix.
Example

= [−

: (Hamming
]

code) The [7,4,3]2 Hamming code over F2 is a linear code with G = [I;P
and H P T ; I is a parity check matrix.

]

G

⎢
⎡ 1 ⎤
⎢
⎢

1 0 0 0 1 0
0 1 0 0 1 0 1 ⎥

⎥

H
⎢
⎡
⎢

= ⎢
⎥
⎥ ⎢

⎢

1 1 0 1 1 0 0

⎢
⎢ ⎥

=

⎢
⎥
⎥ ⎣

⎢
1 0 1 1 0 1 0

0 0 1 0 0 1 1
0 1 1 1 0 0 1

0 0 0 1 1 1 1

⎥
⎥
⎤

⎥
⎥

Parity chec

⎥
⎣

k: all four bits in the

⎦

same circle sum up to zero.

⎦

x5

x6 x7

x4
x1x2

x3

Note: Linear codes are almost always examined with channels of additive noise.

Definition 16.2 (Additive noise). PY ∣X is additive-noise over Fnq if

PY ∣X(y∣x) = PZn(y − x)⇔ Y =X +Zn where Zn ⊥⊥X
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Now: Given a linear code and an additive-noise PY ∣

[ ]

X , what can we say about the decoder?

Theorem
∶

16.1.
→

Any k,n Fq linear code over an additive-noise PY X has a maximum likelihood
decoder g Fnq Fnq such that:

∣

1. g y y g H T
synd yT , i.e., the decoder is a function of the “syndrome” Hy only

2. De

(

c

)

oding

= −

regions

(

are

)

translates: Du = cu +D0,∀u

3. Pe,max Pe,

where gsynd

=

∶ Fn−kq → Fnq , defined by gsynd(s
which decodes the most likely realization of

) = argmaxz∶HxT =s PZ(z), is called the “syndrome decoder”,
the noise.

Proof. 1. The maximum likelihood decoder for linear code is

g(y) = argmax
∈C

PY ∣X(y∣c) = argmax
∶ =

PZ
c c HcT 0

(y − c) = y − argmax
z∶

PZ z
zT

( ),

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
H

≜g
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
=H
¸
yT

synd(H
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
yT
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
)

¹¹¶

2. For any u, the decoding region

Du = {y

where we

∶ g(y) = cu} = {y ∶ y − gsynd(Hy
T ) = cu} = {y ∶ y − cu = g

T
synd

used

(H(y − cu) )} = cu +D0,

HcTu 0 and c0 0.

3. For any u,

= =

P[Ŵ ≠ u∣W = u] = P[g(cu+Z) ≠ cu] = P[c T
u+Z−gsynd(Hcu +HZ

T ) ≠ c T
u] = P[gsynd(HZ ) ≠ Z].

Note: The advantages of linear codes include at least

1. Low-complexity encoding

2. Slightly lower complexity ML decoding (syndrome decoding)

3. Under ML decoding, maximum probability of error = average probability of error. This is a
consequence of the symmetry of the codes. Note that this holds as long as the decoder is a
function of the syndrome only. As shown in Theorem 16.1, syndrome is a sufficient statistic
for decoding a linear code.

Theorem

→

16.2 (DT bounds for linear codes). Let PY ∣X be additive noise over Fnq . ∀k, a linear code f

Fkq Fnq with the error probability:

∃ ∶

Pe,max = Pe ≤ E[q
−(n−k−log 1

q PZn (Zn)
)
+

] (16.1)

161



Proof.
∼

Recall that in proving the Shannon’s achievability bounds, we select the code words c1, . . . , cM
i.i.d PX and showed that

E[Pe(
M 1

c1, . . . , cM)] ≤ P [i(X;Y ) ≤ γ] +
−

2
P (i(X;Y γ

As noted after the proof of the DT bound, we only need the random co

)

dew

≥ )

ords to be pairwise
independent. Here we will adopt a similar approach. Note that M qk.

Let’s first do a quick check of the capacity achieving input distribution
=

for PY ∣X with additive
noise over Fnq :

max I X;Y maxH Y H Y X maxH Y H Zn n log q H Zn PX uniform on Fnq
PX

( ) =
PX

( ) − ( ∣ ) =
PX

We shall use the uniform distribution PX in the

( )

“ran

−

dom

( )

co

=

ding”

− ( )⇒ ∗

trick.
Moreover, the optimal (MAP) decoder with uniform input is

=

the
+

ML deco
∀

der, whose decoding
regions are translational invariant by Theorem 16.1, namely Du cu D0, u, and therefore:

Pe,max = Pe = P [Ŵ ≠ u∣W = u],∀u.

Step 1: Random linear coding with dithering:

∀u ∈ Fkq , cu = uG + h

G and h are drawn from the new ensemble, where the k×n entries of G and the 1 n entries
of h are i.i.d. uniform over Fq. We add the dithering to eliminate the special role that the
all-zero codeword plays (since it is contained in any linear codebook).

×

Step 2: Claim that the codewords are pairwise independent and uniform: ∀u ≠ u′, (cu, cu′) ∼ (X,X),
where PX,X(x,x) = 1/q2n. To see this:

cu ∼

=

uniform

+ =

on Fnq
cu′ u′G h uG h u u G cu u u G

We claim that cu ⊥⊥ G because conditioned

′

on the generator

′

matrix G G0, cu
uniform on n due to the dithering h.

+ + ( − ) = + ( − )

Fq
We also claim that c c n

u ⊥⊥ cu′ because conditioned on u, (u u G uniform on

=

Fq .

∼

Thus random linear coding with dithering indeed gives co

′

dew
−

ords
) ∼

cu, cu′ pairwise indepen-
dent and are uniformly distributed.

Step 3: Repeat the same argument in proving DT bound for the symmetric and pairwise independent
codewords, we have

E[
M 1

Pe(c1, . . . , cM)] ≤ P [i(X;Y ) ≤ γ] +
−

2
P (i(X,Y ) ≥ γ)

⇒Pe ≤ E[exp{−(i(X;Y ) − log
M − 1

2
)
+
}] = E[q−(i(X;Y )−logq

qk−1 i
2

+

E q− (X;Y )−k
+

where we used M = qk and picked the base of log to be q.

)
] ≤ [

( )
]

Step 4: compute i(X;Y ):

i(a; b) =
PZn

logq
(b − a)

q−n
= n − logq

1

PZn(b − a

therefore

)

Pe ≤ E[q
−(n−k−log 1

q PZn (Zn)
)
+

] (16.2)
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Step 5: Kill h. We claim that there exists a linear code without dithering such that (16.2) is satisfied.
Indeed shifting a codebook has no impact on its performance. We modify the coding scheme
with G,h which achieves the bound in the following way: modify the decoder input Y Y h,
then when cu is sent, the additive noise PY

′

which is equivalent to that the linear code
′∣X becomes then Y ′ uG h+Zn −h = uG

=

+Z
−
n,

generated by G is used.
= +

Notes:

• The ensemble cu = uG +

( ) = ( ) + (

h
)

has
= (

the
+

pairwise
)

independence property. The joint entropy
H c1, . . . , cM H G H h nk n log q is significantly smaller than Shannon’s “fully
random” ensemble we used in the previous lecture. Recall that in that ensemble each cj was
selected independently uniform over Fnq , implying H c k

1, . . . , cM q n log q. Question:

minH(c1, . . . , cM

(

??

) =

where minimum is over all distributions with P c 2
i

) =

a, cj b q n when i j (pairwise
independent, uniform

(

codewords). Note that H c1, . . . , cM H c1

−

, c2 2n log q. Similarly,
we may ask for ci, cj

[ = = ] =

( ) ≥

) to be
=

uniform over all
(

pairs of distinct
) ≈

elements. In this case

≠

Wozencraft
ensemble for the case of n 2k achieves H c1, . . . , cqk 2n log q.

( ) =

• There are many different ensembles of random codebooks:

i.i.d.
– Shannon ensemble: C = {

C

c

=

1,

{

. . . , cM

–

∼ PX – fully random

Elias ensemble [Eli55]: uG

}

∶ u ∈ Fkq}, with generator matrix G uniformly drawn at
random.

– Gallager ensemble: C = {c ∶ HcT = 0}, with parity-check matrix H uniformly drawn at
random.

• With some non-zero probability G may fail to be full rank [Exercise: Find P rank G k as
a function of n, k, q!]. In such a case, there are two identical codewords and hence

[

P
(

e,max 1 2.
There are two alternative ensembles of codes which do not contain such degenerate co

)

de

<

b

]

≥

ooks:
/

1. G uniform on

searc

∼ all full rank matrices

2. h codeword cu ∈ KerH where H ∼ uniform on all n × (n
(random

− k) full row rank matrices.
parity check construction)

¯Analysis of random coding over such ensemble is similar, except that this time X,X have
distribution

=
1

P ¯X,X

( )

1 X X
q2n qn

′

uniform on all pairs of distinct codewords and

−

not pairwise

{ ≠ }

independent.

16.2 Channels and channel capacity

Basic question of data transmission: How many bits can one transmit reliably if one is allowed to
use the channel n times?

• Rate = # of bits per channel use

• Capacity = highest achievable rate
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Next we formalize these concepts.

Definition 16.3 (Channel). A channel is specified by:

• input alphabet

• output alphabet

A

• a sequence of random

B

transformation kernels P ∣ ∶ An → BnY n Xn , n = 1,2, . . . .

• The parameter n is called the blocklength.

Note: we do not insist on PY n∣Xn to have any relation for different n, but it is common that
the conditional distribution of the first k letters of the n-th transformation is in fact a function of
only the first k letters of the input and this function equals PY k ∣Xk – the k-th transformation. Such
channels, in particular, are non-anticipatory: channel outputs are causal functions of channel inputs.

Channel characteristics:

• A channel is discrete if A and B are finite.

• A channel is additive-noise if A = B are abelian group, and

P n n n n n
yn∣xn = PZn(y − x ) Y X Z .

•
A

A c

=

→

hannel is memoryless if there exists a sequence

⇔

PX Y

+

k k
, k 1, . . . of transformations acting

such that P n
Y n Xn k 1 PYk Xk (in particular, the channels are compatible at different

blocklengths).
∣

{ ∣ = }

B =∏ = ∣

• A channel is stationary memoryless if P n
Y n Xn k 1 PY1 X1

.

• DMC (discrete memoryless stationary channel)

∣ =∏ = ∣

A DMC can be specified in two ways:

– an ∣A∣ × ∣B∣-dimensional matrix PY ∣X where elements specify the transition probabilities

– a bipartite graph with edge weight specifying the transition probabilities.

Example:

Definition 16.4 (Fundamental Limits). For any channel,

• An (n,M, ε)-code is an (M,ε)-code for the n-th random transformation PY n∣Xn .
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• An n,M, ε max-code is analogously defined for maximum probability of error.

The non-asymptotic

( )

fundamental limits are

M∗(n, ε) = max{M

Mmax
∗ n, ε max M

∶ ∃ (n,M, )

( ) =

-code}

{ ∶ ∃ (

ε (16.3)

n,M, ε)max-code} (16.4)

Definition 16.5 (Channel capacity). The ε-Capacity Cε and Shannon Capacity C are

Cε ≜
1

lim inf
n→∞

logM∗(n, ε
n

C

)

= lim
ε→0+

Cε

Notes:

• This operational definition of the capacity represents the maximum achievable rate at which
one can comm

<

unicate through a channel with probability of error less than ε. In other words,
for any R C, there exists an n, exp nR , εn -code, such that εn 0.

• Typically, the ε-capacity behav

(

es like

(

the

)

plot

)

below on the left-hand

→

side, where C0 is called
the zero-error capacity, which represents the maximal achievable rate with no error. Often
times C0 = 0, meaning without tolerating any error zero information can be transmitted. If Cε
is constant for all ε (see plot on the right-hand side), then we say that the strong converse
holds (more on this later).

ǫǫ

CǫCǫ

b

strong converse
holds

Zero error
CCapacity 0

0 1 0 1

Proposition 16.2 (Equivalent definitions of Cε and C).

C = sup{R ∶ ∀δ > 0,∃n (δ),∀n ≥ n (δ),∃(n,2n R δ
ε 0 0 , ε code

C sup R ε 0, δ 0, n0 δ, ε , n n0 δ,

(

ε ,

− )

n,

)

2n(R−
}

δ), ε code

Proof. This trivially

=

follo

{ ∶

ws

∀

from

> ∀

applying

> ∃

the

(

definitions

) ∀ ≥ (

of M

) ∃(

n,

) }

∗( ε) (DIY).

(
Question:

) (
Wh

)
y do we define capacity Cε and C with respect to average probability of error, say,

max
Cε and C max ? Why not maximal probability of error? It turns out that these two definitions
are equivalent, as the next theorem shows.

Theorem 16.3. ∀τ ∈ (0,1),

τM∗(n, ε(1 − τ)) ≤Mmax
∗ (n, ε) ≤M∗(n, ε)
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Proof. The second inequality is obvious, since any code that achieves a maximum error probability
ε also achieves an average error probability of ε.

For the first inequality, take an (n,M, ε(1− τ))-code, and define the error probability for the jth

codeword as

λj ≜ P

Then

[Ŵ =/ j∣W = j]

M(1 − τ)ε ≥∑λj =∑λj1{λj≤ε} +∑λj1{λj>ε} ≥ ε∣{j ∶ λj > ε .

Hence ∣{j ∶ λj > ε}∣ ≤ (1 − τ)M . [Note that this is exactly Mark
(

ov inequalit
)

y!] Now by removing
those

∗(
co
(

dew
−

ords
))

1 whose λj exceeds ε, we can extract an n, τM, ε -co

}∣

max de. Finally, take M
M n, ε 1 τ to finish the proof.

=

max
Corollary 16.1 (Capacity under maximal probability of error). Cε

( )
= Cε for all ε >

= ( )
0 such that

C Cε−. In particular, C max
ε C.2

Proof. Using the definition of M

=

∗ and the previous theorem, for any fixed τ 0

≥ (max) ≥
1

Cε Cε lim inf

>

n→∞ n
log τM∗(n, ε(1 − τ)) ≥ Cε(1−τ)

Sending τ → 0 yields Cε ≥ C
(max)
ε ≥ Cε−.

16.3 Bounds on Cε; Capacity of Stationary Memoryless Channels

Now that we have the basic definitions for Cε, we define another type of capacity, and show that
for a stationary memoryless channels, the two notions (“operational” and “information” capacity)
coincide.

Definition 16.6. The information capacity of a channel is

Ci =
1

lim inf
n→∞

sup I Xn;Y n

n P nX

Remark: This quantity is not the same as the Shannon

(

capacit

)

y, and has no direct operational
interpretation as a quantity related to coding. Rather, it is best to think of this only as taking the
n-th random transformation in the channel, maximizing over input distributions, then normalizing
and looking at the limit of this sequence.

Next we give coding theorems to relate information capacity (information measures) to
Shannon capacity (operational quantity).

Theorem 16.4 (Upper Bound for Cε). For any channel, ∀ε ∈ [0,1), Cε ≤
Ci and C Ci.1 ε

Proof. Recall the general weak converse bound, Theorem 14.4:

− ≤

∗( ) ≤
sup I(Xn;Y n

P
logM n, ε

nX
) + h(ε)

1 − ε

1This operation is usually referred to as expurgation which yields a smaller code by killing part of the codewords
to reach a desired property.

2Notation: f(x−) ≜ limy↗x f(y).
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Normalizing this by n the taking the lim inf gives

Cε =
1

lim inf
n→∞ n

logM∗(n, ε) ≤ lim inf
n→∞

1

n

supPXn I(X
n;Y n) + h(ε)

1 − ε
=

Ci
1 − ε

Next we give an achievability bound:

Theorem
∈ ( ]

16.5 (Lower Bound for Cε). For a stationary memoryless channel, Cε Ci, for any
ε 0,1 .

The following result follows from pairing the upper and lower bounds on C

≥

ε.

Theorem 16.6 (Shannon ’1948). For a stationary memoryless channel,

C Ci sup I X;Y . (16.5)
PX

Remark 16.1. The above result, known

=

as

=

Shannon’s

(

Noisy

)

Channel Theorem, is perhaps
the most significant result in information theory. For communications engineers, the major surprise
was that C 0, i.e. communication over a channel is possible with strictly positive rate for any
arbitrarily small

>

probability of error. This result influenced the evolution of communication systems
to block architectures that used bits as a universal currency for data, along with encoding and
decoding procedures.

Before giving the proof of Theorem 16.5, we show the second equality in (16.5). Notice that
Ci for stationary memoryless channels is easy

→∞

to compute: Rather than solving an optimization
problem for each n

=

and taking the limit of n , computing Ci boils down to maximizing mutual
information for n 1. This type of result is known as “single-letterization” in information theory.

Proposition 16.3 (Memoryless input is optimal for memoryless channels).
For memoryless channels,

sup I Y
P n

(Xn; n

X

For stationary memoryless channels,

) =
i
∑
n

=
sup I
PXi

(Xi;Yi).
1

Ci sup I X;Y .
PX

Proof. Recall that for product kernels P

=

P

(

,

)

we have I Xn n
Y n Xn Yi Xi ;Y n

k 1 I Xk;Yk , with
equality when Xi’s are independent. Then

∣ =∏ ∣ ( ) ≤ ∑ = ( )

Ci =
1

lim inf
n→∞ n

sup
PXn

I(Xn;Y n) = lim inf
n→∞

sup
PX

I(X;Y ) = sup
PX

I(X;Y ).

Proof of Theorem 16.5. ∀PX , and let PXn = P
>

n
X (iid product).

(

Recall Shannon’s (or Feinstein’s)
achievability bound: For any n,M and any γ 0, there exists n,M, εn)-code, s.t.

εn ≤ P[i(Xn;Y n) ≤ logM

Here the information density is defined as

+ γ] + exp(−γ)

i(
n

Xn, Y n) =
dPY n∣X

log
dPY n

(Y n∣Xn) =
n

∑
k=1

log
dPY ∣X
dPY

(Yk∣Xk) =
n

∑
k=1

i(Xk;Yk),
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which is a sum of iid r.v.’s with mean I
γ δn in Shannon’s bound, we have

n

(X;Y ). Set logM = n(I(X;Y ) − 2δ) >

=

for δ 0, and taking

εn ≤ P[∑
n

=
i Xk;Yk nI X;Y δn exp δn 0

k 1

→∞

The second terms
∀

goes
∀

to
>

zero since

(

δ

)

0,

≤

and

(

the first

) −

terms

] +

go

(

es

−

to

)

zero

ÐÐÐ→

by WLLN.
Therefore, PX , δ 0, there exists a sequence of n,Mn, εn -codes with εn 0 (where

logMn δ

>

= n I
( ) →

( (X;Y ) − 2 )). Hence, for all n such that εn ε

logM∗

≤

(n, ε) ≥ n(I(X;Y ) − 2δ

And so

)

1
Cε = lim inf

n→∞ n
logM∗(n, ε) ≥ I(X;Y ) − 2δ ∀PX ,∀δ

Since this holds for all PX and all δ, we conclude Cε ≥ supPX I(X;Y ) = Ci.

Remark 16.2. Shannon’s noisy channel theorem (Theorem 16.6) shows that by employing codes
of large blocklength, we can approach the channel capacity arbitrarily close. Given the asymptotic
nature of this result (or any other asymptotic result), two natural questions are in order dealing
with the different aspects of the price to reach capacity:

1. The complexity of achieving capacity: Is it possible to find low-complexity encoders and
decoders with polynomial number of operations in the blocklength n which achieve the
capacity? This question is resolved by Forney in 1966 who showed that this is possible in
linear time with exponentially small error probability. His main idea is concatenated codes.
We will study the complexity question in detail later.

Note that if we are content with polynomially small probability of error, e.g., Pe O n 100 ,
then we can construct polynomially decodable codes as follows. First, it can be sho
with rate strictly below capacity, the error probability of optimal codes decays exp

=

wn
( −

that
onentially

)

w.r.t. the blocklenth. Now divide the block of length n into shorter block of length C logn
and apply the optimal code for blocklength C logn with error probabilit

−
y n 101. The by the

union bound, the whole block is has error with probability at most n 100. The

−

encoding and
exhaustive-search decoding are obviously polynomial time.

2. The speed of achieving capacity: Suppose we want to achieve 90% of the capacity, we want
to know how long do we need wait? The blocklength is a good proxy for delay. In other
words, we want to know how fast the gap to capacity vanish as blocklength grows. Shannon’s
theorem shows that the gap C − 1

n logM∗(n, ε) = o(1). Next theorem shows that under proper
conditions, the o(1) term is in fact O( 1√ .

n

The main tool in the proof of Theorem 16.5

)

is the WLLN. The lower bound Cε Ci in
Theorem 16.5 shows that logM n, ε nC o n the liminf
must result in something ≥

(since normalizing by n and taking
C). If

∗(
instead

) ≥

we
+

do
(

a
)

more refined analysis using the CLT, we

≥

find

Theorem 16.7.
( )

For any stationary
= [

memoryle
( ∗

ss channel with C maxPX I X;Y (i.e. PX
argmaxPX I X;Y ) such that V Var i X ;Y

= ( ) ∃ ∗
∗

=

)] <∞, then

logM∗(n, ε) ≥ nC −
√
nV Q−1(ε) + o(

√
n),

where Q(⋅) is the complementary Gaussian CDF and Q−1(⋅) is its functional inverse.

168



Proof. Writing the little-o notation in terms of lim inf, our goal is

logM
lim inf
n

∗

→∞
(n, ε) − nC
√ Q 1

nV

−1 ε Φ− ε ,

where Φ t

≥ − ( ) = ( )

( ) is the standard normal CDF.
Recall Feinstein’s bound

∃(

√

n,M, ε ;

T

)max ∶ M ≥ β (ε − P[i(Xn Y n) ≤ logβ

ake logβ

])

= nC + nV t, then applying the CLT gives

logM ≥ nC +
√
nV t + log (ε − P [∑ i(Xk;Yk) ≤ nC +

√
nV t])

Ô⇒ logM ≥ nC +
√

−

nV t + log (ε −Φ(t)) ∀Φ(t) < ε

Ô⇒
logM nC

√
nV

≥ t +
log(ε −Φ(t))

√

(

nV

Where Φ t) is the standard normal CDF. Taking the liminf of both sides

logM
lim inf
n

∗

→∞
(n, ε) − nC
√ t t s.t. Φ t ε
nV

Taking t↗ Φ−1(ε), and writing the liminf in little o

≥

form

∀

completes

( )

the

<

proof

logM∗(n, ε) ≥ nC −
√
nV Q−1(ε) + o(

√
n)

16.4 Examples of DMC

Binary symmetric channels

0 0

1 1

δ̄

δ

δ̄

δ

Y =X +Z, Z ∼ Bern(δ) ⊥⊥X

0 1
2

1
δ

1 bit

C

Capacity of BSC:
C sup I X;Y 1 h δ

PX

Pro −H(

∼

of. I(
(

X
/

;X +

)

Z) = H(X + Z) X

=

Z X

(

H

) =

X

−

Z

( )

H Z 1 h δ , with equality iff
X Bern 1 2 .

+ ∣ ) = ( + ) − ( ) ≤ − ( )

Note
=

: More
∣

generally = (

) ∣ − ( )

, for all additive-noise channel over a finite abelian group G, C supP I X;X
X

Z log G H Z , achieved by uniform X.
+
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Binary erasure channels

0 0

e

1 1

δ̄

δ

δ̄

δ

BEC is a multiplicative channel: If we think about the
input X ∈ {±1},

=

and output Y ∈ 1,0 . Then equivalently
we can write Y XZ with Z ∼ Bern

{± }

(δ) ⊥⊥X.

0 1
δ

1 bit

C

Capacity of BEC:
C = sup I X;Y 1 δ bits

PX

( = ∣ = ) =
P (X=0)δ

Proof. Note that P X 0 Y e

( ) = −

( ) − ( ∣ = ) ≤ ( − ) ( ) ≤ −

P X 0 . Therefore I X;Y H X H X Yδ
H X H X Y e 1 δ H X 1 δ, with

= (

equali
=

t
)

y iff X
( ) = ( ) − ( ∣ ) =

∼ Bern(1/2).

16.5* Information Stability

We saw that C = Ci for stationary memoryless channels, but what other channels does this hold
for? And what about non-stationary channels? To answer this question, we introduce the notion of
information stability.

Definition
{

16.7.
=

A c
}

hannel is called information stable if there exists a sequence of input distribu-
tion PXn , n 1,2, . . . such that

1
i Xn;Y n Ci in probability

n

For example, we can pick PXn

( )Ð→

= (PX
memoryless channels are information stable.

∗

The purpose for defining information

)n for stationary memoryless channels. Therefore stationary

stability is the following theorem.

Theorem 16.8. For an information stable channel, C Ci.

Proof. Like the stationary, memoryless case, the upper bound

=

comes from the general converse Theo-
rem 14.4, and the lower bound uses a similar strategy as Theorem 16.5, except utilizing the definition
of information stability in place of WLLN.

The next theorem gives conditions to check for information stability in memoryless channels
which are not necessarily stationary.
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Theorem 16.9. A memoryless channel is information stable if either of there exists {Xk
∗, k = 1, . . .

such that both of the following hold:

1

}

n

n

∑
k=1

I(X∗
k ;Y ∗

k )→ Ci (16.6)

∞
∑
n=1

1
V ar i X

n2 n
∗;Yn

∗ . (16.7)

In particular, this is satisfied if

[ ( )] <∞

Proof. To show the first part, it is sufficien

∣A∣

t

<∞ or ∣B∣ <∞ (16.8)

to prove

P [
1

n
∣
n

∑
k=1

i(X∗
k ;Y ∗

k ) − I(X∗
k , Y

∗
k )∣ > δ]→ 0

So that 1
n i(X

n;Y n)→ Ci in probability. We bound this by Chebyshev’s inequality

P [
1

n
∣
n

∑
k=1

i(X∗
k ;Y ∗

k ) − I(X∗
k , Y

∗
k )∣ > δ] ≤

1
n2 ∑

n
k=1 Var[i(X∗

k ;Y ∗
k )]

0
δ2

→ ,

where
=

conv
=

ergence
b n2
n , xn Var[

to 0 follows from Kronecker lemma (Lemma 16.1 to follow) applied with
i 2

n

part
(Xn

∗;Y n .
The second follows

∗)]/
from the first. Indeed, notice that

Ci =
1

lim inf
n→∞

n

sup I Xk;Yk .
n k 1 PXk

Now select PX

∑
=

( )

k
∗ such that

I(Xk
∗;Yk

∗) ≥ sup I

supPX

(Xk;Yk) − 2−k .

(Note that each I
k

(Xk;Yk log min

n

) ≤

I Xk ;Yk

{∣A

P

∣

Xk

, ∣B∣} <∞.) Then, we have

n

sup I Xk;Yk 1 ,
k 1

∗ ∗

k 1 PXk

and hence normalizing by n we

∑
=

get

(

(16.6).

)

W

≥

e

∑
=

next sho

(

w that

) −

for any joint distribution PX,Y we
have

Var[i(X;Y )] ≤ 2 log2

in

(min

symmetric

(∣A∣, ∣B∣)) . (16.9)

The argument is X and Y , so assume for concreteness that . Then

E[i2

∣B∣ <∞

(X;Y )] (16.10)

≜ ∫A
dPX(x)∑ PY ∣

2

∈B
X(y∣x)[ log PY ∣X(y∣x) + log2 PY (y) − 2 logPY

y
∣X(y∣x) ⋅ logPY (y)](16.11)

≤ ∫A
dPX(x)∑ ∣

∈B
PY X(y∣x) [log2 PY ∣X y x log2 PY y (16.12)

⎢

y

⎡

= ∫A
dP (x) ⎢

⎢
⎢
∑ P ∣ y x log2

( ∣ ) + ( )]

X

⎣ ∈B
Y X PY ∣X y x

⎤

PY y
⎥

(16.13)
y

⎥
⎡
⎢

P y log2
Y

y

⎤

≤ ∫A
dPX(x)g(∣B∣) + g

( ∣ ) ( ∣ )⎥⎥ + ⎢
⎢∑ ( ) ( )⎥

⎦
⎥

⎣
⎢ ∈B

⎥
⎥
⎦

(∣B∣) (16.14)

= 2g(∣B∣) , (16.15)
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where (16.12) is because 2 logPY X y x logPY y is always non-negative, and (16.14) follows
because each term in square-brac
problem:

∣
kets
( ∣

can
) ⋅

be upp
( )

er-bounded using the following optimization

n

g n sup a 2
j log aj . (16.16)

aj 0 n
j 1 aj 1 j 1

Since the x
[

log2

=

]

x has unbounded deriv

( ) ≜

ativ

≥

e

∶∑

at the

=

or

∑
=

igin, the solution
>

of (16.16) is always in the
interior of 0,1 n. Then it is straightforward to show that for n e the solution is actually aj =

1

(
n

F =

.

or n 2 it can be found directly that g 2) = 0.5629 log2 2 < log2 2. In any case,

2g

Finally, because of the symmetry, a similar

(∣B

argumen

∣) ≤ 2 log2 ∣B∣ .

t can be made with ∣B∣ replaced by ∣A∣.

Lemma 16.1 (Kronecker Lemma). Let a sequence 0 < bn ↗∞ and a non-negative sequence {xn}
such that ∑∞

n=1 xn <∞, then

1
j

b j
∑
n

b
n =

xj
1

strictly

→ 0

Proof. Since bn’s are increasing, we can split

Ð

up the summation and bound them from above

∑
n m n

bkxk bm
k=

xk bkxk
1

No

≤
k

∑
=1

+
k=
∑
m+1

w throw in the rest of the xk’s in the summation

Ô⇒
1

bn

n

∑
k=1

bkxk ≤
bm
bn

∞
∑
k=1

xk +
n

∑
k=m+1

bk
bn
xk ≤

bm
bn

∞
∑
k=1

xk +
∞
∑

k=m+1

xk

Ô⇒ lim
n→∞

1 n

bkxk xk 0
bn k

∑
=1

≤
k

∑
∞

=m+1

Since this holds for any m, we can make the last term

→

arbitrarily small.

Important example: For jointly Gaussian (X,Y ) we always have bounded variance:

Var[i(X;Y )] = ρ2(X,Y ) log2 e ≤ log2 co
e , ρ(X,Y ) =

v[X,Y ]
√ . (16.17)

Var X Var Y

˜ ˜Indeed, first notice that we can always represent Y X Z with X

[

aX

]

Z

[

. On

]

the other hand,
we have

( ) =
log e

i x̃; y

= + = ⊥⊥

2
[
x̃2 + 2x̃z

σ2
Y

−
σ2

z2 , z y x̃ .
σ2 σ2

˜From here by using Var X

] ≜ −

[⋅] = Var[E[⋅∣ ]] +

Y Z

Var[⋅∣X̃] we need to compute two terms separately:

E[i(
e˜ ;Y )∣X̃] =

log
X

2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X̃2 −
σ2
X̃

σ2
Z ,

σ2
Y

⎤
⎥
⎥
⎥

and hence

⎥
⎥

[ [ ( )∣ ]] =
2 log2 e

⎥

˜ ˜

⎦

Var E i X;Y X
4σ4

Y

σ4
X̃
.
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On the other hand,

Var[i(X̃;Y )∣X̃] =
2 log2 e

4σ2 4

σ4 ˜σ
2

X Z 2σ ˜ .
4 X

Y

Putting it all together we get (16.17). Inequality (16.17

[

) justifies

+

information

]

stability of all sorts of
Gaussian channels (memoryless and with memory), as we will see shortly.
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§ 17. Channels with input constraints. Gaussian channels.

17.1 Channel coding with input constraints

Motivations: Let us look at
since supP I

X

infinite
(X;X + Z

second moment.
)

In
=

realit
∞

the additive Gaussian noise. Then the Shannon capacity is infinite,
achieved by X 0, P and P . But this is at the price of

⇒

y, limitation of
operations constraints on input distribution.

∼

transmission
N ( )

pow
→

er
∞

constraints on the encoding

Definition 17.1. An (n,M, ε)
[ ]→

-code satisfies the input
A

constraint

⇒

F Ann if the encoder is f
M Fn. (Without constraint, the encoder maps into n).

⊂ ∶

An

Fn

Codewords all land in a subset of An

b b
b

b b
b b

b b b
b b

b

Definition 17.2 (Separable cost constraint). A channel with separable cost constraint is specified
as follows:

1. A,B: input/output spaces

2. P ∣ ∶ An → BnY n Xn , n = 1,2, . . .

3. Cost c ∶ A→ R̄

Input constraint: average per-letter cost of a codeword xn (with slight abuse of notation)

(
1

xnc ) = c
k

∑
n

n =1

(xk) ≤ P

Example: A = B = R

• Average power constraint (separable):

1

n

n

∑
i=1

∣xi∣
2 ≤ P ⇔ ∥xn∥2 ≤

√
nP

• Peak power constraint (non-separable):

max
1≤

xi A xn A
i≤n

∣ ∣ ≤ ⇔ ∥ ∥∞ ≤
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Definition 17.3. Some basic definitions in parallel with the channel capacity without input
constraint.

• A code is an (n,M, ε,P )-code if it is an (n,M, ε)-code satisfying input constraint Fn ≜ {xn
1

∶

cn ∑ (xk

n

≤ P

• Finite-

)

fundamen

}

tal limits:

M∗

∗
(

(

n, ε,P ) = max

max

∶ ∃(

) =

M

Mmax n, ε,P

{ ) }

{M

• ε-capacity and Shannon capacity

∶ ∃(

n,M, ε,P

n,M, ε,P )

-code

max-code}

1
Cε(P ) = lim inf

n→∞
logM

n
∗ n, ε,P

C(P ) = lim
↓
Cε P

ε 0

( )

• Information capacity

( )

Ci(P ) =
1

lim inf
n→∞

n

∶
sup n

n P nX E[∑nk= c1 (Xk)]≤
I(X ;Y

nP
)

• Information stability: Channel is information stable if for all (admissible) P , there exists a
sequence of channel input distributions PXn such that the following two properties hold:

1 i.P.
iP Xn;Y n Ci P (17.1)

n
n nX ,Y

P

( ) → ( )

[c(Xn) > P + δ

Note: These are the usual definitions, except that

]→ 0 ∀δ > 0 . (17.2)

in Ci P
I(

, we are permitted to maximize
Xn;Y n

( )

) using input distributions from the constraint set {P n
Xn ∶ E[∑k

the
=1 c Xk nP instead of

distributions supported on Fn.

Definition 17.4 (Admissible constraint). P is an admissible constraint if

(

x

)] ≤ }

0 s.t. c x0

P PX E c X P . The set of admissible P ’s is denoted by c, and can
∃

be either
P0 P0 infx c x .

∈ A

in the
(

form
P0, or , , where

) ≤

⇔ ∃ ∶ [ ( )] ≤

(

Clearly

∞)

,

[

if P

∞)

c, then there

≜

is

∈A

no

(

co

)

∉ D de (even a useless one,

D

with 1 codeword) satisfying the
input constraint. So in the remaining

Proposition 17.1. Define f P

∈ D

1. f is concave and non-de

(

cre

)

we always assume P c.

supP I . Then
X E c X P X;Y

asing.

=

The

∶ [

domain

( )]≤ (

of f , dom

)

f x f x c.

2. One of the following is true: f(P ) is continuous and finite

≜

on

{ ∶ ( ) > −∞} = D

(P0,∞), or f =∞ on (P0,∞).

Furthermore, both properties hold for the function P ↦ Ci(P ).
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Proof.
↦

In (1)
(

all
)

statements are obvious, except for concavity, which follows from the concavity
of
[

P
(
X

)] ≤

I X;Y
+

¯. For any PXi such that E c Xi Pi, i 0,1, let X λPX0 λPX1 . Then
E ¯ ¯ ¯ ¯c X λP0 λP1 and I(X;Y ) ≥ λI

[

(X0;Y0)+

(⋅)

λI X1;Y1 . Hence f λP0 λP1 λf P0 λf P1 .
The second claim follows from conca

( )

vity of f .

( )] ≤ = ∼ +

To extend these results to Ci P observe that for

(

every

)

n

( + ) ≥ ( )+ ( )

P ↦
1

n
sup

PXn ∶E[c(Xn)]≤P
I(Xn;Y n)

is concave. Then taking lim infn→∞ the same holds for Ci(P ).

An immediate consequence is that memoryless input is optimal for memoryless channel with
separable cost, which gives us the single-letter formula of the information capacity:

Corollary 17.1 (Single-letterization). Information capacity of stationary memoryless channel with
separable cost:

Ci(P ) = f(P ) = sup
E[c(

I X;Y .
X)]≤P

( )

Proof. Ci(P
that for any

)

P
≥ f P is obvious by using PXn P n

X . For “ ”, use the concavity of f , we have

Xn ,
( ) = ( ) ≤ (⋅)

I(Xn;Y n) ≤∑
n

j=
I

1

( j)
1

Xj ;Y ≤∑
n

j=
f

1

(E[c(Xj)])≤nf(
n

n

∑
j=1

E[c(Xj)]) ≤ nf(P ).

?
17.2 Capacity under input constraint C P Ci P

Theorem 17.1 (General weak converse).

( ) = ( )

Cε(P ) ≤
Ci(P )

1 − ε

Proof. The argument is the same as before: Take any (n,M, ε,P ) ˆ-code, W → Xn → Y n → W .
Apply Fano’s inequality, we have

−h( ˆε) + (1 − ε) logM ≤ I(W ;W ) ≤ I(Xn;Y n) ≤ sup I(Xn;Y n nf
P nX ∶E[c(Xn)]≤P

) ≤ (P )

Theorem
X ∀ > ∀

17.2 (Extended Feinstein’s
( )

Lemma). Fix a random transformation PY X . PX , F
, γ 0, M , there exists an M,ε max-code with:

∣ ∀ ∀ ⊂

• Encoder satisfies the input constraint: f M F ;

• Probability of error bound:

∶ [ ]→ ⊂ X

εPX(F ) ≤ P[i(X;Y ) < log γ] +
M

γ
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Note: when F

Proof. Similar

=

to

X , it reduces to the original Feinstein’s Lemma.

the proof of the original Feinstein’s Lemma, define the preliminary decoding
regions Ec = {y ∶ i(c; y) ≥ log γ} for all c ∈ X

{

. Sequentially pick codew
−
ords {

} ≜ /∪

c1, . . . , cM from the
j 1set F and the final decoding region D1, . . . ,DM where Dj Ecj = Dk. The stoppingk 1

}

criterion
is that M is maximal, i.e.,

∀x0 ∈ F,P
M

⇔ ∀ ∈ X

Y [Ex0/ ∪j=

[ / ∪

1 Dj

= ∣ =

x

M

∣X = 0] < 1 − ε

⇒

x0 , PY Ex0

∼

j 1 D

[{

j X

(

x0 1 ε 1 x0 F 1 x0 F c

average over x0 PX , P i X;Y

] < ( − ) [

) ≥ log γ}/ ∪M

∈ ] + [ ∈ ]

= D ] ≤ (1 − ε)P (F ) + P (F cj 1 j X X

From here, we can complete the proof by following the same steps as in the pro

)

of

= 1 − εPX(F

of Feinstein’s

)

lemma (Theorem 15.3).

Theorem 17.3 (Achievability). For any information stable channel with input constraints and
P > P0 we have

C(P ) ≥ Ci(P ) (17.3)

Proof. Let us consider a special case of the stationary memoryless channel (the proof for general
information

≥

stable channel follows similarly). So we assume PY n Xn P n
Y X .

Fix n 1.
[ (

Since
)] <

the channel is stationary memoryless, we have
such that c X P , Pick logM n I X;Y 2δ and log γ

∣

= ( ( ) − ) =

P
=

n
Y n

(

∣Xn

)

=
∣
(PY ∣X)

( ( ) − )

. Choose a PX
E n X;Y δ .

With the input constraint set F 1
n = {xn ∶

I
x

extended
∑c k P , and iid input distribution P n

Xn Pn X ,
we apply the Feinstein’s Lemma, there exists

( ) ≤

an
}

(n,M, εn, P )max-code with the enco
=

der
satisfying input constraint F and the error probability

εn P
´¹¹¹¹¹¹¹¹

n n
X P

→
¸
(F

1
¹¹¹¹¹¹¹¹¶
) ≤

0 as n
´

b
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
(i(X ; n( (X;Y

y
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

Y

stationary

≤ I

WLLN and

)

memoryless

) − δ)) + exp

→ →∞ assumption

(−nδ

0

)

Also, since E[c(X)] < P , by WLLN, we have

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

P

¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶ ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
→
¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Xn(Fn) = P ( 1 cn ∑ (xk) ≤ P )→ 1.

⇒

εn 1 o 1 o 1

⇒

ε

∀

n 0 as n

ε,

( + ( )) ≤ ( )

→ →∞

∃n0, s.t. ∀n ≥ n0,∃(n,M, εn, P )max-code, with εn ≤ ε

Therefore

1
Cε(P ) ≥ logM I X;Y 2δ, δ 0, PX s.t. E c X P

⇒ Cε(
n

P

C

∶
sup

= ( ) − ∀ > ∀ [ ( )] <

) ≥
PX E[c(X)]<

lim
δP

ε P sup I

→
X

X

(I ;Y ) − 2δ
0

)

⇒ ;Y

(

Ci P Ci P
PX E c X P

where the last equalit

(

y

)

is

≥

from

∶ [ (

the

)]<

con

(

tinuit

)

y

=

of C

( −) = ( )

i on (P0,∞) by Proposition 17.1. Notice
that
( (

for general information
P i Xn;Y n) ≤ n(Ci − δ))→

stable channel, we just need to use the definition to show that
0, and all the rest follows.
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Theorem 17.4 (Shannon capacity). For an information stable channel with cost constraint and
for any admissible constraint P we have

C P Ci P .

Pro

ε(

of. The

( ) = ( )

C P

= >

) ≤
(
case of P P0 is treated in the homework. So assume P P0. Theorem 17.1 shows

Ci P )
1−ε , thus C(P ) ≤ Ci(P ). On the other hand, from Theorem 17.3 we have C(P ) ≥

Ci(P ).

Note: In homework, you will show that C(P0) = Ci(P0) also holds, even though Ci(P ) may be
discontinuous at P0.

17.3 Applications

17.3.1 Stationary AWGN channel

+

Z ∼ N (0, σ2)

X Y

Definition 17.5 (AWGN). The additive Gaussian noise (AWGN) channel is a stationary memoryless
additiv
= +

e-noise channel
∼ N

with
(

separable
) ⊥⊥

cost constraint: R, c x x2, PY X is given by
Y X Z, where Z

=

0, σ
+

2 X, and average power constraint EX2 P .
In other words, Y n Xn Zn, where Zn 0, I

A = B = ( ) =

≤
∣

n .

Gaussian
Note: Here “white” = uncorrelated = indep

∼ N (

enden

)

t.
Note: Complex AWGN channel is similarly defined: A = B = C, (x) = ∣x∣2 nc , and Z C 0, In

Theorem 17.5. For stationary (C)-AWGN channel, the channel capacity is equal to

∼

information
capacity, and is given by:

N ( )

C(P ) =
1

Ci(P ) =
2

log (1 +
P

σ2
) for AWGN

C(P ) = Ci(P ) = log (1 +
P

for
σ2

) C-AWGN

Proof. By Corollary 17.1,
Ci = sup I X;X Z

P 2
X EX P

Then use Theorem 4.6 (Gaussian saddlepoin

∶

t) to

≤

conclude

(

X

+ )

∼ N (0, P ) (or CN (0, P )) is the unique
caid.
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Note: Since Zn ∼ N (0, σ2)

∥

, then with high probability,
Zn∥2 concentrates around

√
nσ2. Similarly, due the power

constraint and the fact that Zn ⊥⊥ Xn, the received vector
Y n lies in an `2-ball of radius

√
n(P + σ2). Since the noise

can at most perturb the codeword by
√
nσ2 in Euclidean

distance, if we can pack M balls of radius
√
nσ2 into the

`2-ball of radius
√
n(P σ2 centered at the origin, then this

gives a good codebook
+

and
)

decision regions. The packing
number is related to the volume ratio. Note that the volume
of an ` n n

2-ball of radius r in R is given by cnr for some
cn(n(P+σ2 2

constan cn. Then
))n

t
/

cn(nσ2)n/2 = (1 + P
σ2 )

n/2
. Take the log

and divide by n, we get 1
2 log (1 + P

σ2 ).

c1

c2

c3

c4

c5

c6 c7

c8

cM

· · ·

√
n(P

+
σ 2
)

√
nσ2

Theorem 17.5 applies to Gaussian noise. What if the noise is non-Gaussian and how sensitive is
the capacity formula 1 log 1 SNR to the Gaussian assumption? Recall the Gaussian saddlepoint2
result we have studied in

(

Lecture
+

4
)

where we showed that for the same variance, Gaussian noise
is the worst which shows that the capacity of any non-Gaussian noise is at least 1 log 1 SNR .2
Conversely, it turns out the increase of the capacity can be controlled by how non-Gaussian the
noise is (in terms of KL divergence). The following result is due to Ihara.

( + )

Theorem 17.6
<

(Additiv
of X and EZ2

1

∞

e Non-Gaussian noise). Let Z be a real-valued random variable independent
. Let σ2 = VarZ. Then

2
log (1 +

P

σ2
) ≤ sup

PX ∶EX2≤P
I(X;X +Z) ≤

1

2
log (1 +

P
D

σ2
) + (PZ∥N (EZ,σ2)).

Proof. Homework.

Note: The quantity D(PZ∥N (EZ,σ2))

N ( )

is sometimes called the non-Gaussianness of Z, where
EZ,σ2 is a Gaussian

[

with
]

the same mean and variance as Z. So if Z has a non-Gaussian density,
say, Z is uniform on 0,1 , then the capacity can only differ by a constant compared to AWGN,
which still scales as 1

2
D( (

log SNR in the high-SNR regime. On the other hand, if Z is discrete, then
PZ∥N EZ,σ2)) =∞ and indeed in this case one can show that the capacity is infinite because

the noise is “too weak”.

17.3.2 Parallel AWGN channel

Definition
A = B =

17.6 (Parallel AWGN). A parallel AWGN channel with L branches is defined as follows:
RL; c(x) = ∑Lk=1 ∣xk∣

2; PY L∣XL ∶ Yk = Xk + Zk, for k = 1, . . . , L, and Z 2
k 0, σk are

independent for each branch.

Theorem 17.7 (Waterfilling). The capacity of L-parallel AWGN channel is given

∼

by

N ( )

C =
1

2

L

∑
j=1

log+
T

σ2
j

where log+(x) ≜ max(logx,0), and T ≥ 0 is determined by

P =∑
L

j=1

∣T − σ2
j ∣
+
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Proof.

Ci(P ) = sup
P LX

∶∑E[X2
i ]≤

I
P

(XL;Y L

L

)

≤
∑

sup
Pk≤P,Pk≥0 k

∑
=

=
L

∑
sup

Pk≤P,Pk≥0 k

∑
=

1

[
sup

1 E X2
k
]≤

I
Pk

(Xk;Yk

( +
Pk

)

log 1
1 2 σ2

k

the question b

)

oils down to the last maximization
ian multipliers

∑

for
(

the
+

constrain
) −

t Pk P by λ
solve max 1 Plog 1 k

2 µkPk2 σ
k

∑ ≤

+ λ(P −∑Pk).

µk, µkPk 0

with equality if Xk ∼ N (0, Pk) are independent. So
problem – power allocation

≥

: Denote the Lagrag
and for the constraint Pk 0 by µk. We want to

First-order condition on Pk gives that

1

2

1

solution

= λ
σ2
k + Pk

therefore the optimal is

− =

Pk = ∣T − σ2
k∣
+ T

k

∑
L

, T is chosen such that P =
=1

∣ − σ2
k∣
+

Note: The figure illustrates the power allocation via water-filling. In this particular case, the second
branch is too noisy (σ2 too big) such that it is better be discarded, i.e., the assigned power is zero.

Note: [Significance of the waterfilling theorem] In the high SNR regime, the capacity for 1 AWGN
channel is approximately 1

2 logP , while the capacity for L parallel AWGN channel is approximately
L
2 log(PL ) ≈ L logP for large P . This L-fold increase in capacity at high SNR regime leads to the2
powerful technique of spatial multiplexing in MIMO.

Also notice that this gain does not come from multipath diversity. Consider the scheme that a
single stream of data is sent through every parallel channel simultaneously, with multipath diversity,
the effective noise level is reduced to 1

L , and the capacity is approximately log(LP ), which is much

smaller than L
2 log(P forL ) P large.

17.4* Non-stationary AWGN

Definition
A = B =

17.7
( ) =

(Non-stationary
∶ =

AW
+

GN). A non-stationary
∼ N (

A
)

WGN channel is defined as follows:
R, c x x2, PYj ∣Xj Yj Xj Zj , where Zj 0, σ2

j .
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Theorem 17.8. Assume that for every T the following limits exist:

C̃i(T ) =
1

lim
n→∞ n

n

∑
j=1

1

2
log+

T

σ2
j

P̃ (T ) = lim
n→∞

1

n 1

∣ j
j
∑
n

2

=
T − σ ∣+

then
(

the
C̃i T )

capacity of the non-stationary AWGN channel is given by the parameterized form: C T
˜with input power constraint P T .

( ) =

Proof. Fix T > 0. Then it is clear from

( )

the waterfilling solution that

sup I(Xn;Y n) =∑
n 1

j=1 2
log+

T

σ2
j

, (17.4)

where supremum is over all PXn such that

E[c(Xn)] ≤
1 n

2
j

j

∣T

˜

− σ
n 1

∣+ . (17.5)

Now, by assumption, the LHS of (17.5) converges

∑

to

=

P (T ). Thus, we have that for every δ > 0

˜ ˜Ci P T δ Ci T (17.6)

˜ ˜Ci

(

P

(

T

) −

δ

) ≤

Ci

(

T

)

(17.7)

Taking δ → 0 and invoking continuity of

(

P

( ) + ) ≥ ( )

↦ Ci(P ), we get that the information capacity satisfies

Ci(P̃ (T

The channel is information stable. Indeed, from

)) = C̃i(T ) .

(16.17)

Var(i(
e

X ;Yj)) =
log2

j
2

Pj

Pj + σ2
j

≤
log2 e

2

and thus
n

∑
j=1

1
Var

n2
(i(Xj ;Yj)) <∞ .

From here information stability follows via Theorem 16.9.

Note: Non-stationary AWGN is primarily interesting due to its relationship to the stationary
Additive Colored Gaussian noise channel in the following discussion.

17.5* Stationary Additive Colored Gaussian noise channel

Definition 17.8 (Additive colored Gaussian noise channel ). An Additive Colored Gaussian noise
channel is defined as follows: A = B = R, c x x2, PY
Gaussian process with spectral density fZ

( ) = ∶ = +

(ω) > 0, ω ∈ [−
j ∣Xj Yj Xj Zj , where Zj is a stationary
π,π].
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Theorem 17.9. The capacity of stationary ACGN channel is given by the parameterized form:

C(T ) =
1

2π
∫

2π

0

1

2
log+

T

fZ(ω)
dω

P (T ) =
1

2π
∫

2π

0
∣T − fZ(ω)∣

+
dω

Proof. Take n ≥ 1, consider the diagonalization of the covariance matrix of Zn:

Cov(Zn) = Σ = U∗Σ̃U, such that Σ̃ = diag(σ1, . . . , σn

Since Cov(Zn) is positive semi-definite, U is a unitary matrix. Define Xn

)

UXn and Y n UY n,
the channel between X

̃

̃n and Y u
= ̃

̃n is th s
=

Ỹ n = X̃n

Cov UZn
+

Therefore e equiv

)

Zn

(

U

=

,

UCov(Zn

w have the alent channel as follows:

)U∗ = Σ̃

Ỹ n = X̃n + Z̃n, Z̃nj ∼ N (0, σ2
j ) indep across j

By Theorem 17.8, we have that

̃ =
1

C lim
n→∞ n

n

∑
j=1

log+
T

σ2
j

=
1

2π
∫

2π

0

1

2
log+

T

fZ(ω)
dω. ( by Szegö, Theorem 5.6)

lim
n→∞

1
T

j
∑
n

n =1

∣ − σ2
j ∣
+ = P (T )

Finally since U is unitary, C = C̃.

Note: Noise is born white, the colored noise is essentially due to some filtering.
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17.6* Additive White Gaussian Noise channel with Intersymbol
Interference

Definition
( ) =

17.9 (AWGN with ISI). An AWGN channel with ISI is defined as follows: A = B = R,
c x x2, and the channel law PY n∣Xn is given by

Yk =∑
n

=
hk−jXj +Zk , k 1

1

= , . . . , n
j

where Zk ∼ N (0,1) is white Gaussian noise, {hk, k = −∞, . . . ,∞} are coefficients of a discrete-time
channel filter.

Theorem 17.10.
response H ω

{ }

( )

Suppose that the sequence hk is an inverse Fourier transform of a frequency
:

hk =
1

(

2
∫

2π
eiωkH ω dω .

π 0

Assume also that H ω) is a continuous function on [0, 2π

( )

]. Then the capacity of the AWGN channel
with ISI is given by

C(T ) =
1

2π
∫

2π

0

1

2
log+(T ∣H(ω)∣2)dω

P (T ) =
1

2π
∫

2π

0
∣T −

1
+

Proof. (Sketch) At the decoder apply the inverse filter

∣

with

∣ dω
H(ω)∣2

frequency response ω ↦ 1 .H(ω) The
equivalent channel then becomes a stationary colored-noise Gaussian channel:

Ỹj = ˜Xj

˜where

+Zj ,

Zj is a stationary Gaussian process with spectral density

1
fZ̃(ω) = .

H ω 2

Then apply Theorem 17.9 to the resulting channel.
Remark: to make the above argument rigorous

∣

on

(

e

)∣

must simply carefully analyze the non-zero
error introduced by truncating the deconvolution filter to finite n.

17.7* Gaussian channels with amplitude constraints

We have examined some classical results of additive Gaussian noise channels. In the following, we
will list some more recent results without proof.

Theorem
= +

17.11 (Amplitude-constrained
∣ ∣ ≤

capacity of AWGN channel). For an AWGN channel
Yi Xi Zi with amplitude constraint Xi A and energy constraint ∑ni=

2
1Xi nP , we denote the

capacity by:
C A,P max I X;X Z .

≤

PX X A,EX 2 P

Capacity achieving input distribution

(

P

) =
∶∣ ∣≤

ete,

∣

with

∣ ≤
(

∗ is discr finitely

+

many

)

atoms on A,A . Moreover,

the convergence speed of limA→∞ (
X

C A,P

[− ]

) = 1
2 log(1 + P ) is of the order e−O(A2).

For details, see [Smi71] and [PW14, Section III].
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17.8* Gaussian channels with fading

Fading channels are often used to model the urban signal propagation with multipath or shadowing.
The received signal Yi is modeled to be affected by multiplicative fading coefficient Hi and additive
noise Zi:

Yi HiXi Zi, Zi 0,1

In the coherent case (also known

=

as CSIR

+

– for channel

∼ N (

state

)

information at the receiver), the
receiv
(

er
)

has access to the channel state information of Hi, i.e. the channel output is effectively
Yi,Hi . Whenever Hj is a stationary ergodic process, we have the channel capacity given by:

C( ) =
1

P E[ log 1 P H 2

2

and
(

the
)

capacity achieving input distribution is the

( +

usual

∣ ∣

P

)]

X 0, P . Note that the capacity
C P is in the order of log(P ) and we call the channel “energy efficient”.

In the non-coherent case where the receiver does not have

=

the

N (

information

)

of Hi, no simple
expression for the channel capacity is known. It is known, however, that the capacity achieving
input distribution is discrete, and the capacity

C P O log logP , P (17.8)

This channel is said to be “energy

(

inefficien

) = (

t”.

) →∞

With introduction of multiple antenna channels, there are endless variations, theoretical open
problems and practically unresolved issues in the topic of fading channels. We recommend consulting
textbook [TV05] for details.
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§ 18. Lattice codes (by O. Ordentlich)

Consider the n-dimensional additive white Gaussian noise (AWGN) channel

Y X Z

where Z ∼ N (0, In×n) is statistically independen

=

t

+

of the input X. Our goal is to communicate
reliably over this channel, under the power constraint

1
X

n
∥ ∥2 ≤ SNR

where SNR is the signal-to-noise-ratio. The capacity of the AWGN channel is

C = 1 log2 (1 + SNR bits/channel use,

and is achieved with high probability by a codeb

)

ook drawn at random from the Gaussian i.i.d.
ensemble. However, a typical codebook from this ensemble has very little structure, and is therefore
not applicable for practical systems. A similar problem occurs in discrete additive memoryless
stationary channels, e.g., BSC, where most members of the capacity achieving i.i.d. uniform
codebook ensemble have no structure. In the discrete case, engineers resort to linear codes to
circumvent the lack of structure. Lattice codes are the Euclidean space counterpart of linear codes,
and as we shall see, enable to achieve the capacity of the AWGN channel with much more structure
than random codes. In fact, we will construct a lattice code with rate that approaches 1 log 1 SNR2
that is guaranteed to achieve small error probability for essentially all additive noise channels with
the same noise second moment. More precisely, our scheme will work if the noise vector

(

Z

+

is semi

)

norm-ergodic.

Definition 18.1. We
≜

say that a sequence in n of random noise vectors Z(n) of length n with (finite)
effective variance σ2 1

Z nE∥Z(n)∥2, is semi norm-ergodic if for any ε, δ > 0 and n large enough

Pr(Z(n) ∉ B(
√

1 δ nσ2 ε, (18.1)Z

where B(r) is an n-dimensional ball of radius r.

( + ) ) ≤

18.1 Lattice Definitions

A lattice Λ is a discrete subgroup of
×

Rn which is closed under reflection and real addition. Any
lattice Λ in Rn is spanned by some n n matrix G such that

Λ = {t = Ga ∶ a ∈ Zn}.
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We will assume G is full-rank. Denote the nearest neighbor quantizer associated with the lattice Λ
by

QΛ(x

where ties are broken in a systematic manner.

) ≜ arg min ∥, (18.2)
t∈Λ

∥x − t

We define the modulo operation w.r.t. a lattice Λ as

[x] mod Λ ≜ x −QΛ(x),

and note that it satisfies the distributive law,

[[x

The

] mod Λ + y] mod Λ = [x + y

basic Voronoi region of Λ, denoted by , is the set of

] mod Λ.

all points in Rn which are quantized
to the zero vector. The systematic tie-breaking

V

in (18.2) ensures that

t Rn,

V

t

where

⊍
Λ

union.

∈
(V +

⊍ denotes disjoint Thus, is a fundamental

) =

cell of Λ.

Definition 18.2. A measurable set S ∈ Rn is called a fundamental cell of Λ if

S t Rn.
t Λ

We denote the volume of a set S R

⊍
∈

( + ) =

∈ n by Vol S .

Proposition 18.1. If S is a fundamental cell of

(

Λ

)

, then Vol S Vol . Furthermore

S mod Λ

( ) = (V)

= {[s] mod Λ ∶ s ∈ S} = V.

Proof ([Zam14]). For any t ∈ Λ define

At ≜ S ∩ (t + V); Dt ≜ V ∩ (t + S).

Note that

Dt = [(−t

t

+ V) S] + t

t.

∩

Thus

= A− +

Vol(S) =
t

∑
∈

Vol t Vol t t Vol
Λ

Moreo

(A ) =
t

∑
∈Λ

(A− + ) =
t

∑
∈Λ

ver

(Dt) = Vol(V).

S =
t
⊍
∈Λ
At =

t
⊍
∈Λ
A−t =

t

and therefore

⊍
∈
Dt − t,

Λ

[S] mod Λ =
t
⊍
∈Λ
Dt = V.
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Corollary
∣

18.1. If S is a fundamental cell of a lattice Λ with generating matrix G, then Vol S
det G

( ) =

( )∣. In Particular, Vol

, 1

(V det G .

Proof. Let P = G ⋅ [0 )n and note

) = ∣

that

(

it

)∣

is a fundamental cell of Λ as Rn Zn 0, 1 n. The claim
now follows from Proposition 18.1 since Vol det G Vol 0,1 n

=

det
+ [ )

(P) = ∣ ( )∣ ⋅ ([ ) ) = ∣ (G)∣.

Definition 18.3
)

(Lattice decoder). A lattice decoder w.r.t. the lattice Λ returns for every y Rn
the point QΛ(y .

Remark 18.1. Recall that for linear codes, the ML decoder merely consisted of mapping syndromes

∈

to shifts. Similarly, it can be shown that a lattice decoder can be expressed as

QΛ y y gsynd G−1y mod 1 , (18.3)

for some g n
synd 0, 1 n R , where

(

the

) = − ([ ] )

∶ [ ) ↦ mod 1 operation above is to be understood as componentwise
modulo reduction. Thus, a lattice decoder is indeed much more “structured” than ML decoder for a
random code.

Note that for an additive channel Y X Z, if X Λ we have that

Pe = Pr

= + ∈

(QΛ(Y

We therefore see that the resilience of a lattice

)

to

≠ X) = Pr(Z ∉ V). (18.4)

additiv
Since we know that Z will be inside a ball of radius

√ e noise is dictated by its Voronoi region.
n 1 δ with high probability, we would like

the Voronoi
(

region
)

to be as close as possible to a ball. We define the effective radius of a lattice,
denoted reff Λ as the radius of a ball with the same volume

( +

as

)

, namely Vol reff Λ Vol .

Definition 18.4 (Goodness for coding). A sequence of lattices

V

Λ(n) with

(B

gro
satisfying

(

wing

( )))

dimension,

= (V)

r2

lim
n→∞

eff(Λ
(n))

Φ
n

for some Φ

=

( )
> 0, is called good for

=

channel coding if for any additive semi norm-ergodic noise sequence
Z n with effective variance σ2 1

Z ZnE∥ ∥2 Φ

lim Pr

<

Z
n

(n) (n) 0.

An alternative interpretation of this

→∞

propert

(

y, is

∉

that

V

for

) =

a sequence Λ n that is good for coding,
for any 0

( )

< δ < 1 holds

Vol (B ((1 δ
lim
n→∞

− )reff(Λ
(n))) ∩ V(n))

Vol (B ((1

Roughly speaking, the Voronoi region of a lattice

−
1.

δ)reff(Λ(n)

that is

)

go

))

od for

=

coding is as resilient to semi
norm-ergodic noise as a ball with the same volume.
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(a)

reff

(b)

Figure 18.1: (a) shows a lattice in R2, and (b) shows its Voronoi region and the corresponding
effective ball.

18.2 First Attempt at AWGN Capacity

Assume we have a lattice Λ ⊂ Rn with reff(Λ) =
√
n(1 + δ) that is good for coding, and we would like

to use it for communicating over an additive noise channel. In order to meet the power constraint,
we must first intersect Λ, or a shifted version of Λ, with some compact set S that enforces the power
constraint. The most obvious choice is taking S to be a ball with radius

√

∈

nSNR, and take some
shift v Rn, such that the codebook

C = (v +Λ)⋂B(
√
nSNR (18.5)

satisfies the power constraint. Moreover [Loe97

(

],

)

there exist a

)

shift v such that

∣C∣ ≥
Vol S

Vol(V)

= (

√
nSNR

reff(Λ)
)

n

= 2
n

12 (log(SNR)−log( +δ)).

To see this, let V ∼ Uniform(V), and write the expected size of ∣C∣ as

E∣C∣ = E
t

∑ 1
∈Λ

((t V

1

+ ) ∈ S)

=
Vol(V)

∫
v∈V

∑
t∈Λ

1((t + v) ∈ S)dv

=
1

1
Vol(V)

∫
x∈Rn

(x ∈ S)dx

=
Vol(S)

. (18.6)
Vol

For decoding, we will simply apply the lattice decoder QΛ output. Since
Y −

Y v
v =

on the shifted
t +Z for some t

(V)

∈ Λ, the error probability is

Pe = Pr Q

( − )

( Λ(Y − v) ≠ t
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Since Λ is good for coding and
r2
eff(Λ)
n = (1 + δ) > 1 scnE Z 2, the error probability of this heme over

an
<

additive semi norm-ergodic noise channel will vanish
∥

with n. Taking δ → 0 we see that any rate
R 1

∥

log(SNR) can be achieved reliably. Note that for this coding scheme (encoder+decoder) the2
average error probability and the maximal error probability are the same.

The construction ab
+

ove gets us close to the AWGN channel capacity. We note that a possible
reason for

C

the loss of 1 in the achievable rate is the suboptimality of the lattice decoder for the
codebook . The lattice decoder assumes all points of Λ were equally likely to be transmitted.
However, in
that if

C only lattice points inside the ball can be transmitted. Indeed, it was shown [UR98]
one replaces the lattice decoder with a decoder that takes the shaping region into account,

there exist lattices and shifts for which the codebook (v +Λ)⋂B(
√
nSNR is capacity achieving.

The main drawback of this approach is that the decoder no longer exploits the full structure of the
lattice, so the advantages of using a lattice code w.r.t. some typical member

)

of the Gaussian i.i.d.
ensemble are not so clear anymore.

18.3 Nested Lattice Codes/Voronoi Constellations

A lattice Λc is said to be nested in Λf if Λc ⊂ Λf . The lattice Λc is referred to as the coarse lattice
and Λf as the fine lattice. The nesting ratio is defined as

V
Γ(Λf ,Λc) ≜ (

ol(Vc)
1 n

Vol(Vf

/
(18.7)

A nested
⊂

lattice code (sometimes also called “Voronoi constellation”)

)

based on the nested lattice
pair Λc Λf is defined as [CS83, For89, EZ04]

)

L ≜ Λf ∩ Vc. (18.8)

Proposition 18.2.

∣L∣ =
Vol(Vc)

Vol(Vf)
.

Thus, the codebook L has rate R = 1 log ∣L∣ = log Γn (Λf ,Λc).

Proof. First note that

Λf ≜
t
⊍
∈L

(t

Let

+Λc).

S ≜
t
⊍
∈L

(t + Vf),

and note that

Rn =
b
⊍
∈

b f

= ⊍

Λf

( + V )

a∈Λc t
⊍
∈L

(a + t + Vf)

=
a
⊍
∈Λc

(a + (
t
⊍
∈L

(t + Vf)))

=
a
⊍
∈Λc

(a + S) .
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Thus, S is a fundamental cell of Λc, and we have

Vol(Vc) = Vol(S) = ∣L∣ ⋅Vol(Vf).

V

We will use the codebook L with a standard lattice decoder, ignoring the fact that only points
in c were transmitted. Therefore, the resilience to noise will be dictated mainly by Λf . The role of
the coarse lattice Λc is to perform shaping. In order

V

to maximize the rate of the codebook without
violating the power constraint, we would like c to have the maximal possible volume, under the
constraint that the average power of a transmitted codeword is no more than nSNR.

L

The average transmission
∼

power of the codebook is related to a quantity called the second
moment of a lattice. Let U Uniform

L

(V). The second moment of Λ is defined as σ2(Λ) ≜ 1
nE∥U∥2.

Let W ∼ Uniform(B(reff(Λ)). By the isoperimetric inequality [Zam14]

σ2(Λ) ≥
1

n
E∥W∥2 =

r2
eff(Λ)

.
n 2

A lattice Λ
B

exhibits
( ( )

a good tradeoff between average power and volume if its second moment is close
to that of reff Λ .

+

Definition 18.5 (Goodness for MSE quantization). A sequence of lattices Λ n with growing
dimension, is called good for MSE quantization if

( )

nσ2

lim
n→∞

(Λ(n))
1.

r2 Λ n
eff

Remark 18.2. Note that both “goodness for co

(

ding”

( ))
=

and “goodness for quantization” are scale
invariant properties: if Λ satisfy them, so does αΛ for any α R.

Theorem 18.1 ([OE15]). If Λ is good for MSE quantization

∈

and U Uniform , then U is semi
norm-ergo

∈

dic. Furthermore, if Z is semi norm-ergodic and statistically independent of U, then for
any α,β R the random vector αU βZ is semi norm-ergodic.

∼ (V)

Theorem
⊂

18.2 ([ELZ05, OE15]). F

+

or any finite nesting ratio Γ Λf ,Λc , there exist a nested lattice
pair Λc Λf where the coarse lattice Λc is good for MSE quantization

(

and
)

the fine lattice Λf is good
for coding.

We now describe the Mod-Λ coding scheme introduced by Erez and Zamir [EZ04]. Let Λc Λf
be a

(

nested
1 )

lattice pair, where the coarse lattice is good for MSE quantization and has σ2 Λc

SNR − ε , whereas the fine lattice is good for coding and has r2 SNR
eff Λf

⊂

( ) =

( ) = n1+SNR(1 + ε). The rate is
therefore

R =
1 V

log
n

(
ol(Vc)

Vol(Vf)
)

=
1

2
log(

r2
eff(Λc)

r2
eff(Λf)

)

→
1

2
log

⎛

⎝

SNR(1 − ε)
SNR

1+SNR(1 + ε)

⎞

⎠
(18.9)

→
1

log
2

(1 + SNR) ,
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Figure 18.2: An example of a nested lattice code. The points and Voronoi region of Λc are plotted
in blue, and the points of the fine lattice in black.

t

U

−

⊕
mod-Λ

⊕X

Z

Y α ⊕ Yeff QΛf
(·) mod-Λ

t̂

Figure 18.3: Schematic illustration of the Mod-Λ scheme.

r2 Λ
where in (18.9) we have used the goodness of Λc for MSE quantization, that implies eff( c) σ2 Λc .n
The scheme also uses common randomness, namely a dither vector U Uniform c statistically
independen

∈

t
[

of everything,
]

known to both the transmitter and the receiver. In

→ ( )

message w 1, . . . , 2nR the encoder maps it to the corresponding point

∼

t

(V )

= t

X t U mod Λ.

( )

order
L

to transmit a
w ∈ and transmits

(18.10)

Lemma 18.1 (Crypto Lemma). Let Λ b

=

e

[

a

+

lattic

]

e in Rn, let U Uniform and let V be a
random vector in Rn, statistically independent of U. The random

∼

vector X
(V)

= [V +U
uniformly

] mod Λ is
distributed over and statistically independent of V.

Proof.
[

F
+

or any v

V

∈ Rn the set v
that v mod Λ and Vol

+ V

V] = V ( +

is
V)

a
=

fundamen
(V)

tal cell of Λ. Th
∈

us, by Proposition 18.1 we have
v Vol . Thus, for any v Rn

X∣V = v ∼ [v +U] mod Λ ∼ Uniform(V).

The Crypto Lemma ensures that 1E X 2 1 ε SNR, but our power constraint was X 2
n

nSNR. Since X is uniformly distributed over c and Λc is good for MSE quantization, Theorem 18.1
implies that ∥X SNR

∥ ∥ = ( − )

V

∥2 ≤ n with high probability. Thus, whenever the power constraint is violated

∥ ∥ ≤

we can just transmit 0 instead of X, and this will have a negligible effect on the error probability of
the scheme.
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The receiver scales its observation by a factor α > 0 to be specified later, subtracts the dither U
and reduces the result modulo the coarse lattice

Yeff = [ − ]

= [

αY U mod Λc

X −U + (α − 1)

= [ + ( − ) +

X αZ mod Λc

= [

t

+

α

]

1 X αZ

t

+

mod

]

Λc (18.11)

Zeff mod Λc,

]

(18.12)

where we have used the modulo distributive law in (18.11), and

Zeff

is effective noise, that is statistically independen

= (α − 1)X + αZ (18.13)

t of t, with effective variance

σ2
eff(α) ≜

1
E

dic,

∥Zeff∥
2 α2 1 α 2SNR. (18.14)

n

Since Z is semi norm-ergo and X is uniformly d

<

istributed

+ ( −

ov

)

er the Voronoi region of a lattice that
is good for MSE
variance σ2

eff

in effective v
The receiv

( )

quantization, Theorem 18.1 implies that Zeff is semi norm-ergodic with effective
α . Setting α SNR 1 SNR , such as to minimize the upper bound on σ2

eff α results
ariance σ2

eff SNR 1 SNR .
er next computes

= /( + ) ( )

< /( + )

t̂ = [QΛf (Yeff

QΛf t Z

)]

= [ ( +

mod Λc

eff)] mod Λc, (18.15)

and outputs the message corresponding to t̂ as its estimate. Since Λf is good for coding, Zeff is
semi norm-ergodic, and

r2
eff(Λf)

n
= (1 + ε)

SNR
σ2

1 SNR eff,

we have that Pr(t̂ ≠ t 0

+
>

) → as the lattice dimension tends to infinity. Thus, we have proved the
following.

Theorem 18.3. There exist a coding scheme based on a nested lattice pair, that reliably achieves
any rate below 1 log 1 SNR with lattice decoding for all additive semi norm-ergodic channels. In2
particular, if the additive noise is AWGN, this scheme is capacity achieving.

Remark 18.3. In t

(

he

+

Mod-Λ

)

=

scheme the error probability does not depend on the chosen message,
such that Pe,max Pe,avg. However, this required common randomness in the form of the dither U.
By a standard averaging argument it follows that there exist some fixed shift u that achieves the
same, or better, Pe,avg. However, for a fixed shift the error probability is no longer independent of
the chosen message.

18.4 Dirty Paper Coding

Assume now that the channel is

Y = X S
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where
∥ ∥ ≤

Z is a unit variance semi norm-ergodic noise, X is subject to the same power constraint
X 2 nSNR as before, and S is some arbitrary interference vector, known to the transmitter but

not to the receiver.
Naively, one can think that the encoder can handle the interference S just by subtracting it

from the transmitted codeword. However, if the codebook is designed to exactly meet the power
constraint, after subtracting S the power constraint will be violated. Moreover, if S 2 nSNR, this
approach is just not feasible.

Using the Mod-Λ scheme,
= [

S
+

can
]

be cancelled out with no cost in performance.

∥ ∥ >

Specifically,
instead of transmitting X t U mod Λc, the transmitted signal in the presence of known
interference will be

X t U αS mod Λc.

Clearly, the power constraint is not violated

= [ +

as

−

X

]

∼ Uniform c due to the Crypto Lemma (now,
U should also be independent of S). The decoder is exactly the same as in the Mod-Λ scheme with
no interference. It is easy to verify that the interference is completely

(V )

cancelled out, and any rate
below 1

2 log(1 + SNR) can still be achieved.

Remark 18.4. When Z is Gaussian and S is Gaussian there is a scheme based on random codes
that can reliably achieve 1 log 1 SNR . For arbitrary S, to date, only lattice based coding schemes2
are known to achieve the interference free capacity. There are many more scenarios where lattice
codes can reliably achieve better

( +

rates

)

than the best known random coding schemes.

18.5 Construction of Good Nested Lattice Pairs

We now briefly describe a method for constructing nested lattice pairs. Our construction is based
on starting with a linear code over a prime finite field, and embedding it periodically in Rn to form
a lattice.

Definition 18.6 (p-ary Construction A). Let p be a prime number, and let F ∈ Zk n
p be a k n

matrix whose entries are all members of the finite field Zp. The matrix F generates a

×

linear p-ary
code

×

C(F) ≜ {x ∈ Znp ∶ x

The b

= mo

y

[wTF] d p w

p-ary Construction A lattice induced the matrix F is defined

∈ Zkp} .

as

Λ(F) ≜ p−1C(F) +Zn.

Note that any point in Λ(F) can be decomp
[

osed as x p 1c a for some c F (where we
identify the elements of Zp with the integers 0, 1, . . . , p

= − +

−1]) and a ∈ Zn. Thus, for
∈

an
C

y
(

x
)

1,x2 ∈ Λ(F
we have

)

x + x = p−1
1 2 (c1 + c2) +

=

a1 a2

=

p−1([c1 + c2]

+

mod p
1

+

+ pa) + a1 + a2

p−

∈

c̃ ã

Λ(F)
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where c̃ = [c1 + c2 mod p F due to the linearity of
Zn. It can be verified
co ords in

]

similarly
∈ C( )

that for any x Λ F
dew F are distinct, then Λ F has a finite

C( )

a lattice. Moreover, if F is full-rank over Zp, then

∈ (

the

)

F , and a a are some ve
it −

and
∈

˜

( )

ctors in

C( ) ( )

holds that x Λ F , and that if all
minimum distance. Thus, Λ F is indeed
number of distinct codewords in F is

pk. Consequently, the number of lattice points
(V

in
)

ev
=

ery integer shift of the unit cube

(

is

)

pk, so the
corresponding Voronoi region must satisfy Vol p k.

C( )

Similarly, we can construct a nested lattice pair from

−

′
a linear code. Let 0 k k and let F be

the sub-matrix
C′(

obtained by taking only the first k rows of F. The matrix F

′

generates a linear

′

code F that is nested in F , i.e., F F . Consequently we hav

≤

e

′

that

<

Λ F Λ F ,
and the nesting

′)
ratio is

C( ) C′( ′) ⊂ C( ) ( ′) ⊂ ( )

Γ(Λ(F),Λ(F′)) =
k

p
−k′

n .

An advantage of this nested lattice construction for Voronoi constellations is that there is a very
simple mapping

= −
between messages and codewords in Λf c. Namely, we can index our set

of 2nR pk k′ messages by all vectors in Zk k
p

′

. Then, for each message vector w Zk k
p

′

, the
corresponding codeword in Λ F Λ F

−

is obtained

L =

b

∩

y

V

constructing the vector
∈ −

L = ( ) ∩ V( ( ′

w̃T

))

= [
²
0 ⋯ 0 wT ] ∈ Zkp, (18.16)

k′ zeros

and taking t = t(w w̃TF mod p mod Λ F
the (finite field) generating

If

) = [[

matrix
]

F

]

is needed.
( ′

we take the elements of F to be i.i.d. and

). Also, in order to specify the codebook , only

uniform over Zp, we get a random ensem

L

ble of
nested
= (

lattice
( + )/ )

codes. It can be shown that if p grows fast enough with the dimension n (taking
p O n 1 ε 2 suffices) almost all pairs in the ensemble have the property that both the fine and
coarse lattice are good for both coding and for MSE quantization [OE15].

Disclaimer: This text is a very brief and non-exhaustive survey of the applications of lattices
in information theory. For a comprehensive treatment, see [Zam14].
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§ 19. Channel coding: energy-per-bit, continuous-time channels

19.1 Energy per bit

Consider the additive Gaussian noise channel:

Yi =Xi +Zi, Zi ∼ N (
N0

0, . (19.1)
2

In the last lecture, we analyzed the maximum number of information

)

bits (M n, ε,P ) that can be
pumped through for given n time use of the channel under the energy constrain

∗

t P . Today we shall
study the counterpart of it: without any time constraint, in order to send k information

( )

bits, what
is the minimum energy needed? (E k, ε )

( )

ˆDefinition 19.1 ( (E,2k, ε) code).

∗

F

(

or a

)

channel W →X∞ → Y ∞ →W , where Y
E,2k, ε code is a pair of encoder-decoder:

∞ =X∞ +Z∞, a

f ∶ [2k]→ R
such that 1 . m, f

∞, g

m 2
2

∶ R
E

∞

. ∞
,

→ [

∀

2k]

) ∥ ( )∥ ≤

,

2 P g f W Z W ε.

Definition 19.2 (Fundamental limit).

) [ ( ( ) + ) ≠ ] ≤

E∗ k, ε min E E,2k, ε code

Note: Operational meaning of lim

(

ε E

) = { ∶ ∃ ) }

→0

(

∗(k, ε): it suggests the smallest battery one needs in order
to send k bits without

(

any time

Theorem 19.1 ( Eb/N0)min

lim lim

= −

constraints, below that level reliable communication is impossible.

1.6dB).

E

→
sup

ε→0 k

∗

∞

(k, ε)

k
=

N0

log2 e
,

1
1

log2 e
= − .6dB (19.2)

Proof.
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1. (“≥” converse part)

−h(ε) + εk ≤ d((1 − ε)∥
1

(F
M

) ano)

≤

≤

ˆI W ;W (data processing for divergence)

I

( )

(X∞;Y ∞) (data processing for M.I.)

≤
i
∑
∞

n ∞

=
I(Xi;Yi) ( lim

→∞
I(X ;U I

n
) = (X ;U

1

))

≤
i
∑
∞ 1

=1 2
log(1 +

EX2
i

N0/2
) (Gaussian)

≤
log e

2

∞
∑
i=1

EX2
i (linearization)

N0/2

≤
E

N0
log e

⇒
E∗(k, ε)

k
≥
N0

log e
(ε −

h(ε)
.

k

2. (“

)

≤” achievability part)
Notice that a (n,2k, ε, P ) code for AWGN channel is also a nP,2k, ε code for the energy
problem without time constraint. Therefore,

( )

log2Mmax
∗

P , take kn logMmax n, ε,P , we

(n, ε,P ) ≥ k⇒ E∗(k, ε) ≤ nP.

∀ = ⌊ ∗ ( )⌋
E

have
∗(kn,ε)
kn

≤ nP
kn
, ∀n, and take the limit:

lim sup
n→∞

E∗(kn, ε) nP
lim

kn
≤ sup

n→∞ logM∗
max(n, ε,P )

=
P

lim infn→∞
1
n logM∗

max(n, ε,P )

=
P

1
2 log(1 + P

N0/2

Choose P for the lowest upper bound:

)

E
lim sup
n

∗

→∞

(kn, ε)

kn
≤ inf
P≥0

P
1
2 log(1 + P

N0/2)

= lim
P→0

P
1
2 log(1 + P

N0/2)

=
N0

log2 e

Note: [Remark] In order to send information reliably at Eb N0 1.6dB, infinitely many time
slots are needed, and the information rate (spectral efficiency)
spectral efficiency, one necessarily has to step back from 1.6

/

dB

= −

−

is thus 0. In order to have non-zero
.
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Note: [PPM code] The following code, pulse-position modulation (PPM), is very efficient in terms
of Eb/N0.

PPM encoder: ∀m,f(m) = (0,0, . . . ,
√
E

±
m-th location

, . . . ) (19.3)

It is not hard to derive an upper bound on the probability of error that this code achieves [PPV11,
Theorem 2]:

ε ≤ E
⎡
⎢
⎢
⎢
⎢
⎣

min

⎧⎪⎪
⎨
⎪⎪⎩

MQ
⎛

⎝

√
2E

Z 1 ,
0

⎞
, 1

N

⎫⎪⎪
⎤
⎥
, Z 0 .

(

In
−
fact,√ the code can be further slightly optimized

+
⎠

by

⎬
⎪

sub

∼ ( )

⎦
⎥
⎥
⎥

tracting

N

⎭

the common center of gra ity
2 k

⎪

v
E, . . . , 2−k

√
E . . . and rescaling each codeword to satisfy the power constraint. The resulting

constellation (simplex co
small

)

de) is conjectured to be non-asymptotic optimum in terms of Eb
ε (“simplex conjecture”).

/N0 for

19.2 What is N0?

In the above discussion, we have assumed Zi 0,N0 2 , but how do we determine N0?
In reality the signals are continuous time (CT) process, the continuous time AWGN channel for

the RF signals is modeled as:

∼ N ( / )

Y (t X t N t (19.4)

where noise N(t) (added at the receiver antenna)

) = (

is

)

a

+

real

(

stationar

)

y ergodic process and is assumed
to be “white Gaussian noise” with single-sided PSD N0. Figure 19.1 at the end illustrates the
communication architecture. In the following discussion, we shall find the equivalent discrete
time (DT) AWGN model for the continuous time (CT) AWGN model in (19.4), and identify the
relationship between N0 in the DT model and N(t) in the CT model.

• Goal: communication in fc B 2 band.
(the (possibly complex) baseband

± /

signal lies in [−W,+W ], where W = B/2)

• observations:

1. Any signal band limited to fc B 2 can be produced by this architecture

2. At the step of C/D conversion,

± /

the
( )

LPF
(

follo
)

wed by sampl
{ }

ing at B samples/sec is
sufficient statistics for estimating X t ,XB t , as well as Xi .

First of all, what is N(t) in (19.4)?

Engineers’ definition of N(t)
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Estimate the average power dissipation at the resistor:

1
lim
T→∞

T ergo
F 2 dic (*)

F 2
t dt E N0B

T

If

∫
t=0

for some

= [

( )

constant N0, (*) holds for any narrow band with

]

cen

=

ter frequency fc and bandwidth B,
then N t is called a “white noise” with one-sided PSD N0.

Typically, white noise comes from thermal noise at the receiver antenna. Thus:

N0 kT (19.5)

where k 1.38 10 23 is the Boltzmann constant,

≈

and T is the absolute temperature. The unit of
N0 is (W

An

=

att
× −

/Hz = J).
intuitive explanation to (19.5) is as follows: the thermal energy carried by each microscopic

degree of freedom (dof) is approximately kT ; for bandwidth B and duration T , there are in total2
2BT dof; by “white noise” definition we have the total energy of the noise to be:

T
N BT =

k
0 2BT ⇒ N0

2
= kT.

Mathematicians’ definition of N t

Denote the set of all
(

real finite energy

( )

signals f(t)
)

by L2(R)

) (

, it is a vector space with the inner
product of two signals f t , g t defined by

f, g
∞

f t g t dt.
t

∀

Definition
∈ L ( )

19.3 (White noise). N

< >= ∫ =

∫
∞

t is a white

−∞

noise

( )

with

( )

two-sided PSD being constant N0 2 if
f, g R such that −∞ f

2 2
2

( )

(t)dt = ∫
∞
−∞ g (t)dt = 1, we have that

/

1.

< f,N >≜ ∫
∞

−∞
f(t)N(t)dt ∼ N (

N0
0, . (19.6)

2

2. The joint distribution of (< f,N >,< g,N is

)

>) jointly Gaussian with covariance equal to inner
product f, g .

Note: By this

<

definition,

>

N(t)
∈ L ( )

is not a stochastic process, rather it is a collection of linear mappings
that map any f 2 R to a Gaussian random variable.
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Note: Informally, we write:

( ) ( / )⇐⇒ [ ( ) ( )] =
N

E 0
N t is white noise with one-sided PSD N0 or two-sided PSD N0 2 N t N s δ

2
(t − s

(19.7)

)

Note: The concept of one-sided PSD arises when N(t) is necessarily real, since in that case power
spectrum density is symmetric around 0, and thus to get the noise power in band a, b one can get

b
noise power = F

[ ]

F

∫ one-sided
a

where Fone-sided f 2 two-sided f . In theory

(f)df = ∫
b a

df ,
a
+∫

−
Ftwo-sided f

b

of stochastic pro

−

cesses it is

(

uncomm

)

on to talk about
one-sided PSD,

(

bu
)

t
=

in engineering
( )

it is.

Verify the equivalence between CT /DT models

First, consider the relation between RF signals and baseband signals.

X(t) = Re(XB(t)
√

2ejωct),

YB(t) =
√

2LPF t
2 Y t ejωc ,

where ω 3
c

( ( ) )

= 2πfc. The LPF2 with high cutoff frequency ∼ 4fc serves to kill the high frequency

component after demodulation, and the amplifier of magnitude
√

2
(

serv
) =

es to
( )

preserve the total
energy of the signal, so that in the absence of noise we have that YB t XB t . Therefore,

YB(t) =XB(t

where N t is a complex Gaussian white noise and

) + Ñ(t) ∼ C

̃( )

E N t N s ∗ N0δ t s .

Notice that after demodulation, the PSD

[ ̃( )

of

̃

the

( )

noise

] =

is

(

N0

− )

in the imaginary part, and after the
√ /2 with N0/4 in the real part and N0/4

2 amplifier the PSD of the noise is restored to N0 2 in both
real and imaginary part.

Next, consider the equivalent discrete time signals.

/

XB(t) =
i
∑
∞ i

=−∞
XisincB(t −

B
)

Yi = ∫
∞

t=−∞
YB(t)sincB(t −

i
dt

B
Yi

)

=Xi +Zi
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where the additive noise Zi is given by:

Zi = ∫
t

∞

=−∞
Ñ(t)sincB(t −

i
dt i.i.d C 0,N0 . by (19.6)

B

if we focus on the real part of all signals, it

)

is consisten

∼ N

t with

(

the

)

real

(

AWGN c

)

hannel model in
(19.1).

Finally, the energy of the signal is preserved:

∑
∞

2

=−∞
∣Xi∣

2 = ∥XB(t)∥2
2 = ∥X(t)∥2.

i

Note: [Punchline]

CT AWGN (band limited)

0

⇐ DT C-AWGN

N
two-sided PSD

⇒

2
⇐⇒ Zi ∼ CN (0,N0

energy= X t 2dt energy= X

)

2
i

19.3 Capacity of the contin

∫

uous-time

( ) ⇐⇒

band-limited

∑ ∣ ∣

AWGN
channel

Theorem 19.2. Let MC
∗
T

channel
(T, ε,P ) the maximum number of waveforms that can be sent through the

Y (
N

, E 0
t) =X(t) +N(t) N(t)N(s) = δ

2
(t − s

such that:

)

1. in the duration [0, T ];

2. band limited to [fc −
B
2 , fc +

B for some large carrier frequency2

T
3. input energy constrained to

]

∫t

ˆ4. error probability P W W

=0 x
2(t) ≤ TP ;

[ ≠ ] ≤ ε.

Then
1

lim lim inf
ε→0 n→∞ T

logM∗
CT (T, ε,P ) = B log(1 +

P

N0B
) , (19.8)

Proof. Consider the DT equivalent C-AWGN channel of this CT model, we have that

1 1
logMCT

∗
T (T, ε,P ) = logMC

∗
−AWGN(BT, ε,P

T
/B

This is because:

)

• in time T we get to choose BT complex samples

• The power constraint in the DT model changed because for blocklength BT we have

BT

X 2
i X t 2

2 PT ,
i 1

thus per-letter power constraint is

∑
=

P

∣ ∣ = ∥ ( )∥ ≤

.B
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Calculate the rate of the equivalent DT AWGN channel and we are done.

Note the above “theorem” is not rigorous, since conditions 1 and 2 are mutually exclusive:
any time limited non-trivial signal cannot be band limited. Rigorously, one should relax 2 by
constraining the signal to have a vanishing out-of-band energy as T →∞. Rigorous approach to
this question lead to the theory of prolate spheroidal functions.

19.4 Capacity of the continuous-time band-unlimited AWGN
channel

In the limit of large bandwidth B the capacity formula (19.8) yields

P
CB=∞(P ) = lim

→∞
B log(1

B
+
N0B

) =
P

log e .
N0

It turns out that this

(

result is

)

easy to prove rigorously.

Theorem 19.3. Let M∗ T, ε,P the maximum number of waveforms that can be sent through the
channel

( ) = ( ) + ( ) E ( ) ( ) =
N0

Y t X t N t , N t N s δ
2

(t − s

such that each waveform x t

)

1. is non-zero only on

( )

[0, T ];

2. input energy constrained to ∫
T 2
t 0 x t TP ;

[ ˆ3. error probability P W

= ( ) ≤

≠W ] ≤ ε.

Then
1

lim
ε→

lim inf
0 T→∞ T

logM∗(T, ε,P ) =
P

log e (19.9)
N0

Proof. Note that the space of all square-integrable functions on [0, T , denoted L2 0, T has countable
basis (e.g. sinusoids). Thus, by changing to that basis we may assume

]

that
[

equiv
]

alent channel
model

˜ 0
j =

N˜ ˜ ˜Y Xj +Zj , Zj ∼ N (0, ,
2

and energy constraint (dependent upon duration T ):

)

j
∑
∞

˜
=
X2
j PT .

1

But then the problem is equivalent to energy-per-bit

≤

one and hence

log2M
∗(T, ε, P ) = k ⇐⇒ E∗(k, ε) = PT .

Thus,
1

lim
ε→

lim inf
0 n→∞ T

log2M
∗(T, ε, P ) =

P

limε→0 lim supk→∞
E∗(k,ε)

k

=
P

log2 e ,N0

where the last step is by Theorem 19.1.
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Figure 19.1: DT / CT AWGN model



19.5 Capacity per unit cost

Generalizing the energy-per-bit setting of Theorem 19.1 we get the problem of capacity per unit
cost :

1. Given a random transformation PY∞∣X∞ and cost function c R , we let

M∗(E, ε) = max{M ∶ (E,M, ε)-code

∶ X

,

→ +

where (E,M, ε)-code is defined as a map

}

[M]→ X∞ with every codeword x∞ satisfying

t

∞

=
c

1

(xt) ≤ E . (19.10)

2. Capacity per unit cost is defined as

∑

Cpuc ≜
1

lim
ε→

lim inf
0 E→∞

logM
E

∗ E, ε .

3. Let C(P ) be the capacity-cost function of the channel

(

(in

)

= ( ) =

the usual sense of capacity, as
defined in (17.1). Assuming P0 0 and C 0 0 it is not hard to show that:

Cpuc =
C

sup
P

(P )

P
= lim
P→0

C(P )

P
=

d
C

dP P=
P .

0

4. The surprising discovery of Verdú is that one can avoid

∣

computing

( )

C P
Cpuc directly. This is a significant help, as for many practical channels

et another

(

C
Additionally, this gives a y fundamental meaning to KL-divergence.

)

(

and derive the
P ) is unknown.

Theorem 19.4. For a stationary memoryless channel PY∞∣X∞ =∏PY ∣X with P0 = c(x0) = 0 (i.e.
there is a symbol of zero cost), we have

Cpuc =
D PY x

sup
x

∣X= PY ∣X=x0

≠x0

( ∥ )
.

c(x

In particular, Cpuc

)

=∞ if there exists x1 ≠ x0 with c(x1) = 0.

Proof. Let

CV =
D

sup
x≠x0

(PY ∣X=x∥PY ∣X=x0
)
.

c(x

Converse: Consider a

)

(E,M, ε) code W → X∞ → Y ∞ → Ŵ . Introduce an auxiliary distribution
QW,X∞,Y∞ ˆ , where a channel is a useless one,W

QY∞∣X∞ = QY∞ ≜ PY
∞
∣X=x .

0

That is, the overall factorization is

Q ∞ ∞ ˆ PW,X ,Y ,W = WPX∞∣WQY∞PŴ ∣Y∞ .
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Then, as usual we have from the data-processing for divergence

(
1

1 − ε) logM + h(ε) ≤ d(1 − ε∥ (19.11)
M

)

≤D(

= (

PW,X∞,Y

D PY∞∣
∞

X∞∥

∞ ˆ Q ˆ (19.12),W W,X ,W

Q

∞,Y∞

Y∞

∥

PX∞

)

(19.13)

= E [∑
=
d(Xt

enience

)] ,

∣ )

(19.14)
t 1

where we denoted for conv

d(x) ≜D(PY X x PY X x0
.

By the definition of CV we have

∣ = ∥ ∣ = )

d x c x CV .

Thus, continuing (19.14) we obtain

( ) ≤ ( )

(1 − ε) logM + h(ε) ≤ CV E [
t
∑
∞

=
c Xt CV E ,

1

where the last step is by the cost constraint (19.10). Thus,

(

dividing

)] ≤

b

⋅

y E and taking limits we get

Cpuc ≤ CV .

Achievability: We generalize the PPM code (19.3). For each x1 and n Z we define the
encoder f as follows:

∈ X ∈ +

f(1) = (x
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

1, x ,

n
¹¹¹¹¹¹
1
¸
, . .

¹¹¹¹¹¹¹
.
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
, x

¶
1

-times n

f 2 x0, x

(
´
x
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
0, .

M−
¸
. .

)
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
, x

¶
0

=

-times

) (19.15)

( ) (

1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
n-times
¹¹¹¹¹¹
0
¸
, . .

¹¹¹¹¹¹¹
.
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
, x

¶
0,

´
x
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
1, .

¸
. .
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
, x

¶
1,

´
x
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
0, .

¸
. .
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
, x

¶
0 (19.16)

n-times n(M−2)-times

)

f

⋯

(M) = (

(19.17)

x
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

0, .
¸
. .
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
, x

¶
0 ,

´
x1, x1, . . . , x1 (19.18)

n(M−1)-times n-times

)

Now, by Stein’s lemma there exists a subset S

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

⊂ Yn with the property that

P[Y n ∈ S∣Xn = (

[ ∈ ∣ = (

x1, . . . , x1)] ≥ 1 −

)] ≤

ε

{

1

− ( ∥ ) + ( )}

(19.19)

P Y n S Xn x0, . . . , x0 exp nD PY ∣X=x1
PY ∣X=x0

o n . (19.20)

Therefore, we propose the following (suboptimal!) decoder:

Y n ∈ ˆS

1 ∈

W 1 (19.21)

ˆY 2n
n+ S

Ô⇒ =

Ô⇒ W = 2 (19.22)

(19.23)

From the union bound we find that the overall pr

⋯

obability of error is bounded by

ε ≤ ε1 +M exp{−nD(PY ∣X=x1
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At the same time the total cost of each codeword is given by nc x1 . Thus, taking n and after
straightforward manipulations, we conclude that

( ) →∞

Cpuc ≥
D(PY ∣X=x1

∥PY ∣X=x0
)
.

c x1

This holds for any symbol x1 ∈ X , and so we are free

(

to

)

take supremum over x1 to obtain Cpuc CV ,
as required.

≥

19.5.1 Energy-per-bit for AWGN channel subject to fading

Consider a stationary memoryless Gaussian channel with fading Hj (unknown at the receiver).
Namely,

N
0 )

0
Yj =HjXj +Zj , Hj ∼ N ( ,1 ⊥⊥ Zj ∼ N (0, .

2

The cost function is the usual quadratic one c x x2. As we discussed previously

)

, cf. (17.8), the
capacity-cost function C P is unknown in closed form, but is known to behave drastically different
from the case of non-fading

(

A

( ) =

)

′
WGN (i.e. when Hj =

( )

1). So here previous theorem comes handy, as
we cannot just compute C 0 . Let us perform a simple computation required, cf. (1.16):

D
Cpuc = sup

x≠0

(N (0, x2 + N0

2 )∥N (0, N0

2 ))

x2
(19.24)

=
1

2
log

sup
N0 x≠0

⎛

⎝
log e −

(1 + 2x
N0

)

2x2

N0

⎞

⎠
(19.25)

=
log e

(19.26)
N0

Comparing with Theorem 19.1 we discover that surprisingly, the capacity-per-unit-cost is unaffected
by the presence of fading. In other words, the random multiplicative noise which is so detrimental
at high SNR, appears to be much more benign at low SNR (recall that Cpuc C 0 ). There is one
importan

=∞

t difference, however. It should be noted that the supremization over
at x . Following the proof of the converse bound, we conclude that any co

=

x in

′(
(
)

19.25) is solved
de hoping to achieve

optimal Cpuc must satisfy a strange constraint:

∑x2
t 1 xt A x2

t A 0
t

I.e. the total energy expended by each

{∣

codew

∣ ≥

ord

} ≈

m

∑
t

ust be alm

∀

ost

>

entirely concentrated in very large
spikes. Such a coding method is called “flash signalling”. Thus, we can see that unlike non-fading
AWGN (for which due to rotational symmetry all codewords can be made “mellow”), the only hope
of achieving full Cpuc in the presence of fading is by signalling in huge bursts of energy.

This effect manifests itself in the
)

speed of convergence to C
∗(

puc with increasing constellation sizes.
E k,ε

Namely, the energy-per-bit k behaves as

E∗(k, ε)

k
= (−1.59 dB) +

√
const

Q
k

−1(ε) (AWGN) (19.27)

E∗(k, ε)

k
= (−1.59 dB) +

3

√
log k 2Q
k

( −1(ε)) (fading) (19.28)

Fig. 19.2 shows numerical details.
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Information bits, k

E
b

d
B
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N

Figure 19.2: Comparing the energy-per-bit required to send a packet of k-bits for different channel
E k,ε

models (curves represent upper and lower bounds on the unknown optimal value
∗( )

−

). As ak
comparison: to get to 1.5 dB one has to code over 6 ⋅ 104 data bits when the channel is non-fading
AWGN or fading AWGN with Hj known perfectly at the

⋅

receiver. For fading AWGN without
knowledge of Hj (noCSI), one has to code over at least 7 107 data bits to get to the same −1.5 dB.
Plot generated via [Spe15].
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§ 20. Advanced channel coding. Source-Channel separation.

Topics: Strong Converse, Channel Dispersion, Joint Source Channel Coding (JSCC)

20.1 Strong Converse

We begin by stating the main theorem.

Theorem
=

20.1.
< <

For any stationary memoryless channel with either
Cε C for 0 ε 1.

Remark: In Theorem 16.4, we showed that C C C

∣A∣ <∞ or ∣B∣ <∞ we have

≤ ε ≤ . Now we are asserting that equality1 ε
holds for every ε. Our previous converse arguments showed that communication with an arbitrarily
small error probability is possible only when using rate R C

−

; the strong converse shows that when
you try to communicate with any rate above capacity R C, then the probability of error will go to
1 (typically with exponential speed in n). In other words,

<

>

ε∗(n, exp nR
⎪⎪
⎧

0 R < C

1 R C

where ε∗(n,M) is the inverse of M∗(n, ε

( ))→ ⎨
⎪⎪⎩

) defined in (16.3).

>

In practice, engineers observe this effect in the form of waterfall plots, which depict the dependence
of a given communication system (code+modulation) on the SNR.

Pe

1
10−1

10−2

10−3

10−4

SNR
10−5

Below a certain SNR, the probability of error shoots up to 1, so that the receiver will only see
garbage.

Proof. We will give a sketch of the proof. Take an (n,M, ε)-code for channel PY ∣X . The main trick
is to consider an auxiliary channel QY ∣X which is easier to analyze.

Xn Y nW Ŵ
PY n|Xn

QY n|Xn
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Sketch 1: Here, we take QY n∣Xn = (PY
∗)n, where PY

∗ is the capacity-achieving output distribution
(caod) of the channel PY ∣X .1 Note that for communication purposes, QY n∣Xn is a useless channel; it
ignores the input and randomly picks a member of the output space according to (PY

∗)n, so that
Xn and Y n are decoupled (independent). Consider the probability of error under each channel:

Q[Ŵ =W ] =
1

(Blindly guessing the sent codeword)

P[Ŵ =W ] =

M

1 − ε

Since the random variable 1{ ˆ = } has a huge mass underW W P and small mass under Q, this looks

like a great binary hypothesis test to distinguish the two distributions, P n n ˆ and Q n n ˆ .WX Y W WX Y W
Since any hypothesis test can’t beat the optimal Neyman-Pearson test, we get the upper bound

β1−ε(
1

P ˆ ,Q ˆWXnY nW WXnY nW ) ≤ (20.1)
M

(Recall that βα(P,Q) = infP [E]≥αQ[E]). Since the likelihood ratio is a sufficient statistic for this
hypothesis test, we can test only between

PWXnY nŴ
P

QWXnY nŴ

=
WPXn∣WPY n∣XnPŴ ∣Y n

PWPXn∣W (P ∗
Y )nPŴ ∣Y n

=
PW ∣XnPXnY nPŴ ∣Y n

PW ∣XnPXn(P ∗
Y )nPŴ ∣Y n

=
PXnY n

PXn(PY
∗)n

Therefore, inequality above becomes

β1−
n

ε(PXnY n , PXn(PY
∗) ) ≤

1
(20.2)

M

Computing the LHS of this bound need not be easy, since generally we know PY X and PY , but
can’t assume anything about P Xn

Xn which depends on the code. (Note that is the output

∗

of the
encoder and uniformly distributed on the codebook for deterministic encoders). Certain

∣

tricks are
needed to remove the dependency on codebook. However, in case the channel is “symmetric” the
dependence on the codebook disappears: this is shown in the following example for the BSC. To
treat the general case one simply decomposes the channel into symmetric subchannels (for example,
by considering constant composition subcodes).

Example. For a BSC(δ)n, recall that

PY n∣
n

Xn(y ∣xn) = PnZ(y
n − xn), Zn ∼ Bern(δ)n

PY
∗ n yn 2−n

From the Neyman Pearson test,

(

th

)

e

(

optimal

) =

HT takes the form

(
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

n n

βα PXnY n , PXn

P
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸

(
P

P

Q
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
Y
∗)
¹¹¹¹¹

n

¶
) = Q [

X Y
log

PXn(P ∗
Y )n

≥ γ] where α = P [log
PXnY n

γ
PXn(PY

∗)n
≥ ]

For the BSC, this becomes

PXnY n
log

PXn(P ∗
Y )n

= log
PZn(y

n − xn)

2−n

1Recall from Theorem 4.5 that the caod of a random transformation always exists and is unique, whereas a caid
may not exist.
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So under each hypothesis P and Q, the difference Y n −Xn takes the form

Q ∶ Y n −Xn ∼ Bern(
1 n

2
P Y n Xn Bern δ

)

n

Now all the relevant distributions are kno

∶

wn,

−

so w

∼

e can

(

compute

)

βα

Bern n
Y )

1
βα(PXnY n , PXn(P ∗ n) = βα( (δ) ,Bern(

2
)n)

= 2−nD(Bern(δ)∥Bern( 1 o
2
))+ (n) (Stein’s Lemma Theorem 11.1)

= 2−nd(δ∥
1 o
2
)+ (n)

Putting this all together, we see that any (n,M, ε) code for the BSC satisfies

2−nd(δ∥
1
2
)+o(n) ≤

1

M
Ô⇒ logM ≤ nd(δ∥

1
o n

2

Since this is satisfied for all codes, it is also satisfied for the optimal

) +

c

(

ode,

)

so we get the converse
bound

1
lim inf
n→∞ n

logM∗(n, ε) ≤ d(δ∥
1

log 2 h δ
2

For a general channel, this computation can be much more

) =

difficult.

− ( )

The expression for β in this
case is

− ( ∣ ( ∗) ) = − ( ∣ ∥ ∗ ∣ ¯β n X
ε P

nD P n 1
Y X P P oY1 XnPY n Xn , PXn PY 2 )+ ( ) ≤ (20.3)

M

¯where PX is unknown (depending on the code).
Explanation of (20.3): A statistician observes sequences of (Xn, Y n):

Xn = [ 0 1 2 0 0 1 2 2 ]

Y n = [ a b b a c c a b ]

On
(

the mark
∥ ∗

ed
)

three blocks, test between iid samples of PY X 0 vs PY , which has exponent
D PY ∣X=0 PY . Thus, intuitively averaging over the composition of the co

∗

deword we get that the
exponent of β is given by (20.3).

∣ =

Recall that from the saddle point characterization of capacity (Theorem 4.4) for any distribution
P̄X we have

¯D

Th

(PY ∣X∥PY
∗ ∣PX) ≤ C . (20.4)

us from (20.3) and (20.1):

¯logM ≤ nD(PY ∣X∥PY
∗ ∣PX) + o(n) ≤ nC + o(n

Sketch 2: (More formal) Again, we will choose a dummy auxiliary

)

channel QY n∣Xn

However, choice of QY will depend on one of the two cases:
= (Q n

Y ) .
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1. If ∣B∣ <∞ we take QY = PY
∗ (the caod) and note that from (16.16) we have

∑PY ∣X(y∣x0) log2 PY ∣X(y∣x0) ≤ log2 x0
y

and since
A

miny PY
∗(y) > 0 (without loss of generality), we conclude

∣B∣ ∀

that

∈ A

for any distribution of
X on we have

Var [
PY

log
∣X(Y ∣X)

QY (Y )
∣X] ≤K <∞ ∀PX . (20.5)

Furthermore, we also have from (20.4) that

E [log
PY ∣X(Y ∣X)

.
Q

∣X X
Y Y

] ≤ C ∀P (20.6)

2. If ∣A∣ <∞, then for each codeword c

( )

∈ An we define its composition as

1
P̂c(x) ≜

n

1 cj x .
n j 1

By simple counting it is clear that from any

∑
=

{ = }

(n,M, ε) code, it is possible to select an n,M , ε
subcode, such that a) all codeword have the same composition P0; and b) M

( ′
′

)

> M
n∣A∣ . Note

that, logM = logM ′ +O(logn) and thus we may replace M with M ′ and focus on the analysis
of the chosen subcode. Then we set QY = PY ∣X ○ P0. In this case, from (16.9) we have

Var [log
PY ∣X(Y ∣X)

X K X P0 . (20.7)
QY Y

Furthermore, we also have

( )
∣ ] ≤ <∞ ∼

E [
PY

log
∣X(Y ∣X)

( )
∣X] =D(PY ∣X∥QY ∣P0) = I(X;Y ) ≤ C X ∼ P0 . (20.8)

QY Y

Now, proceed as in (20.2) to get

β1−
n 1

ε(PXnY n , PXn(QY ) ) ≤ . (20.9)
M

We next apply the lower bound on β from Theorem 10.5:

(
dP Y n Xn

γ −
n

n Y n X
β1 ε PXnY n , PXn(QY ) ) ≥ P[ log

∣ ( ∣ )

d∏QY (Yi)
≤ log γ] − ε

Set log γ = nC +K ′√n with K ′ to be chosen shortly and denote for convenience

d
Sn ≜

PY n
log

∣Xn(Y n∣Xn)

d∏QY (Yi)
=

n

∑
j=1

log
dPY ∣X(Yj ∣Xj)

dQY (Yj

Conditioning on Xn and using (20.6

)

P [Sn ≤ nC +K ′√

) and (20.8) we get

n∣Xn] ≥ P [Sn ≤ nE[Sn∣X
n] +K ′√n∣Xn]
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From here, we apply Chebyshev inequality and (20.5) or (20.7) to get

P [Sn ≤ nE[Sn∣X
n] +K ′√n∣Xn] ≥ 1 −

K ′2

K
.

If we set K ′ so large that 1 − K′2

K > 2ε then overall we get that

logβ1−ε(PXnY n , PXn(QY )n) ≥ −nC −K ′√n − log ε .

Consequently, from (20.9) we conclude that

logM∗(n, ε) ≤ nC +O(
√
n) ,

implying the strong converse.

In summary, the take-away points for the strong converse are

1. Strong converse can be proven by using binary hypothesis testing.

2. The capacity saddle point (20.4) is key.

In the homework, we will explore in detail proofs of the strong converse for the BSC and the AWGN
channel.

20.2 Stationary memoryless channel without strong converse

It may seem that the strong converse should hold for an arbitrary stationary memoryless channel (it
was only showed for the discrete ones above). However, it turns out that there exist counterexamples.
We construct one next.

Let output alphabet be B = [0, 1]. The input A is going to be countable, it will be convenient to
define it as

The single-letter channel PY X is

A

defined

= {(j,m) ∶ j,m ∈ Z+,0 ≤ j ≤m} .

∣ in terms of probability density function as

pY ∣X(y∣(j,m

⎧

)) =
⎪⎪
⎨

j

⎪

am,

⎩
⎪

m ≤ y ≤ j+1
m , ,

bm, otherwise ,

where am, bm are chosen to satisfy

1

m
am + (1 −

1
b

m
) m = 1 (20.10)

1 1
am log am

m
+ (1 −

m
)bm log bm = C , (20.11)

where C > 0 is an arbitary fixed constant. Note that for large m we have

am =
mC 1

1
logm

( +O(
logm

)) , (20.12)

bm = 1 −
C

logm
+O(

1
(20.13)

log2m
)
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It is easy to see that PY
∗ = Unif[0,1] is the capacity-achieving output distribution and

sup I X;Y C .
PX

Thus by Theorem 16.6 the capacity of the corresp

(

onding

) =

stationary memoryless channel is C. We
next show that nevertheless the ε-capacity can be strictly greater than C.

Indeed, fix
to all atoms
single-letter information

(

blo
)

cklength n
=

and
{

consider
, }

a single letter distribution PX assigning equal weights
j m with m exp 2nC . It can be shown that in this case, the distribution of a

density is given by

⎧

( ) ≈
⎪⎪
⎨

2nC, w.p. 1

i X;Y

⎩
⎪⎪

2n

0, w.p.1 − 1
2n

Thus, for blocklength-n density we have

1
i Xn;Y n 2CPoisson 1 2 .

n

Therefore, from Theorem 15.1 we get

(

that for

)→

ε

( / )

> 1 − e−1/2 there exist

logM 2nC .

(n,M, ε)-codes with

In particular,

≥

Cε ≥ 2C ∀ε > 1 − e−1/2

20.3 Channel Dispersion

The strong converse tells us that logM n, ε nC o n ε . An engineer sees this,
estimates logM∗ ≈

0,1 and
nC. However, this do

∗

es
(

n’t
)

giv
=

e an
+

y information
( ) ∀ ∈ (

ab
)

( )

out the dependence of logM
on the error probability ε, which is hidden in the o n term. We unravel this in the following

∗

theorem.

Theorem 20.2. Consider one of the following channels:

1. DMC

2. DMC with cost constraint

3. AWGN or parallel AWGN

The following expansion holds for a fixed 0 < ε < 1/2 and n

logM

→∞

∗(n, ε) = nC −
√
nV Q−1 ε O logn

wher
=

e
(

Q 1 is the inverse of the complementary standar

(

d

)

normal

+ (

CDF,

)

the channel capacity is
C I X

−
∗;Y ∗) = E[i(X∗;Y ∗)], and the channel dispersion2 is V = Var[i(X∗;Y ∗)∣X∗].

2There could be
[

m
(

ultip
∗

le
∗)∣

capacit
∗]

y-achieving input distributions, in which case PX∗ should be chosen as the one
that minimizes Var i X ;Y X . See [PPV10] for more details.

212



Proof. For achievability, we have shown (Theorem 16.7) that logM∗(n, ε) ≥ nC −
√
nV Q 1 ε by

refining the proof of the noisy channel
∗ ≤ −

coding theorem
(

using the CLT.

−

The converse statement is logM logβ n
1−ε PXnY n , PXn PY . For the BSC, we showed

( )

that
the RHS of the previous expression is

( ∗) )

−
1

logβ1−ε(Bern(δ)n,Bern(
2
)n) = nd(δ∥

1

2
) +

√
nV Q−1(ε) + o(

√
n

(see homework) where the dispersion is

)

V = VarZ∼Bern(δ) [
Bern

log
(δ)

Bern(1
2)

(Z)] .

The general proof is omitted.

Remark: This
[ (

expansion
)] =∞

only applies for certain channels (as described in the theorem). If,
for example, Var i X;Y , then the theorem need not hold and there are other stable (non-
Gaussian) distributions that we might converge to instead. Also notice that for DMC without cost
constraint

Var i X ;Y X Var i X ;Y

since (capacity saddle point!) i

[ ∗

E

( ∗)∣ ∗] = [ ( ∗ ∗)]

[ (X∗;Y ∗)∣X∗ = x

20.3.1 Applications

] = C for PX∗-almost all x.

As stated earlier, direct computation of M∗(n, ε) by exhaustive search doubly exponential in
complexity, and thus is infeasible in most cases. However, we can get an easily computable
approximation using the channel dispersion via

logM∗(n, ε) ≈ nC −
√
nV Q−1 ε

Consider a BEC (n = 500, δ = 1/2) as an example of using this appro

( )

ximation. For this channel, the
capacity and dispersion are

C =

=

1

¯δ

− δ

V δ

¯Where δ = 1 − δ. Using these values, our

logM∗(500,10−3) ≈ nC −
√

approximation for this BEC becomes

nV Q−1(ε) = nδ̄ −
√

¯nδδQ−1 10−3 215.5 bits

In the homework, for the BEC(500,1/2) we obtained bounds 213

( ) ≈

≤ logM∗(500,10−3) ≤ 217, so this
approximation falls in the middle of these bounds.

Examples of Channel Dispersion
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For a few common channels, the dispersions are

( ) = ¯BEC: V δ δδ log2 2

BSC: V (δ) =
¯

¯δδ log2 δ

δ

AWGN: V (P ) =
P (P + 2)

2(P + 1)2
log2 e (Real)

P (P + 2)
log2 e (Complex)

P 1 2

L Pj
Parallel AWGN: V (P, σ2

)

) =
j
∑
=
VAWGN

( +

1

(
σ2
j

) =
log2 e

2

L

∑
j=1

RRRRRRRRRRRRR

1 −
⎛

⎝

σ2
j

2

T

⎞
RRRRR
+

L

RR

where ∑ ∣+

=
∣T − σ2

j = P is the water-filling solution of the

⎠
RRRRR

j 1

R

parallel AWGN

Punchline: Although the only machinery needed
∗
for this approximation is the CLT, the results

produced are incredibly useful. Even though logM is nearly impossible to compute on its own, by
only finding C and V we are able to get a good approximation that is easily computable.

20.4 Normalized Rate

Suppose you’re given two codes k1 → n1 and k2 → n2, how do you fairly compare them? Perhaps
they have the following waterfall plots

Pe k1 → n1 Pe k2 → n2

10−4 10−4

SNR SNRP ∗ P ∗

After inspecting these plots, one may believe that the k1 → n1 code is better, since it requires
a smaller SNR to achieve the same error probability. However, there are many factors, such as
blocklength, rate, etc. that don’t appear on these plots. To get a fair comparison, we can use the
notion of normalized rate. To each (n,2k, ε)-code, define

Rnorm =
k

log2M
∗
AWGN(n, ε,P )

≈
k

nC(P ) −
√
nV (P )Q−1

Take ε 10−4, and P (SNR) according to the water fall plot corresponding

(ε)

= to Pe = 10
can compare codes directly (see Fig. 20.1). This normalized rate gives another motivation

−4, and we
for the

expansion given in Theorem 20.2.

20.5 Joint Source Channel Coding

Now we will examine a slightly different information transmission scenario called Joint Source
Channel Coding

Sk Encoder Xn Y n Decoder Ŝk
Source Channel(JSCC) (JSCC)
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Figure 20.1: Normalized rates for various codes. Plots generated via [Spe15].
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Definition 20.1. For a Joint Source Channel Code

• Goal: P[Sk

• Encoder: f

=/ Ŝk] ≤ ε

∶ Ak

g

→ n

• Decoder:

X

∶ Yn → Ak

• Fundamental Limit (Optimal probability of error): ε∗JSCC k,n inff,g P Sk Ŝk

where the rate is R k

( ) = [ =/ ]

= (symbol per channel use).n

Note: In channel coding we are interested in transmitting M messages and all messages are born
equal. Here we want to convey the source realizations which might not be equiprobable (has
redundancy). Indeed, if Sk is

=

uniformly distributed on, say,
c

{0,1}k, then we are back to the
hannel coding

with ε n,2k
∗

Note:

∗

Here,
(

w
)

setup with M 2k under average probability of error, and εJSCC k,n coincides
defined in Section 20.1.
e look for a clever scheme to directly encode k symbols from into a length

( )

n channel
input such that we achieve a small probability of error over the channel. This feels like a mix of two
problems we’ve seen: compressing a source and coding over a channel. The

A

following theorem shows
that compressing and channel coding separately is optimal. This is a relief, since it implies that we
do not need to develop any new theory or architectures to solve the Joint Source Channel Coding
problem. As far as the leading term in the asymptotics is concerned, the following two-stage scheme
is optimal: First use the optimal compressor to eliminate all the redundancy in the source, then use
the optimal channel code to add redundancy to combat the noise in the transmission.

Theorem 20.3. Let the source Sk be stationary memoryless on a finite alphabet with entropy H.
Let the channel be stationary memoryl

{ }

ess with finite capacity C. Then

ε∗JSCC nR,n
→ < /

Note: Interpretation: Each s

⎪

⎧⎪⎪
⎨
⎪

ource sym

(

bol

)

has

→/

0 R
n

0 R >

C

C/

H

H
→∞.

information content (entropy) H bits. Each channel
use

≤

can convey C bits. Therefore to reliably

⎩

transmit k symbols over n channel uses, we need
kH nC.

Proof. Achievability. The idea is to separately compress our source and code it for transmission.
Since this is a feasible way to solve the JSCC problem, it gives an achievability bound. This
separated architecture is

Ð
f
→
1

Ð
f P

Sk W →
n2

Xn Y

Where we use the optimal compressor f1, g1 and

Ð→
∣ nX gn Ð→

2 ˆ Ð
g
→ ˆY W
1
Sk

( ) optimal channel code (maximum probability of
error) (f2, g2). Let W denote the output of the compressor which takes at most Mk values. Then

(From optimal compressor)
1 ˆlogM k

k H δ P Sk S W ε k k0
k

1
(From optimal channel code)

> + Ô⇒ [ =/ ( )] ≤ ∀ ≥

n
logMk < C − δ Ô⇒ P[Ŵ /=m∣W =m] ≤ ε ∀m,∀k ≥ k0
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Using both of these,

P[Sk =/ Ŝk(Ŵ )] ≤ P

P

[Sk

S

=/ Ŝk,W = ˆ

k Ŝk W

] + P[ =/ ˆ ]

And therefore if R H δ C δ, then

≤

ε

[

0

=/

δ 0

(

R

)]

W

+

W W

P[W =/ Ŵ ] ≤ ε + ε

Converse: channel-substitution pro

∗

of.

→

Let Q
distribution. Using

(

data

+ )

pro

<

cessing

− → Ô⇒ > C/H.

k ˆ U P ˆ where U is the uniformS Sk = Sk Sk Sk

D(PSkŜk∥
1

QSkŜk) =D(PSk∥USk) +D(PŜ∣Sk∥PŜ ∣PSk) ≥ d(1 − ε∥ ∣A∣k
)

Rearranging this gives

I(Sk; Ŝk) ≥ d(1 − ε∥
1

log

∣A∣k
) −D(PSk∥USk)

≥ −

H

+ ∣A∣ + ( k) − ∣A∣

Which follows from expanding out

=

the

(

2 H

Sk) −

kε̄ log S k log

log 2

terms.

− kε log

Now, normal

∣A

iz

∣

ing and taking the sup of both sides
gives

1

n
sup
Xn

I(Xn;Y n) ≥
1 k
H

n
(Sk) − ε log A o 1

n

letting R = k/n, this shows

∣ ∣ + ( )

C ≥ RH − εR log ∣A∣ Ô⇒ ε ≥
RH −C

R
> 0

log A

where the last expression is positive when R C H.
Converse: usual proof. Any JSCC enco

∣ ∣

>

der/deco
/

der induces a Markov chain

Sk n ˆX Y n Sk.

Applying data processing for mutual information

→ → →

I(Sk ˆ;Sk) ≤ I(Xn;Y n sup I Xn;Y n nC.
P nX

On the other hand, since P[Sk ≠ Ŝk] ≤ εn, Fano’s

) ≤

inequalit

(

y yields

) =

I(Sk ˆ;Sk) =H( ˆSk) −H(Sk∣Sk) ≥ kH − ε k
n log ∣A∣ − log 2.

Combining the two gives
nC ≥

=

kH k

k

− εn log ∣A − log 2.

Since R

∣

n , dividing both sides by n and sending n→∞ yields

lim inf
n→∞

εn ≥
RH −C

.
R log

Therefore εn does not vanish if R

∣A∣

> C/H.
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§ 21. Channel coding with feedback

Criticism: Channels without feedback don’t exist (except storage).
Motivation: Consider the communication channel of the downlink transmission from a satellite

to earth. Downlink transmission is very expensive (power constraint at the satellite), but the uplink
from earth to the satellite is cheap which makes virtually noiseless feedback readily available at
the transmitter (satellite). In general, channel with noiseless feedback is interesting when such
asymmetry exists between uplink and downlink.

In the first half of our discussion, we shall follow Shannon to show that feedback gains “nothing”
in the conventional setup, while in the second half, we look at situations where feedback gains a lot.

21.1 Feedback does not increase capacity for stationary
memoryless channels

Definition 21.1
( )

(Code with feedback). An n,M, ε -code with feedback is specified by the encoder-
decoder pair f, g as follows:

( )

• Encoder: (time varying)

f1 ∶ [M

f2

]→ A

∶ [M] × B → A

⋮

fn ∶ [M] × Bn−1

• Decoder:

→ A

g ∶ Bn → [M

such that P

]

[W ≠ Ŵ ] ≤ ε.
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Note: [Probability space]

W uniform on

X

∼ [M

1

]

= f1(W

X f W,

)
PY ∣X

⋮

Y1

n = n(
PY X

Y

Ð

n

→

1
−1) Ð→

∣

Y
⎪

⎫⎪⎪⎪⎪⎪
⎬
⎪

W

n

Ð→
⎪⎪

ˆ =

⎪

g(Y n)

Definition 21.2 (Fundamental limits).

⎭

Mf
∗
b(n, ε

b,ε =
1

C

) = max{M ∶ ∃(n,M, ε) code with feedback.

f lim inf
n

}

→∞
logMfn

∗
b n, ε

Cfb

( )

= lim
→
Cfb,ε (Shannon capacity with feedback)

ε 0

Theorem 21.1 (Shannon 1956). For a stationary memoryless channel,

Cfb = C = Ci = sup I X;Y
PX

Proof. Achievability: Although it is obvious that Cfb

(

C, we

)

wanted to demonstrate that in fact
constructing codes achieving capacity with full feedback
(much harder) problem of non-feedback codes. Let πt

≥

can be done directly, without appealing to a
PW Y t Y t with the (random) posterior

distribution after t steps. It is clear that due to the kno
receiver have perfectly synchronized knowledge of πt. No

(⋅)

wledge
w

≜

consider

∣
of
(⋅

Y
∣
t on
ho

)

both ends, transmitter and
w the transmission progresses:

1. Initialize π0(⋅) =
1

(

M

2. At t+1)-th step,
(

ha
⋅

ving
)

knowledge of πt all messages are partitioned into classes , according
to the values ft+1 , Y t

Pa
:

P t
a

Then transmitter, possessing

≜ {j ∈ [M] ∶ ft+1(j, Y

the knowledge of the

) = a} a ∈ A .

)

true message W , selects letter X

+ (

a t 1

ft 1 W,Y t .
+ =

3. Channel perturbs Xt+1 into Yt+1 and both parties compute the updated posterior:

πt+1(j) ≜ πt(j)Bt+1(j) , Bt+1(j) ≜
PY ∣X(Yt+1∣ft+1(j, Y

t))

Notice

∑a

is

∈A πt( a)
.

that (this the crucial part!) the random multiplier satisfies:

P

E[logBt+1(
X

t(
Y

W )∣Y t] =
a

∑
∈A y
∑
∈B
π Pa)

P
log

∣ (y∣a)

where a

∑a∈A πt(Pa

π̃t a πt is a (random) distribution on .

)
,

a
= I(π̃t PY ∣X) (21.1)

The goal of the
of growth of π

( ≜

(

co

)

de
)

designer is to come up with such a partitioning a, a that the speed

t W is

(

maximal.

P )

Now, analyzing the speed

A

of growth of a random-multiplicative
process is best done by taking logs:

{P ∈ A}

( ) =∑
t

logπt j
=

logBs log
s 1

+ π0(j) .
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Intutively, we expect that the process logπt W resembles a random walk starting from logM and
having a positive drift. Thus to estimate the time it takes for this process to reach value 0 we need
to estimate the upward drift. Appealing to

(

intuition

)

and the law of large numbers we appro

−

ximate

E s
s
∑
t

logπt(W ) − logπ0(W ) ≈
=

logB .
1

Finally, from (21.1) we conclude that

[ ]

≈ ∗
the best idea is to select partitioning at each step in such a

way that π̃t PX (caid) and this obtains

logπt(W ) ≈ tC − logM ,

Mimplying that the transmission in time ≈ logterminates . The important lesson here is the following:C
The optimal transmission scheme should map messages to channel inputs in such a way that the
induced input distribution PXt+1∣Y t is approximately equal to the one maximizing I X;Y . This idea
is called posterior matching and explored in detail in [SF11].1

Converse: we are left to show that Cfb Ci.

( )

Recall the key in proving weak converse
plus the graphical model

≤

for channel coding without feedback: Fano’s inequality

W Xn Y n Ŵ . (21.2)

Then
h( ˆε ε̄ logM

→

I W ;

→

W

→

I Xn;Y n nCi.

With feedback the probabilistic picture becomes more complicated as the following figure shows
for n = 3 (dependence introduced

) +

by the extra

≤ (

squiggly

) ≤ (

arrows):

) ≤

W

X1

X2

X3

Y1

Y2

Y3

Ŵ

without feedback

W

X1

X2

X3

Y1

Y2

Y3

Ŵ

with feedback

So, while the Markov chain realtion in (21.2) is still true, we also have

n

P n n
Y n∣Xn(y ∣x ) ≠∏

=
PY ∣X yj xj !

j 1

(This is easy to see from the example where X2 = Y and

( ∣ ) ( )

1 thus PY1∣X2 has no randomness.) There is
still a large degree of independence in the channel, though. Namely, we have

(Y i−1,W )→Xi →

→ →

Yi, i 1

Y

= , . . . , n (21.3)

W n Ŵ (21.4)

1Note that the magic of Shannon’s
P

theorem is that this optimal partitioning can also be done blindly. I.e. it is
possible to preselect partitions a in a way

∈
indep
[

e
]
ndent of πt (but dependent on t) and so that the πt(Pa) ≈ PX∗ (a

with overwhelming probability and for all t 1, n .
)
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Then

h(ε) + ε̄ logM ≤ I( ˆW ;W

I W ;Y n

)

≤ ( )

(Fano)

(Data processing applied to (21.4))

= ∑
n

I
i 1
n

(W ;Yi∣Y
i−1

=
) (Chain rule)

≤ ∑ I i

1
n

(W,Y
i

−1;Y I W ;Y Y i−1 I W,Y i−1;Y I Y i−1

=
i i i ;Yi

≤ ∑
=
I(X ;

) ( ( ∣ ) = ( ) − ))

i Yi
i 1

i

) (Data processing applied

(

to (21.3))

≤ nC

The following result (without proof) suggests that feedback does not even improve the speed of
approaching capacity either (under fixed-length block coding) and can at most improve smallish
logn terms:

Theorem 21.2 (Dispersion with feedback). For

√

weakly input-symmetric DMC (e.g. additive noise,
BSC, BEC) we have:

logMf
∗
b(n, ε) = nC − nV Q−1(ε

feedbac

) +O(logn

(The meaning of this is that for such channels k can at most
terms.)

)

improve smallish logn

21.2* Alternative proof of Theorem 21.1 and Massey’s directed
information

The following alternative proof emphasizes on data processing inequality and the comparison idea
(auxiliary channel) as in Theorem 19.1.

Proof. It is obvious that Cfb ≥ C, we are left to show that Cfb ≤ Ci.

1. Recap of ≤

( )

the steps of showing the strong converse of C Ci in the last lecture: take any
n,M, ε code, compare the two distributions:

P

Q

∶ → n → n → ˆ

two key observations:

∶

W X Y

ˆXn Y n →

W (21.5)

W → W (21.6)

ˆa) Under Q, W ⊥⊥W , so that Q[W =W ] = 1 ˆwhileM P[W =W

b) The two graphical models give the factorization:

] ≥ 1 − ε.

P ˆ PW,XnPY n XnPW,Xn,Y n ˆ PW,X,W W Y n , Q ˆ nPY nP ˆW,Xn,Y n,W W Y n

thus D

= ∣ ∣

(P ∥Q) = I(Xn;Y n) measures the information flow through

=

the links

∣

Xn → Y n.

h(ε) + ε̄ logM = (
1

d 1 − ε∥ )
nd-pro

≤
c ineq

D(P ∥Q) = I(Xn mem l
;Y n

M
)

−
=
ess,stat

i
∑
=
I

1

(X;Y ) ≤ nCi

(21.7)
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2. Notice that when feedback is present, Xn Y n is not memoryless due to the transmission
protocol, let’s unfold the probabilit

=

y space
→

over time to see the dependence. As an example,
the graphical model for n 3 is given below:

If we define Q similarly as in the case without feedback, we will encounter a problem at the

∑

second
(

last inequality in (21.7), as with feedback I(
=

Xn;Y )

)

n can be significan
n
i=1 I X;Y . Consider the example where X2 Y1, we have I Xn;Y n

I X;Y .

We also make the observe that if Q is defined in (21.6), D P

(

Q I

)

X

=

n

+∞

tly larger than

( )

independent of

→/ ↝

;Y n measures the
information

( ∥ )

flow through all the and links. This motivates us to find a proper Q such that
D P Q only

( ∥

captures
)

the information flow through all the

( ∥

links

) = (

Xi Y

)

i i 1, . . . , n ,
so

]

that
=

D P Q closely relates to nCi, while still guarantees
→/

that W
1

{ = }

⊥⊥ W , so that Q W
Ŵ

→ ∶

[ ≠

.M

3. Formally, we shall restrict QW,Xn,Y n ˆ , where is the set of distributions that can be,W
factorized as follows:

∈ Q Q

QW,Xn n ˆ =

=

QWQX1∣WQY1Q , Q,Y ,W X2∣W Y1 Y2∣Y1
⋯QXn∣W,Y n−1QY nn Y n−1Q ˆ (21.8)W Y

P ˆW,Xn,Y n PWP P P,W X1∣W Y1∣X1 X2∣W,Y n
1
PY2 X

∣

∣X2
P

n

∣

∣W,Y −1PYn∣XnPŴ ∣Y n (21.9)

erify that W ⊥⊥ ˆV W under Q: W and W are d-separated

⋯

by Xn.

Notice that in the graphical models, when removing ↛ we also added the directional links
between the Yis,

↛

these links serve to maximally preserve the dependence relationships between
variables when are removed, so that Q is the “closest” to P while W W is satisfied.

Now we have that for Q d

⊥

∈ Q, (1 − ε∥ 1

⊥

M ) ≤D(P ∥Q), in order to obtain the least upper bound,
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in Lemma 21.1 we shall show that:

inf
∈Q
D(P ˆ Q ˆW,Xn,Y n,WQ

∥ W,Xn,Y n,W ) =∑
n

I
k=

;
1

(Xk Yk∣Y
k−1)

=∑
n

E
k=

Y k

1

−1[I(PXk ∣Y k−1 , PY ∣X)]

≤∑
n

=
I(EY k−1[PX ∣Y k−1], PY ∣X) (concavity of I

k
k 1

(PX , PY ∣X) in PX

n

I P ,P

)

=
k

∑
=1

( Xk Y ∣X)

≤nCi.

Following the same procedure as in (a) we have

h(ε) + ε̄ logM ≤ nCi ⇒ logM ≤
nC + h(ε)

1 − ε
⇒ Cfb,ε ≤

C
Cfb C.

1 ε

4. Notice that the above proof is also valid even when cost constrain

−

t is

⇒

present.

≤

Lemma 21.1.

inf
Q∈Q

D(PW,Xn,Y n ˆ,W ∥QW,Xn,Y n ˆ,W ) =
k

∑
n

=
I

1

(Xk;Yk∣Y
k−1 (21.10)

I Xn;Y n , dir

)

ected information

Proof. By chain rule, we can show that the minimizer

(≜ (⃗

Q

)

must satisfy the following

)

equalities:

QX,W = PX,W

=

,

∈ Q

QXk ∣W,Y k−1 PXk ∣W,Y k

Q P n .

−1 , heck!

Ŵ Y n

(c

W Y

)

and therefore

∣ = ∣

inf
Q∈Q

D(PW,Xn n ˆ ˆ,W ∥Q,Y W,Xn,Y n,W

=D(

=

PY n
1∣X1

∥QY1 ∣X1) +D P n 1

( ) + ( ∣

Y n
2 X 1 1

2

)

,Y1
QY2 Y1

X2, Y1 D PYn Xn,Y − QYn Y Xn, Y

I X1;Y 1

−

1 I X2;Y2 Y
n

1

( ∣ ∥ ∣ ∣ ) + ( ∣ ∥ ∣ ∣ − )

) +⋯ + I(Xn;Yn∣Y
−

+⋯

)

21.3 When is feedback really useful?

Theorems 21.1 and 21.2 state that feedback does not improve communication rate neither asymptot-
ically nor for moderate blocklengths. In this section, we shall examine three cases where feedback
turns out to be very useful.
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21.3.1 Code with very small (e.g. zero) error probability

Theorem 21.3 (Shannon ’56). For any DMC PY ∣X ,

Cfb,0 =
1

max min
PX y∈B

log (21.11)
PX(Sy

where

)

Sy = {a ∈ A PY X y a 0

denotes the set of input symbols that can lead to

∶

the

∣

output

( ∣ ) >

symb

}

ol y.

Note: For stationary memoryless channel,

def
≤
. def

≤
.

=
→

Thm 21.1 Shannon
C0 Cfb,0 Cfb limCfb,ε C limCε Ci sup I X;Y

ε 0 ε 0 PX

All capacity quantities above are defined with

=

(fixed-length)

=
→

bloc

=

k codes.

= ( )

Observations:

1. In DMC for both zero-error
PY ∣X , i.e., whether PY ∣X(

capacities (C0 and Cfb,0) only the support of the transition matrix
b a 0 or not, matters. The value of PY X b a 0 is irrelevant.

That is, C0 and Cfb,0 are functions
∣ ) >

of a bipartite graph between input and output alphabets.
Furthermore, the C0

A

(but not Cfb,0!) is a function of the confusability

∣ ( ∣ )

gr

>

aph – a simple
undirected graph on with a a′ connected by an edge iff b s.t. PY X b a PY X b a′ 0.

2. That Cfb,0 is not a function of

≠

the confusability graph alone

∃

is

∈

e

B

asily seen

∣

from
3

( ∣ )

comparing

∣ ( ∣ )

the

>

polygon channel (next remark) with L = 3 (for which Cfb,0 = log
A = { } B = { } =

) and the useless channel2
with 1,2,3 and 1 (for which Cfb,0 0). Clearly in both cases confusability graph
is the same – a triangle.

3. Usually C0 is very hard to compute, but Cfb,0 can be obtained in closed form as in (21.11).

Example: (Polygon channel)

2

3
4

5
1

Bipartite graph Confusability graph

• Zero-error capacity C0:

– L = 3: C0 = 0

– L = 5: C0 =
1 log 5 (Shannon ’56-Lovasz ’79).2

Achievability:

a) blocklength one: 1,3 , rate = 1 bit.

b) blocklength two:

{ }

{(1,1), (2,3), (3,5), (4,2), (5,4)}, rate = 1 log 5 bit – optimal!2
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– L = 7: 3/5 log 7 ≤ C0 ≤

= =

log 3.32 (Exact value unknown to this day)

– Even L 2k: C0 log L
2 for all k (Why? Homework.).

– Odd L = 2k + 1: C0 = log L o2 + (1) as k →∞ (Bohman ’03)

• Zero-error capacity with feedback (proof: exercise!)

Cfb,0 =
L

log ,
2

∀L,

which can be strictly bigger than C0.

4. Notice that Cfb,0 is not necessarily equal to Cfb

C0 Cfb,0

= limε→0Cfb,ε = C. Here is an example when

:

< Cfb = C

Example

<

Then

C0 = log 2

Cfb,0 = max
δ

− log max(
2

3
δ,1 − δ) (P ∗

X = (δ/3, δ/3, δ/3, δ̄))

= log
5

2
> C0 (δ∗ =

3

5

On the other hand, Shannon capacity C Cfb can be made arbitrarily close to log

)

4 by picking
the cross-over probability arbitrarily close
same.

=

to zero, while the confusability graph stays the

Proof of Theorem 21.3. 1. Fix any
messages that could have produced

(n,M,0)-code. Denote the confusability set of all possible
the received signal yt y1, . . . , yt for all t 0, 1, . . . , n by:

E ytt( ) ≜ {m M

(

∈ [ ] ∶ f1(m) ∈ Sy1 , f2

=

(m,y1) ∈ Sy2 , . . . , fn m,

)

yt S

=

−1
yt

Notice that zero-error means no ambiguity:

( ) ∈ }

ε = 0⇔ ∀yn ∈ Bn, En yn 1 or 0. (21.12)

2. The key quantities in the proof are defined as follo

∣ (

ws:

)∣ =

θfb

PX

= min max
X y∈B

PX(Sy),

∗ =

P

argmin max
yPX ∈B

PX(Sy)
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By definition, we have

∀PX ,∃y ∈ B, such that PX Sy θfb (21.13)

Notice the minimizer distribution PX
∗ is usually not the

(

caid

)

in

≥

the usual sense. This definition
also sheds light on how the encoding and decoding should be proceeded and serves to lower
bound the uncertainty reduction at each stage of the decoding scheme.

3. “
message
≤” (converse): Let PXn be he joint distribution of the codewords. Denote E0

set.
= [M] – original

t = 1: For PX1 , by (21.13), ∃y1
∗ such that:

m f1 m Sy
P 1
X1(Sy1

∗) =
∣{ ∶ ( ) ∈ ∗}∣

∣{m ∈ [M]}∣
=

∣E1(y
∗
1)∣

∣E0∣
≥ θfb.

t = 2: For PX2∣X1∈S ∗
, by (21.13),

y
1

∃y2
∗ such that:

PX2(Sy2
∗ ∣

m f1 m Sy , f2 m,y1 Sy
X 2

1
) =

∣{ ∶ ( )
1

1 ∈ Sy
∈ ∗

∗

( ∗) ∈ ∗}∣

∣{m ∶ f1(m) ∈ Sy∗1}∣
=

∣E2(y
∗
1 , y

∗
2)∣

∣E1(y∗1)∣
≥ θfb,

t = n: Continue the selection process up to yn
∗ which satisfies that:

PXn(Syn∗ ∣Xk ∈ Sy
k
∗ for k = 1, . . . , n − 1) =

∣En(y1
∗, . . . , yn

∗)∣

∣En−1(y∗1 , . . . , y
∗
n−1)∣

≥ θfb.

Finally, by (21.12) and the above selection procedure, we have

1

M
≥

∣En(y
∗
1 , . . . , y

∗
n)∣

⇒

M

≥

log

∣
θnfb

⇒ ≤ −

E0

n log θfb

Cfb,0 ≤ − θ

∣

fb

4. “≥” (achievability)

Let’s construct a code that achieves (M,n,0).

The above example with 3 illustrates that the encoder f1 partitions the space of all
messages to 3 groups. The encoder f1 at the first stage encodes the groups of messages into
a1, a2, a3 correspondingly.

∣

Wh

A∣ =

en channel outputs
∗

y1 and assume that Sy1 = {a1, a2}

( )

, then the
decoder can eliminate a total number of MPX a3 candidate messages in this round. The
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“confusability set” only contains the remaining MPX Sy1 messages. By definition of PX we
know that MPX second round,

∗
∗ (Sy1) ≤Mθfb. In the f

three

(

2 partitions
)

the remaining messages

∗

into
groups, send the group index and repeat.

By similar arguments, each interaction reduces the uncertainty by a factor of at least θfb.
After n iterations, the size of “confusability set” is upper bounded by Mθn , if Mθn 2

fb fb 1,
then zero error probability is

−

achieved. This is guaranteed by choosing logM n log
Therefore we have shown that n log θfb bits can be reliably delivered with n O 1 channel

≤

uses

= −

+ ( )

θfb.

with feedback, thus

Cfb,0 ≥ − log θfb

21.3.2 Code with variable length

Consider the example of BEC(δ) with feedback, send k bits in the following way: repeat sending
each bit until it gets through the channel correctly. The expected number of channel uses for sending
k bits is given by

l = E[n] =
k

1 − δ

We state the result for variable-length feedback (VLF) code without proof:

logMV
∗
LF (l,0) ≥ lC

Notice that compared to the scheme without feedback, there is the improvement of
√

(

nV Q−1(ε) in
the order of O

√
n), which is stronger than the result in Theorem 21.2.

This is also true in general:

logM∗
V LF (l, ε) =

lC
O log l

1 ε

Example: For BSC(0.11),
= =

without feedback, n 3000 is

+

needed

(

to

)

achieve 90% of capacity C, while
with VLF code l En 200 is enough to achiev

−

=

e that.

21.3.3 Code with variable power

Elias’ scheme of sending a number A drawn from a Gaussian distribution N (0,VarA) with linear
processing.

AWGN setup:

Yk =Xk +Zk, Zk ∼ N (0, σ2) i.i.d.

E X2
k P, power constraint in expectation

Note

∑

: If
≤

we insist the codew

[

ord

] ≤

satisfies power constraint almost surely instead on average, i.e.,
n 2
k=1Xk nP a.s., then the scheme below does not work!

2Some rounding-off errors need to be corrected in a few final steps (because PX
∗ may not be closely approximable

when very few messages are remaining). This does not change the asymptotics though.
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According to the orthogonality principle of the mininum mean-square estimation (MMSE) of A
at receiver side in every step:

A = Â +N , N ⊥ Y n
n n n .

Morev
∝

er, since all operations are lienar and everything is jointly Gaussian, Nn Y n. Since
Xn Nn− n 1

1 ⊥⊥ Y
− , the codeword we are sending at each time slot is independent of the history of

the channel output
→

(”inno
→

vation”), in order to maximize information transfer.

⊥⊥

Note that Y n ˆ ˆAn A, and the optimal estimator An (a linear combination of Y n) is a
sufficient statistic of Y n for A under Gaussianity. Then

I( ˆA;Y n) =I(A;An, Y
n

= I( ˆA;A n ˆ

= (

n

ˆ

)

) + I(A;Y ∣An

I A;An

)

)

=
1

2
log

Var(A)

y

)
.

Var(Nn

where the last equalit uses the fact that N follows a normal distribution. Var Nn can be computed
directly using standard linear MMSE results. Instead, we determine it information theoretically:
Notice that we also have

( )

I(A;Y n) = I(

= (

A;Y1) +

+

I A;Y 1
2 Y

n
1 I A;Yn Y

I X1;Y1) I

( ∣

Y

)

Y

+ ⋅ ⋅ ⋅ + ( ∣

(X ; ∣ ) + ⋅ ⋅ ⋅ + I(X ;Y

−

∣Y

)
n−1

2 2 1 n n

key
I X1;Y1 I X2;Y2 I Xn;Yn

)

=

1

( ) + ( + ⋅ ⋅ ⋅ + ( )

= n

)

2
log(1 + P ) = nC
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Therefore, with Elias’ scheme of sending A ∼ N (0,VarA), after the n-th use of the AWGN(P )
channel with feedback,

VarNn = Var(Ân −A) = 2−2nC VarA = (
P n

VarA,
P σ2

which says that the reduction of uncertainty in the estimation is exp

)

onential fast in n.
Schalkwijk-Kailath:

∼

Elias’ scheme can also be used to sen

+

d digital data.
Let W uniform on M -PAM constellation in ∈ [−1, 1], i.e., {−1,−1+ 2

M ,⋯,−1+ 2k
M ,⋯, 1}. In the

very first step W is sent (after scaling to satisfy the power constraint):

X0 =
√
PW, Y0 X0 Z0

Since Y0 and X0 are both known at the encoder, it

=

can compute

+

Z0. Hence, to describe W it is
sufficient for

−

the encoder to describe the noise realization Z0. This is done by employing the Elias’
scheme (n 1 times). After n − 1 channel uses, and the MSE estimation, the equivalent channel
output:

Ỹ0 =X0 + Z̃0, Var(Z̃0) = 2−2(n−1)C

Finally, the decoder quantizes Ỹ0 to the nearest PAM point. Notice that

≤
1

ε P [∣Z̃0∣ >
2M

] = P [2−(n−1)C ∣Z ∣ >

√
P

2M
] = 2Q(

2(n−1)C√P

√
2M

)

⇒ logM ≥ (n − 1)C + log
P

2
− logQ−1(

ε

Hence

)
2

nC

)

= +O(1 .

if the rate is strictly less than capacity, the error
√

probability decays doubly exponentially
fast as n increases. More importantly, we gained an n term in terms of logM , since for the case
without feedback we have

logM∗(n, ε) = nC −
√
nV Q−1 ε O logn .

Example =

(

: P = 1 ⇒ channel capacity C 0.5 bit per chan

(

nel

) +

use.

(

To ac

)

hieve error probability 10−3,

2Q 2(n−1)C

2M ) ≈ 10−3, so e(n−1)C

2M ≈ 3, and logM
n ≈ n−1

n C − log 8
n . Notice that the capacity is achieved to

within 99% in as few as n = 50 channel uses, whereas the best possible block codes without feedback
require n ≈ 2800 to achieve 90% of capacity.

Take-away message:
Feedback is best harnessed with adaptive strategies. Although it does not increase capacity

under block coding, feedback greatly boosts reliability as well as reduces coding complexity.
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§ 22. Capacity-achieving codes via Forney concatenation

Shannon’s Noisy Channel Theorem assures us the existence of capacity-achieving codes. However,
exhaustive search for

∣

the
X ∣

code has double-exponential complexity: Search over all codebook of size
2nR over all possible n codewords.

Plan for today: Constructive version of Shannon’s Noisy Channel Theorem. The goal is to show
that for BSC, it is possible to achieve capacity in polynomial time. Note that we need to consider
three aspects of complexity

• Encoding

• Decoding

• Construction of the codes

22.1 Error exponents

Recall we have defined the fundamental limit

M∗(n, ε

For notational convenience, let us define

) = max{M ∶ ∃(n,M, ε)-code

its functional inverse

}

ε∗(n,M) = inf

Shannon’s

{ε ∶ ∃(n,M, ε)-code}

any R C

∗

the speed is

≜ ( (

< =

theorem shows that for stationary memoryless channels, εn ε n, exp
supX I(X;Y )

nR 0 for
. Now w

≈

e wan
(−

t to
(

kno
))

w how fast it goes to zero as
(

n
exponential, i.e., εn

→ . It turns out
exp nE R for some error exponent E

∞

(

R)

)

as a function

)) →

R,
which is also known as the reliability function of the channel. Determining E R is one of the most
long-standing open problems in information theory. What we know are

• Lower bound on E(R (achievability): Gallager’s random coding bound (which analyzes the
ML decoder, instead of
bound).

)

the suboptimal decoder as in Shannon’s random coding bound or DT

• Upper bound on E(R) (converse): Sphere-packing bound (Shannon-Gallager-Berlekamp), etc.

It turns out there exists a number Rcrit 0,C , called the critical rate, such that the lower and
upper bounds meet for all R ,

( )

∈ (Rcrit C
∈

), where we obtain the value of E(R). For R ∈ (0,Rcrit), we
do not even know the existence of the exponent!

Deriving these bounds is outside the scope of this lecture. Instead, we only need the positivity of
error exponent, i.e., for any R C, E R 0. On the other hand, it is easy to see that E C 0 as a
consequence of weak converse.

<

Since
(

as
)

the
>

rate approaches capacity from below, the comm
( −

unication
becomes less reliable. The next theorem is a simple application of large deviation.

) =
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Theorem 22.1. For any DMC, for any R < C supX I X;Y ,

ε∗(n, exp(nR)) ≤ exp(−nE

= ( )

(R)), for some E(R) > 0.

Pr
=

oof.
(

Fix
∗

R
∗
<

)

C so that C − R > 0. Let PX
∗ be the capacity-achieving input distribution, i.e.,

C I X ;Y . Recall Shannon’s random coding bound (DT/Feinstein work as well):

ε ≤ P (i(X;Y

As usual, we apply this bound with iid PXn

) ≤ logM τ exp τ .

= (P n n C R
X

+ ) +

∗ ) , logM = nR

(− )

and τ =
( − )

2 , to conclude the
achievability of

εn ≤ P (
1

n
i(Xn;Y n) ≤

C +R

2
) + exp(−

n(C −R)
.

2

Since i(Xn;Y n) = ∑
−

i(
( ∗

X
(
k;
+
Yk) is an iid sum, and Ei(X;Y

)

> (C +R)/2, the first term is upper
bounded by exp nψ R

T

) = C
C

2 )) where T = i(X;Y ). The proof is complete since εn is smaller than
the sum of two exponentially small terms.

Note: Better bound can be obtained using DT bound. But to get the best lower bound on E R
we know (Gallager’s random coding bound), we have to analyze the ML decoder.

( )

22.2 Achieving polynomially small error probability

In the sequel
<

we
=

focus
− (

on
)

BSC channel with cross-over probability δ, which is an additive-noise
DMC.

≤ −
Fix R C 1 h δ bits. Let the block length be n. Our goal is to achieve error probability

εn n α for arbitrarily large
>

α > 0 in polynomial time.
To this end, fix some b 1 to be specified later and pick m = b logn and divide the block

into n

(

sub-blocks of m bits. Applying Theorem 22.1, we can find [later on how to find] anm
m, exp(Rm), εm)-code such that

εm ≤ exp(−mE(R)) = n−bE(R)

where E(R) > 0. Apply this code to each m-bit sub-block and apply ML decoding to each block.
The encoding/decoding complexity is at most n

m exp(O(m)) = nO(1). To analyze the probability of
error, use union bound:

Pe ≤
n
εm

m
≤ n−bE(R)+1 ≤ n−α,

if we choose b ≥ α+1 .E(R

Remark 22.1. The

)

final question boils down to how to find the shorter code of blocklength m in
poly(n)-time. This will be done if we can show that we can find good code (satisfying the Shannon
random coding bound) for BSC of blocklenth m in exponential time. To this end, let us go through
the following strategies:

1. Exhaustive search: A codebook is a subset of cardinality 2Rm out of 2m possible codewords.
2mTotal number of codebooks: (

2Rm
) = exp(Ω(m2Rm

too big.
)) = exp(Ω(nc logn)). The search space is
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2. Linear codes: In Lecture 16 we have shown that for additive-noise channels on finite fields we
can focus on linear codes. For BSC, each linear code is parameterized by a generator matrix,
with Rm2 2

entries. Then there are a total of 2Rm = nΩ(logn) – still superpolynomial and we
cannot afford the search over all linear codes.

3. Toeplitz generator matrices: In Homework 8 we see that it does not lose generality to focus on
linear codes with Toeplitz generator matrices, i.e., G such that Gij Gi 1,j 1 for all i, j 1.
Toeplitz matrices are determined by diagonals. So there are at most 22m

−
n
−
O 1 and we can

find the optimal one in poly(n)-time.

=
( )

>

=

Since the channel is additive-noise, linear codes + syndrome decoder leads to the same maximal
probability of error as average (Lecture 16).

Remark 22.2. Remark on de-randomization; randomness as a resource, coin flips and cooking
(brown both sides of onions)...

22.3 Concatenated codes

Forney introduced the idea of concatenated codes in 1965 to build longer codes from shorter codes
with manageable complexity. It consists of an inner code and an outer code:

1. C k
in ∶ {0,1} → {0,1}n, with rate k

n

2. Cout ∶ B
K → BN for some alphabet B of cardinality 2k, with rate K .N

The concatenated code C ∶ {0,1}kK → {0,1}nN works as follows (Fig. 22.1):

1. Collect the kK message bits into K symbols in the alphabet B, apply Cout componentwise to
get a vector in BN

2. Map each symbol in B into k bits and apply Cin componentwise to get a nN -bit codeword.

The rate of the concatenated code is the product of the rates of the inner and outer codes: R = k
n
K
N .

Cout Cin

Cin

Cin

Cin

Cin

kK k
Din

Din

Din

Din

Din

Dout
n k kK

Figure 22.1: Concatenated code, where there are N inner encoder-decoder pairs.
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22.4 Achieving exponentially small error probability

Forney proposed the following idea:

• Use an optimal code as the inner code

• Use a Reed-Solomon code as the outer code which can correct a constant fraction of errors.

Reed-Solomon (RS) codes are linear codes from FKq FNq where the block length N q 1

(

and the message
)

length is K. Similar
a , a , . . . , a − as a polynomial p( ∑ −

the
x) =

to the Reed-Muller code, RS code treats the input
K
=

1 i
0 1 K 1 i 0 aiz over Fq of

→

degree at most K 1, and enco

=

des

−

it
by its values at all non-zero elements. Therefore the RS codeword is a vector p α

−

( ( ) ∶ α ∈ Fq/{0}) ∈ FNq .
Therefore the generator matrix of RS code is a Vandermonde matrix.

The RS code has the following advantages:

1. The minimum distance of RS code N −K + 1. So if we choose K = (1 − ε)N , then RS code
can correct εN errors.2

2. The enco
(

ding and decoding (e.g., Berlekamp-Massey decoding algorithm) can be implemented
in poly N

In

) time.

fact, as we will see later, any efficient code which can correct a constant fraction of errors will
suffice as the outer code for our purpose.

Now we show that we can achieve any rate below capacity and exponentially small probability
of error in polynomial time: Fix η, ε > 0 arbitrary.

• Inner code: Let k 1 h
which is a linear n, 2k, εn
Cin can be chosen

=

to

(

be

−

a

(

(

δ) − η)
)

n. By Theorem 22.1, there exists
≤ −

a C
(
in 0,1 k 0,1 n,

-code and maximal error probability ε 2 nE η
n

)
∶

.
{

By Remark
} →

foun

{

22.1,
linear code with Toeplitz generator matrix, which can be d

}

in
2n time. The inner decoder is ML, which we can afford since n is small.

• Outer code: We pick the RS code with field size q 2k with bloc
number of message bits to be K

= = −

Then we obtain a concatenated code C

= (1 − ε)N . Then we have Cout

0,1 kK 0,1 nN with blo

∶

klength N 2k 1. Pick the
FK

2k
→ FN .

2k

∶ { } → { }

= ( − )( − ( ) − )

cklength L nN n2Cn for
some

=

constan
( )

t C and rate R 1 ε 1 h δ η . It is clear that
(

the code can be constructed in
2n poly L time and all encoding/decoding operations are poly L time.

= =

Now we analyze the probability of error: Let us conditioned on the
)

message bits (input to Cout).
Since the outer code can correct εN

2 errors, an error happens only if the number of erroneous inner

encoder-decoder pairs exceeds εN . Since the channel is memoryless, each of the N pairs makes an2
error independently1 with probability at most εn. Therefore the number of errors is stochastically
smaller than Binom(N, εn), and we can upper bound the total probability of error using Chernoff
bound:

Pe ≤ [
εN

P Binom(N, εn) ≥
2

] ≤ exp (−Nd(ε/2∥εn)) = exp (−Ω(N logN)) = exp(−Ω(L)).

where we have used εn ≤ exp(−Ω(n)) and d(ε/2∥εn) ≥
ε
2 log ε

2εn
= Ω(n) = Ω(logN).

1Here controlling the maximal error probability of inner code is the key. If we only have average error probability,
then given a uniform distributed input to the RS code, the output symbols (which are the inputs to the inner encoders)
need not be independent, and Chernoff bound is not necessarily applicable.
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Note: For more details see the excellent exposition by Spielman [Spi97]. For modern constructions
using sparse graph codes which achieve the same goal in linear time, see, e.g., [Spi96].
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Part V

Lossy data compression
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§ 23. Rate-distortion theory

Big picture so far:

1. Lossless data
∈

compression:
[ ]

Given a discrete ergodic source Sk, we know how to encode to
pure bits W 2k .

2. Binary HT: Given two distribution P and Q, we know how to distinguish them optimally.

3. Channel coding: How to send bits over a channel 2k W X Y .

4. JSCC: how to send discrete data optimally over a

[

noisy

] ∋

channel.

→ →

Next topic, lossy data compres ˆsion: Given X, find a k-bit representation W , X W X, such
ˆthat X is a good reconstruction of X.

Real-world examples: codecs consist of a compressor and a decompressor

→ →

• Image: JPEG...

• Audio: MP3, CD...

• Video: MPEG...

23.1 Scalar quantization

Problem: Data isn’t discrete! Often, a signal (function) comes from voltage levels or other
continuous quantities. The question of how to map (naturally occurring) continuous time/analog
signals into (electronics friendly) discrete/digital signals is known as quantization, or in information
theory, as rate distortion theory.

Domain

Continuous
time

Discrete
time

Signal

Range

Analog

Digital

QuantizationSampling

We will look at several ways to do quantization in the next few sections.
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23.1.1 Scalar Uniform Quantization

The idea of qunatizing an inherently continuous-valued signal was most explicitly expounded in the
patenting of Pulse-Coded Modulation (PCM) by A. Reeves, cf. [Ree65] for some interesting historical
notes. His argument was that unlike AM and FM modulation, quantized (digital) signals could be
sent over long routes without the detrimental accumulation of noise. Some initial theoretical analysis
of the PCM was undertaken in 1947 b

For a random variable X [ A
quantization points partitions the

∈ −

interv
/

y Oliver, Pierce
2,A/2] ⊂

, and Shannon (same Shannon), cf. [OPS48].

[− /

R,
/

the
]

scalar uniform quantizer qU X with N
al A 2,A 2 uniformly

( )

N equally spaced points

−A A
2 2

where the points are in {−A2 + kA , k = 0, . . . ,N 1 .N
What is the quality (or fidelity) of this quan

−

tization?
used

}

Most of the time, mean squared error is
as the quality criterion:

D N EX qU X 2

where D denotes the average distortion

(

. Often

) = ∣

R

−

log

(

2N

)∣

is used instead of N , so that we think
about the number of bits we can use for quantizati
this scalar uniform quantizer, we’ll look at the high-rate

=

on instead of the number of points. To analyze
regime (R≫ 1). The key idea in the high

rate regime is that (assuming a smooth density PX), each quantization interval ∆j looks nearly flat,
so conditioned on ∆j , the distribution is accurately approximately by a uniform distribution.

Nearly flat for
large partition

∆j

Let cj be the j-th quantization point, and ∆j be the j-th quantization interval. Here we have

∣ − ( )∣ =∑
N

EX qU X 2 E
j=1

[∣X − cj ∣
2∣X ∈ ∆j]P

N ∆ 2
j

[X ∈ ∆j]

(high rate approximation) ≈
j
∑

1

∣ ∣

= 12
P[X ∈ ∆j]

=
(AN )2

12
=
A2

2
12

−2R

How much do we gain per bit?

10 log10 SNR =
V ar

10 log10
(X)

E∣X − qU(X)∣2

= 10 log10
12V ar(X)

20
A2

+ ( log10 2)R

= constant + (6.02dB)R
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For example, when X is uniform on [−A2 ,
A
2 ], the constant is 0. Every engineer knows the rule

of thumb “6dB per bit”; adding one more quantization bit gets you 6 dB improvement in SNR.
However, here we can see that this rule of thumb is valid only in the high rate regime. (Consequently,
widely articulated claims such as “16-bit PCM (CD-quality) provides 96 dB of SNR” should be
taken with a grain of salt.)
Note: The above deals with X with a bounded support. When X is unbounded, a wise thing to do
is to allocate the quantization points to the range of values that are more likely and saturate the
large values at the dynamic range of the quantizer. Then there are two contributions, known as
the granular distortion and overload distortion. This leads us to the question: Perhaps instead of
uniform quantization optimal?

23.1.2 Scalar Non-uniform Quantization

Since our source has density pX , a good idea might be to use more quantization points where pX is
larger, and less where pX is smaller.

Often
( )

the way such quantizers are implemented is to take a monotone transformation of the source
f X , perform uniform quantization, then take the inverse function:

X U

X̂ qU(U)

f

q qU (23.1)

f−1

i.e., q(X) = f−1(qU(f(X))). The function f is usually called the compander (compressor+expander).
One of the choice of f is the CDF of X, which maps X into uniform on
arc

[0, 1]. In fact, this compander
hitecture is optimal in the high-rate regime (fine quantization) but the optimal f is not the CDF

(!). We defer this discussion till Section 23.1.4.
In terms of practical considerations, for example, the human ear can detect sounds with volume

as small as 0 dB, and a painful, ear-damaging sound occurs around 140 dB. Achieveing this is
possible because the human ear inherently uses logarithmic companding function. Furthermore,
many natural signals (such as differences of consecutive samples in speech or music (but not samples
themselves!)) have an approximately Laplace distribution. Due to these two factors, a very popular
and sensible choice for f is the µ-companding function

lf(X) = sign n(1+µ(X) |X|)
ln(1+µ)

238



which compresses the dynamic range, uses more bits for smaller X ’s, e.g. X ’s in the range of
human hearing, and less quantization bits outside this region. This results in the so-called µ-law
which is used in the digital telecommunication systems in the US, while

∣ ∣

in Europ

∣

e

∣

they use a slightly
different compander called the A-law.

23.1.3 Optimal Scalar Quantizers

Now we look for the optimal scalar quantizer given R bits for reconstruction. Formally, this is

Dscalar(R) = min
q∶∣Im q∣≤

E
2R

Intuitively, we would think that the optimal quantization

∣X − q(X)∣2

regions should be contiguous; otherwise,
given a point cj , our reconstruction error will be larger. Therefore quantizers are piecewise constant:

q(x) = cj1Tj≤x≤Tj+1

for some cj ∈ [Tj , Tj+1].
Simple example: One-bit quantization of X ∼ N (0, σ2). Then optimal quantization points are

c1 = E[X ∣X ≥ 0] =
√

2
πσ, c2 = E[X ∣X ≤ 0] = −

√
2σ.π

With ideas like this, in 1982 Stuart Lloyd developed an algorithm (called Lloyd’s algorithm)
for iteratively finding optimal quantization regions and points. This works for both the scalar and
vector cases, and goes as follows:

1. Pick any N = 2k points

2. Draw the Voronoi regions around the chosen quantization points (aka minimum distance
tessellation, or set of points closest to cj), which forms a partition of the space.

3. Update the quantization points by the centroids (E

4.

[X ∣X ∈D]) of each Voronoi region.

Repeat.

b

b

b
b

b
b

b

b
b

b

Steps of Lloyd’s algorithm

Lloyd’s clever observation is that the centroid of each Voronoi region is (in general) different than
the original quantization points. Therefore, iterating through this procedure gives the Centroidal
Voronoi Tessellation (CVT - which are very beautiful objects in their own right), which can be
viewed as the fixed point of this iterative mapping. The following theorem gives the results about
Lloyd’s algorithm

Theorem 23.1 (Lloyd).

1. Lloyd’s algorithm always converges to a Centroidal Voronoi Tessellation.
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2. The optimal quantization strategy is always a CVT.

3. CVT’s are non-unique, and the algorithm may converge to non-global optima.

Remark: The third point tells us that Lloyd’s algorithm isn’t always guaranteed to give the
optimal quantization strategy.1 One sufficient condition for uniqueness of a CVT is the log-concavity
of the density of X [Fleischer ’64]. Thus, for Gaussian PX , Lloyd’s algorithm outputs the optimal
quantizer, but even for Gaussian, if N > 3, optimal quantization points are not known in closed
form! So it’s hard to say too much about optimal quantizers. Because of this, we next look for an
approximation in the regime of huge number of points.

23.1.4 Fine quantization

[Panter-Dite ’51] Now
density function λ(x)

we look at the high SNR approximation. For this, introduce the probability
, which represents the density of our quantization points and allows us to

appro

≈

xi

∫

mate summations by integrals2

( )

. Then the number of quantization points in any interval a, b
b

is N a

Then Nλ(
λ x dx.
x ∆

[ ]

( )

) (x) ≈
For

Ô

an
⇒

y poin
(

t
)

x
≈

, denote its distance to the closest quantization point by ∆ x .
1 ∆ x 1 ximation,N ( approλ x) . With this the quality of reconstruction is

N

E∣X − q(X)∣2 =∑ E
=

[∣X − c 2
j

j 1

∣ ∣X ∈ ∆j]P[X ∈ ∆j]

≈
∆

P
j
∑
N

=1

[X ∈ ∆j]
∣ j ∣

2

12
≈ ∫ p(x)

∆2(x)

12
dx

=
1

p x λ 2

N2
− x dx

12

To find the optimal density λ that gives the

∫

best

( )

reconstruction

( )

(minimum MSE) when X has
density p, we use Hölder’s inequality: p1 3 pλ 2 1 3 λ 2 3. Therefore pλ 2 p1 3 3,

with equality iff pλ−2 ∝
f1 3 x

λ. Hence the optimizer

∫
/ ≤

is

(∫

λ

− ) / ( ) /
∫

−

∗
≥ (∫

(x

∫
/

) =
/ ( )

)

∫ f1/3dx
. Therefore when N = 2R,3

Dscalar(R) ≈
1 3

2−2R p1/3 x dx
12

So our optimal quantizer density in the high rate regime

(∫

is

(

prop

) )

ortional to the cubic root of the
density of

∼ N

our
(

source.
)

This approximation is called the Panter-Dite approximation. For example,
when X 0, σ2 , this gives

Dscalar(R) ≈ σ22−2Rπ
√

3

2

Note: In fact, in scalar case the optimal non-uniform quantizer can be realized using the compander
architecture (23.1) that we discussed in Section 23.1.2: As an exercise, use Taylor expansion to

1 As a simple example one may consider PX = 1
3
φ(x − 1) + 1

3
φ(x) + 1

±
φ

3
(x + 1) where φ(⋅) is a very narrow pdf,

symmetric around 0. Here the CVT with centers 2 is not optimal among binary quantizers (just compare to any
3

quantizer that quantizes two adjacent spikes to same value).
2This argument is easy to make rigorous. We only need to define reconstruction points cj as solutions of

∫
cj

−∞

λ(x)dx = j
.

N

3In fact when R →∞, “≈” can be replaced by “= 1 + o(1)” [Zador ’56].
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analyze the quantization error of (23.1) when N →∞. The optimal compander f ∶ R→ [

( ) =
( )

0,1

to be f x ∫−∞
t p1/3

] turns
t dt

out
∫ ∞−∞ p1/3(t) [Bennett ’48, Smith ’57].

dt

23.1.5 Fine quantization and variable rate

So far we were considering quantization with restriction on the cardinality of the image of q . If
one, however, intends to further compress the values q X via noiseless compressor, a more nat
constraint is to bound H q X .

(⋅)

( )

( ( ))

ural

Koshelev [Kos63] discovered in 1963 that in the high rate regime uniform quantization is
asymptotically optimal under the entropy constraint. Indeed, if q∆ is a uniform quantizer with cell
size ∆, then it is easy to see that

H(q∆(X)) = h(X) − log ∆ + o(1) , (23.2)

where h(X) = − ∫ pX(x) log pX(x)
( ( )) =

dx is the differential entropy of X. So a uniform quantizer with
H q X R achieves

D =
∆2

12
≈ 2−2R 22h(X)

.
12

On the other hand,
function such that ∫

any quantizer with unnormalized point density function Λ x (i.e. smooth

−∞
cj Λ x dx j) can be shown to achieve (assuming Λ poin

(

→ t
)

( ) =

1

∞ wise)

D ≈
12
∫ pX(x)

1

Λ2(x)
dx (23.3)

H(q(X)) ≈ ∫ pX(x) log
Λ(x)

dx
pX(x)

(23.4)

Now, from Jensen’s inequality we have

1

12
∫ pX(x)

1

Λ2(x)
dx ≥

1

12
exp{−2∫ pX(x) log Λ(x)dx} ≈ 2−2H(q(X)) 22h(X)

,
12

concluding that uniform quantizer is asymptotically optimal.
Furthermore, it turns out that for any source,

−
even the optimal vector quantizers (to be considered

next) can not achieve distortion better that 2 2R 22h(X)

– i.e. the maximal improvement they can2πe
gain (on any iid source!) is 1.53 dB (or 0.255 bit/sample). This is one reason why scalar uniform
quantizers followed by lossless compression is an overwhelmingly popular solution in practice.

23.2 Information-theoretic vector quantization

By doing vector quantization (namely, compressing X1, . . . ,Xn 2nR points), rate-distortion
theory tells us that when n is large, we can achieve the

(

per-coordinate
) →

MSE:

Dvec R σ22−2R

which saves 4.35 dB (or 0.72 bit/sample). This

( )

should

=

be rather surprising, so we repeat it again:
even when X1, . . . ,Xn are iid, we can get better performance by quantizing Xi jointly. One instance
of this surprising effect is the following:

Hamming Game: Given 100 unbiased bits, we want to look at them and scribble something
down on a piece of paper that can store 50 bits at most. Later we will be asked to guess the
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original 100 bits, with the goal of maximizing the number of correctly guessed bits. What is the
best strategy? Intuitvely, the optimal strategy would be to store half of the bits then guess on the
rest, which gives 25% BER. However, as we will show in the next few lectures, the optimal strategy
amazingly achieves a BER of 11%. Note does this happen? After all we are guessing independent
bits and the utility function (BER) treats all bits equally. Some intuitive explanation:

1. Applying scalar quantization componentwise results in quantization region that are hypercubes,
which might not be efficient for covering.

2. Concentration of measures removes many source realizations that are highly unlikely. For
example, if we think about quantizing a single Gaussian X, then we need to cover large portion
of R in order to co

(

ver the cases of significant deviations of X from 0. However, when we are
quantizing many X1, . . . ,Xn) together, the law of large numbers makes sure that many Xj ’s
cannot conspire together and all produce large values. Thus, we may exclude large portions of
the Rn from consideration.

Math Formalism: A lossy compressor is an encoder/decoder pair (f, g) where

X

• X - continuous source

Ð
f
→W Ð

g
→ X̂

• W

∈

-

X

discrete data

• X̂ ∈ X̂ - reproduction

ˆA distortion metric is a function d ∶ X ×X → R∪{+∞} (loss function). There are various formulations
of the lossy compression problem:

ˆ1. Fixed length (fixed rate), average distortion: W M , minimize E d X,X .

ˆ2. Fixed length, excess distortion: W M , minimize

∈ [

P

]

d X,X D

[

.

( )]

( ) = ( )

ˆ3. Variable length, max distortion: W

∈ [

0

] [ ( ) > ]

∈ { ,1}∗, d(X,X
ˆH X H W .

) ≤ D a.s., minimize E[length(W )] or

Note: In this course we focus on fixed length and average distortion loss compression. The
difference between average distortion and excess distortion is analogous to average risk bound and
high-probability bound in statistics/machine learning.

ˆDefinition 23.1. Rate-distortion ,
letter ⋅

problem is characterized by a pair of alphabets , a single-

(

distortion
)

function d( ˆ, ⋅) ∶ A ×A → R ∪ {+∞} and a source – a sequence of -valued r.v.’s
S1, S2, . . . . A separable distortion metric is defined for n-letter vectors by averaging the

A A

A

single-letter
distortions:

(
1

d an, ân) ≜ ,
n
∑d(ai âi

An

)

(n,M,D

• Encoder

)-code is

f ∶ An → [M

• Decoder g

]

∶ [M]→ Ân
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• Average distortion: E[d(Sn, g(f(Sn)))] ≤D

Fundamental limit:

M∗(n,D) = min{M ∶ ∃(n,M,D)-code

R

}

(D) =
1

lim sup
n→∞

logM∗ n,D
n

Now that we have the definition, we give the (surprisingly

(

simple)

)

general converse

ˆ ˆTheorem 23.2 (General Converse). For all lossy codes X →W → X such that E[d(X,X)] ≤ D,
we have

logM ϕX D inf I X;Y
PY ∣X E d X,Y D

where W ∈ [M .

≥ ( ) ≜
∶ [ ( )]≤

( )

Proof.

]

ˆlogM H W I X;W I X;X ϕX D

where the last inequality follows

≥

from

(

the

) ≥

fact

(

that

)

P

≥

X̂

( ) ≥ ( )

∣ is a feasible solution (by assumption).X

Theorem 23.3 (Properties of ϕX).

1. ϕX is convex, non-increasing.

2. ϕX continuous on (D0,∞), where D0 = inf{D ∶ ϕX(D) <∞}.

3. If

⎧

( ) =
⎪⎪
⎨
⎪⎪>

D0 x

Then

=/

y
d x, y

=

⎩ D0 x y

ϕX(D0

4. Let

) = I(X;X).

Dmax = inf
∈X

Ed X, x̂ .

(

ˆˆ

Then ϕX D) = 0 for all D >Dmax. If D0 >

x

Dmax then

(

also

)

ϕX Dmax 0.

Note: If Dmax = Ed(X, x̂) for some x̂, then x̂ is the “default” reconstruction

( ) =

of X, i.e., the best
estimate when we have no information about X. Therefore D ≥Dmax can be achieved for free. This
is the reason for the notation Dmax despite that it is defined

∼ N (

as
)

an infimum.
Example: (Gaussian with MSE distortion) For X 0, σ2

( ) =

and d y) = (x y
1

− )2, we ha e

ϕX D

(x, v

2 log+ σ2
=

=

. In this case D0 = 0 which is not attained; Dmax σ2 and if D ≥ σ2, we canD
ˆsimply output X 0 as the reconstruction which requires zero bits.

Proof.

1. Convexity follows from the convexity of PY ∣X ↦ I(PX , PY

2.

∣X).

Continuity on interior of the domain follows from convexity.
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3. The only way to satisfy the constraint is to take X Y .

ˆ4. For any D > Dmax we can set X

=

= x̂ deterministically. Thus I(X; x̂
ws

= 0. The second claim
follo from continuity.

)

In channel coding, we looked at the capacity and the information capacity. We define the
Information Rate-Distortion function in an analogous way here, which by itself is not an operational
quantity.

Definition 23.2. The Information Rate-Distortion function for a source is

Ri(D) =
1

lim sup
n→∞

ϕSn
n

(D) where ϕSn

And D inf D R D .

( n ˆD) = inf S
P ˆn ∣ n ∶E[d(

I ;Sn

Sn ˆ,SnS )]≤DS

( )

0 = { i

The reason for

∶

defining

( ) <∞

R

}

i(D)

∀ ( ) ≥

is because from Theorem 23.2 we immediately get:

Corollary 23.1. D, R D Ri

the

(D

,

).

Naturally information rate-distortion function inherit the properties of ϕ:

Theorem 23.4 (Properties of Ri).

1. Ri(D) is convex, non-increasing

2. Ri(D) is continuous on (D0,∞), where D0 ≜ inf{D ∶ Ri(D

3. If

) <∞}.

d(x, y

⎧

) =
⎪⎪
⎨
⎪⎪

D

>

0 x y

⎩ D0 x

=

y

Then for stationary ergodic Sn , Ri D (entropy

=/

rate) or if Sk is not discrete.

4. Ri(D) = 0 for all D D

{ } ( ) =H +∞

> max, where

Dmax lim sup inf
n x̂n

If D0 Dmax, then Ri Dmax 0 too.

≜
→∞ ∈X

Ed(Xn, x̂n .
ˆ

)

5. (Single

<

letterization) If

(

the sour

) =

ce

Ri D

{Si} is i.i.d., then

( ) = φS1(D) =
PŜ∣S ∶ [

inf
E d(

I
ˆS,S)]≤D

( ˆS;S)

Proof. Properties 1-4 follow directly from corresponding properties of φSn and property 5 will be
established in the next section.
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23.3* Converting excess distortion to average

Finally, we discuss how to build a compressor for average distortion if we have a compressor for
excess distortion, which we will not discuss in details in class.

Assumption Dp. Assume that for (S, d), there exists p > 1 such that Dp <∞, where

Dp ≜ sup inf E d Sn, x̂ p 1

n x̂

/p

i.e. that our separable distortion metric d

(

do

∣

esn’t

(

gro

)∣ )

w to

<

o

+∞

fast. Note that (by Minkowski’s
inequality) for stationary memoryless sources we have a single-letter bound:

D ≤ inf(E∣d(S, x̂)∣p)1/p
p (23.5)

x̂

ˆTheorem 23.5 (Excess-to-Average). Suppose there exists X W X such that W M and
P ˆ ˆd X,X D ε. Suppose for some p 1 and x̂ p 1 p

0 , E d X, x̂0 Dp . Then there
ˆexists

[ (

X
) >

→W ′
] ≤

→X ′ code such that W

→

′ 1

→ ∈ [ ]

≥

M and
∈ X ( [ ( )] ) / = <∞

E[d( ˆX,

∈

X

[ + ]

′)] ≤D(1 − ε) +Dpε
1−1/p (23.6)

Remark 23.1. Theorem is only useful for p 1, since for p 1 the right-hand side of (23.6) does
not converge to 0 as ε

> =

→ 0.

Proof. We transform the first code into the second by adding one codeword:

f ′
⎧

(
f g

x) =
⎪⎪
⎨

(

⎪⎪

x) d x, f D

⎩M +

x

⎧⎪

1 o/w

( ( ( ))) ≤

g′(j) =
⎪
⎨
⎪⎪

g(j) j M

⎩x̂0 j

≤

=M + 1

Then

E[d(X,g

(Hölders Inequalit

′ ○ ( ˆ ˆf ′ X)) ≤ E[ ˆ

≤ (

d(X,X)∣W ≠M + 1](1 − ε) +E[d(

− ) +

X,x

− /
0 1 W

y) D 1

) { =M

ε

+ 1

Dpε
1 1 p

}]
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§ 24. Rate distortion: achievability bounds

24.1 Recap

Compute R(D).
Recall from the last lecture:

R(D) =
1

lim sup
n→∞

logM
n

∗(n,D), (rate distortion function)

Ri(D) =
1

lim sup
n→∞

ϕSn
n

(D , (information rate distortion function)

and

)

ϕS(D

n

) ≜
PŜ∣S ∶E[

ˆinf I
ˆd(S,S)]≤D

(S;S)

( ) =
∶ [ ( )]≤

( n ˆϕS D inf I S ;Sn

P ˆn ∣ nS S E Sn ˆd ,Sn D
)

or ( ˆAlso, we showed the general converse: F any M,D)-code X →W

Ô

log

→X we have

M ≥ ϕX

R

( )

⇒ logM∗(n,D

D Ri D

)

D

≥ (D)

will

Ô⇒

ϕSn

In this lecture, we prove the achiev

(

abilit

) ≥

y

(

bound

)

and establish the identity R D Ri D
for stationary memoryless sources.

First we show that Ri D

( ) = ( )

the multi-letter optimization

Theorem 24.1 (Single-letterization)

( ) can be easily calculated for memoryless source without going through
problem.

. For stationary memoryless source Sn and separable distortion
d,

Ri(D) = ϕS(D

Proof. By definition

)

(PŜ

(

∣S

)

)n. Thus Ri

( ≤ ) =

( )

w

≤

e ha

(

ve

)

that ϕSn D nϕS D by choosing a product channel: PŜn Sn
D ϕS D .

∣
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For the converse, take any PŜn∣Sn such that the constraint E ˆd Sn, Sn D is satisfied, we have

n
ˆ ˆI(Sn;Sn

[ ( ≤

) ≥
j
∑
=
I

1

(Sj , Sj

)]

) (Sn independent)

≥ ˆϕ
j
∑
n

=
S

1

(E[d(Sj , Sj

≥
1

)])

nϕS
⎛

⎝n

n

∑
j=1

E[d(Sj , Ŝj)]
⎞

⎠
(convexity of ϕS)

≥ nϕS(D) (ϕS non-increasing)

24.2 Shannon’s rate-distortion theorem

Theorem 24.2. Let the source Sn
i.i.d.

be stationary and memoryless, Sn PS, and suppose that
distortion metric d and the target distortion D satisfy:

1. d sn, ŝn is non-negative and separable

∼

2. D

( )

>D0

3. Dmax is finite, i.e.
Dmax ≜ inf E

ŝ

Then

[d(S, ŝ)] <∞.

R D Ri D inf
PŜ∣S E ˆd S,S

Remarks:

( ) = ( ) =
∶ [ ( )]≤

ˆI(S;S). (24.1)
D

• Note that Dmax <∞

( ) =∞

does not imply that d(⋅, ⋅) only takes values in R, i.e. theorem permits
d a, â .

• It should be remarked that when Dmax =∞ typically R(D) =∞. Indeed, suppose that d ,
is a metric (i.e. finite valued and satisfies triangle inequality). Then, for any x0

(⋅ ⋅)

∈ An we have

ˆ ˆd X,X d X,x0 d x0,X .

Thus, for any finite codebook c

(

1

)

M

≥ (

{ , . . . , c } we hav

)

e

−

max

(

j d

)

E ˆd X,X E d X,x0 maxd x
j

(x0, cj) <∞ and therefore

[ ( )] ≥ [ ( )] − ( 0, cj) =∞ .

So that R
absolute imp

(D) =∞ for any finite D. This observation, however, should not be interpreted as
ossibility of compression for such sources. It is just not possible with fixed-rate

codes. As an example, for quadratic distortion and Cauchy-distributed S, Dmax since S
has infinite second-order moments. But it is easy to see that Ri D for any D 0, . In
fact, in this case Ri a h ever touc

(

h
) <

(D) is yperbola-like curve that n es either axis. A

=

non-trivial

∞

compression can be attained with compressors Sn W of bounded

∞

entropy H

∈ (

W

∞)

(but
unbounded alphabet of W ). Indeed if we take W to b
that differential entropy of

→

e a ∆-quantized version of S and
( )

notice

question: Is H
( ) ≤ ( ) <∞

(W ) = nRi(
S is finite, we get from (23.2) that Ri ∆ H W . Interesting
D) + o(n) attainable?
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• Techniques in proving (24.1) for memoryless sources can be applied to prove it for “stationary
ergodic” sources with changes similar to those we have discussed in channel coding.

Before giving a formal proof, we illustrate the intuition non-rigorously.

24.2.1 Intuition

ˆTry to throw in M points c1, . . . , c
n

M which are drawn i.i.d. according to a product
Qn ˆdistribution ˆ where Q ˆ is

C

some
= {

distribution
} ∈

on
A

A. Examine the simple encoder and decoder pair:
S S

encoder : f(sn) = argmin
∈[

sn

]
d( , cj

j M
) (24.2)

decoder : g j cj (24.3)

The basic idea is the following: Since the

(

co

) =

dewords are generated independently of the source,
the probability that a given codeword offers good reconstruction is (exponentially) small, say, ε.
However, since we have many codewords, the chance that there exists a good one can be of high
probability. More precisely, the probability that no good codeword exist is (1 − ε)M , which can be
very close to zero as long as M grows faster than 1 .ε

To explain the intuition further, let us consider the excess distortion of this code: P d
D]

Sn ˆ, Sn

. Define
Psuccess P c , s.t. d Sn, c D

[ ( ) >

Then

≜ [∃ ∈ C ( ) ≤ ]

Pfailure ≜P
P
[

T

∀ci

ci

is

∈

the

C, d(Sn

[

, ) >D]

≈ ∀ ∈ C

c

, d(Sn, c) >D

n

n ˆn

∣ ∈

(24.4)

(

Sn Tn] (24.5)

ˆ n )

=P[d(S ,S

≈

1 P d S

)

set

>

of

∣

typ with empirical distribution PS P

D Sn ∈

ical strings

T ]

S

M P Qnn P n (24.6)

=( −
´¹
[
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

(
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

n ˆ,
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
Sn) ≤D∣Sn ∈

Sn ˆ,Sn S Ŝ

T M
n

( = )

since

]

2−nE(
Sn

Q

⊥⊥ ˆ

))

Sn, this should be small

) (24.7)

≈(1 − ˆ MS

¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

large

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

deviation!

¶

b

) (24.8)

where it can e shown (similar to information

(

projection) that

E(QŜ) = ∶
min

PŜ∣S E[d( ˆS,S)]≤
D

D
(PŜ∣S∥QŜ

n E Q

∣PS) (24.9)

Thus we conclude that ∀Q ,∀δ > 0 we can pick M = 2 ( ( ˆ δ
ˆ S
S

)+ ) and the above code will have
arbitrarily small excess distortion:

P n
failure P[∀c ∈ C, d

S

= (S , c

We optimize Q ˆ to get the smallest possible M :

) >D]→ 0 as n→∞.

minE
QŜ

(QŜ) = min
PŜ∣S ∶E[d

min

( )]≤
minD(P ˆ Q ˆ PS (24.10)S

S,
∣S Sˆ QS D Ŝ

∥ ∣ )

= ˆI S;S
ˆP

=

ˆ

ϕ

∣
SS (S, )]≤DS ∶E[d

S

( )

(D)
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24.2.2 Proof of Theorem 24.2

Theorem 24.3
∀

(Performance
∀ > ∀

bound
∈ A

of average-distortion codes). Fix PX and suppose d x, x̂ 0
ˆfor l x, x̂. PY ∣ ˆal X , γ 0, y0 , there exists a code X W X, where W M 1

(

and
) ≥

E[d( ˆX,X E d X,Y E d X, y0 e

→ → ∈ [ + ]

ˆd X,X

)] ≤

d

[

X

(

, y0

)]

a.s.

+ [ ( )] −M/γ +E[ )

(

1{i(

) ≤ (

d(

)

X,y0 X;Y )>log γ}]

Notes:

• This theorem says that from an arbitrary PY X such that Ed
code with average distortion D plus some extr

∣
a terms whic

regime.

(X,Y ) ≤D, we can extract a good
h will vanish in the asymptotic

• The proof uses the random coding argument. The role of the deterministic y0 is a “fail-safe”
codeword (think of y0 as the default reconstruction with Dmax E d X, y0 ). We add y0 to
the random codebook for damage control, to hedge the (highly
that we end up with a horrible codebook.

=

un
[

lik
(

ely and
)]

unlucky) event

Proof. Similar to the previous intuitive argument, we apply random coding and generate the
codewords randomly and independently of the source:

C = {
i.i.d.

c1, . . . , cM PY X

and add the
=

“fail-safe”
( ( ))

codeword cM+1 = y0. We adopt

} ∼

the same

⊥⊥

encoder-decoder pair (24.2) – (24.3)
ˆand let X g f X . Then by definition,

d( ˆX,X) = min
j

let

∈[M+1]
d(X, cj) ≤ d(X,y0).

To simplify notation, Y be an independent copy of Y (similar to the idea of introducing unsent
codeword X in channel coding):

PX,Y,Y = PX,Y PY

where P =

[ ] = ∫ [

PY .
≥

Recall
]

the formula for computing the expectation of a random variable U 0, a :Y
E a
U 0 P U u du. Then the average distortion is

∈ [ ]

Ed( ˆX,X) = E min
j

EX

∈

E

[ +
(24.11)

M ]
d(X, cj

1

= [
∈
min
[ + ]

d(X

)

, cj
j M 1

)∣X] (24.12)

=
d

EX
0

(X,y0)
P min d X, cj u X du (24.13)

j M 1

≤
d X,y

E
0

X

∫ [
∈[ + ]

( ) > ∣ ]

∫
0

( )
P[ min

j

d X,y
E

0

X P d

∈[
d

M

,

]
(X, cj

X

) > u∣X]du (24.14)

= ∫
0

( )
[ ( Y ) > u∣X]Mdu (24.15)

= EX ∫
d(X,y0)

0
(1 − P[d(X,

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
Y
¸
)
¹¹¹¹¹¹¹¹¹¹¹¹¹¹
≤
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
u∣X

¹¹¹¹¹¹¹¹¹¹¹¶
]

≜δ(X,u

)Mdu (24.16)

)

249



Next we upper bound 1 δ X,u M as follows:

(1 δ

( − ( ))

− (X,u))M ≤ e−M/γ

e−M/γ
+ ∣

≤

1

−

=

1 γδ(X,u)∣+

+ ∣ −

(24.17)

γE[exp{−i(

+ [ ( ) >

X

∣

;Y 1 d ,Y u X

M

+
(24.18)

e− /
X

γ P i X;Y log γ X

)} { ( )≤ }∣ ]∣

] + P[d(X,Y

where

) > u∣X] (24.19)

• (24.17) uses the following trick in dealing with 1 δ M for δ 1 and M 1. First, recall
the standard rule of thumb:

)
⎪⎪
⎧

( − n 0, ε
1 ε

( −

nn

) ≪ ≫

n
≫ 1

1, εnn 1

In order to argue firm bounds of similar flav

≈

or,

⎪⎪
⎨

⎩

consider

≪

1 −
union bound

δM ≤ (1 − δ)M ≤ e−δM

≤

log 1

/γ(

δ δ

≤

e−M

+

γ

∣

δ 1

(

∧ ) + ∣ ∀

− ∣

1 − γδ∣+ ( γ > 0

γ

( )

e−M

− ) ≤ −

/ 1 γδ +
)

• (24.18) is simply change of measure using i(x; y) =
P

log Y (y)
(i.e., conditioning-unconditioningPY X y x

trick for information density, cf. Proposition 15.1.
∣ ( ∣ )

• (24.19):

1 − γE[exp{−i(X;Y )}1{d(X,Y )≤u}∣X] ≤ 1 − γE[exp{−

≤ − [

i(X;Y )}1{d(X,Y

∣

)≤

]

u,i(X;Y γ}∣X

1 E 1

) log ]

=

{d

≤

P[d(X,Y
(

)

X

>

,Y )≤u,i(X;Y log γ X

u or i(X

)

;

≤

Y ) >

}

log γ∣X

P d X,Y u X P i X;Y log

]

γ X

Plugging (24.19) into (24.16), we have

≤ [ ( ) > ∣ ] + [ ( ) > ∣ ]

E[d( ˆX,X)] ≤ ∫
d(X,y

E
0)
(e−M γ

X
/ + P[i(X;Y ) > log γ∣X] + P[d(X,Y

0
) > u∣X])du

≤ E[d(X,y0)]e
−M

M

/γ +E[d(X,y0)P[i(X;Y ) > log γ∣X]] +EX ∫
∞
P[d(X,Y

d d

) > u X

X

∣ ])du

= E[ ( , y0)]e
− /γ +E[ ( )

0

X,y0 1{i(X;Y )>log γ}] +E[d(X,Y )]
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As a side product, we have the following achievability for excess

∀

distortion.

Theorem

→ →

24.4 (Performance

∈ [ ]

bound of excess-distortion codes). PY X , γ 0, there exists a code
ˆX W X, where W M and

∣ ∀ >

P[d( ˆX,X) >D] ≤ e−M/γ + P[{d X,Y D i X;Y log γ

Pr
[

o
]

ˆof. Proceed exactly as in the proof of Theorem

(

24.3

)

, replace

> } ∪ {

(24.11

(

) b

)

y

>

P d X

}]

,X D P j
M ,d

[

(X, cj ,
( ) > ] = [∀ ∈

) >D] = EX[(1 − P[d(X Y ) ≤D∣X])M ], and continue similarly.

=

Finally, we
→

ar
∞

e able to prove Theorem 24.2 rigorously by applying Theorem 24.3 to iid sources
X Sn and n :

Proof of Theorem 24.2. Our goal is the achievability: R(D) ≤

= [ ( )]

Ri D ϕS D .
WLOG we can assume that Dmax E d S, ŝ0 achieved at some

( ) =

fixed
(

ŝ0

)

– this is our default
reconstruction; otherwise just take an
default reconstruction for Sn is ŝn0
is separable.

Fix some small δ 0. Take an

=

y

(

y other fixed sequence so that the expectation is finite. The
ŝ0, . . . , ŝ and E d Sn ŝn0 , 0 Dmax since the distortion

> ˆ

( ) = ( )

P ˆ suchS S

)

that E

[

d

(

S,S

)] =

D δ. Apply

<∞

Theorem 24.3 to

ˆX,Y Sn, Sn with
∣ [ ( )] ≤ −

PX = PSn

PY ∣X = P n

= (

ˆn PSn ˆS S S

ˆlogM

=

n

∣

(

I(

(

S;

=

S

( ∣ )

log γ

) 2δ

ˆn I S;S

1

+ )

) + δ

d X,Y

)

( ) = ˆd ,
j
∑
n

=
(Sj Sj

n 1

y0 ŝn0

)

we conclude that there exists a compressor f

=

n M 1 and g

E n f Sn E ˆd S , g d Sn, Sn E

∶

d

A

Sn

→

, ŝ

[

n
0 e

+

−M

]

/γ E d

∶ [ ˆM 1 n, such that

[ ( ( ( )))] ≤ Sn,

+

ŝn0

]

1

→

i

A

Sn ˆ;Sn

≤

log γ

D

[ ( )] + [ ( )] + [ ( ) ( )> }]

− δ +D

{

where

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

exp
max e

¸

−
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

(nδ
¹¹¹¹¹¹¹¹¹¹¶

)

→0

+E
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
[d(

→
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
Sn

¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
, ŝn0)1

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
En

0 (later)
¹¹¶
], (24.20)

En

⎧

= {i(Sn ˆ;Sn) >
1

log γ} =
⎪
⎨
⎪

⎪⎪⎩
n

n

∑
j=1

i(Sj ; Ŝj) > I(S; Ŝ) + δ

⎫⎪⎪
⎬
⎪⎪⎭

WLLN
ÔÔ⇒ P[En]→ 0

If we can show the expectation in (24.20) vanishes, then there exists an (n,M,D)-code with:

M = 2n(I(S;Ŝ)+2δ), D D δ o 1 D.

ˆTo summarize, ∀P ˆ S D δ weS∣ such that d S, have that:S E

= − + ( ) ≤

R D I

[

S

(

ˆ;S

)] ≤ −

Ô
δ
⇒
↓0
R

( ) ≤ ( )

(D) ≤ ϕS(D−) = ϕS(D). (continuity, since D >D0
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It remains to show the expectation in (24.20) vanishes. This is a simple consequence of the
L

uniform integrability of the sequence d Sn, ŝn0 . (Indeed, any sequence V
1

n V is uniformly
integrable.) If you do not know what uniform integrability is, here is a self-contained proof.

Lemma

<∞⇒

24.1.

( )Ð

F

Ð

or

→

any positive random

{ (

variable

)}

U , define g(δ) = sup

→

H ∶ [H]≤
1

→
P δ E .

δ

] Then

g

[U1H

E 0
U δ 0.

b
Proof. For any b > 0, E[U1H] ≤ E[U1{U>b}]+bδ, where E[

√
U1{U>b}]ÐÐ

→
Ð
∞
→

= /

0 by dominated convergence

theorem. Then the proof is completed by setting b 1 δ.

Now d(Sn, ŝn0) =
1 ∑Uj , where

[ (

Uj are
)

iid
]

copies of U . Sincen E U Dmax by assumption,
applying Lemma 24.1 yields E d Sn, ŝn 1 = 1

0 En

[ ] = <∞

n ∑E[Uj1En] ≤ g(P[En]) → 0, since P[En] → 0.
We are done proving the theorem.

Note: It seems that in Section 24.2.1 and in Theorem 24.2 we applied different relaxations in
showing the lower bound, how come they turn out to yield the same tight asymptotic result?

This is because the key to both proofs is to estimate the exponent (large deviations) of the
underlined probabilities in (24.7) and (24.16), respectively. To get the right exponent, as we know,
the key is to apply tilting (change of measure) to the distribution solving the information projection
problem (24.9). In the case, when P

(

Q n n
ˆ PY ˆ is chosen as the solution to rate-distortionS S

ˆoptimization inf I S;S

= ( ) = ( )

), the resulting tilting is precisely given by 2−i(X;Y ).

24.3* Covering lemma

Goal:

In other words:

1In fact, ⇒ is ⇔.
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Approximate P with Q such that for any function f , x, we have:

P[f(An,Bn) ≤ x] ≈ Q f

∀

[ (An,Bn) ≤ x], ∣W ∣ ≤ 2nR.

what is the minimum rate R to achieve this?
Some remarks:

1. The minimal rate will depend (although it is not obvious) on whether the encoder An W
kno
(⋅

ws
⋅)

about the test that the tester is running (or equivalently whether he knows the function
f , ).

→

2. If the function is known to be of the form f(An,Bn) = ∑nj=1 f1(Aj ,Bj), then evidently the job
of the encoder is the following: For any realization of the sequence An, we need to generate a
sequence Bn such that joint composition (empirical distribution) is very close to PA,B.

3. If R =H(A), we can compress An and send it to “B side”, who can reconstruct An perfectly
and use that information to produce Bn through PBn An .

4. If R H B , “A side” can generate Bn according to P

∣

n
A,B and send that Bn sequence to the

“B side”.

5. If A

= ( )

⊥⊥ B, we know that R 0, as “B side” can generate Bn independently.

Our previous argument turns out to give a sharp answer for the case when encoder is aware of
the tester’s algorithm. Here is a

=

precise result:

Theorem 24.5 (Covering Lemma). ∀PA,B and R >

∀ >

I(A;B), let C = {

≥ ( ( )+
c1
)
, . . . , cM where each

codeword c is i.i.d. drawn from distribution Pn. ε 0, for M 2n I A;B ε
j B we have

}

that:

P[∃c ∈ C ˆsuch that PAn,c ≈ PA,B]→ 1

Stronger form: ∀F

P[∃c ∶ (An, c) ∈ F ] ≥ P[(An,Bn) ∈ F ] + o(1

uniform

)

in F

Proof. Following similar arguments of the proof for Theorem 24.3,

±

we have

P[∀c ∈ C ∶ (An, c) ∈/ F

P

] ≤ e−γ + P
P An,

c An, c F P An,

[{(

[(

An

= ) ∈/

,Bn) F n;Bn) > log γ
n

∈/ } ∪ { }]

] + ( )

i(A

⇒ [∀ ∈ C ∶ ( ) ∈ ] ≥ [(

B

Bn) ∈

F o 1

F ] + o(1)
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Note: [Intuition] To generate B
(
n

∣
,
)
there are around 2nH B high probability sequences; for each An

sequence, there are around 2nH B A Bn sequences that ha

(

v

)

e the same joint distribution, therefore, it
nH B

is sufficient to describe the class of Bn for each An sequence, and there are around 2 ( ) ;
2 (

A
nH B∣A) 2nI( B

classes.

)

Although Covering Lemma is a powerful tool, it does not imply that the constructed

=

joint
distribution QAnBn can fool any permutation invariant tester. In other words, it is not guaranteed
that

sup
F

Indeed,

⊂An×Bn,permut.invar.

a sufficient statistic for a permutation

∣QAn,Bn(F ) − PnA,B(F )∣→ 0 .

≈

ˆinvariant tester is a joint type PAn,c. Our code
ˆsatisfies PAn ˆ

,c PA,B, but it might happen that PAn,c although close to PA,B still takes highly
unlikely values (for example, if we restrict all c to have the same composition P0, the tester
easily detect the problem since PnB-measure

√
can

of all strings of composition P0 cannot exceed O(1/ n ).
Formally, to fool permutation invariant tester we need to have small total variation between the
distribution on the joint types under P and Q. (It is natural to conjecture that rate R I A;B

)

should be sufficient to achieve this requirement, though).
A related question is about the minimal possible rate (i.e. cardinality of W 2nR ) required

= (

to

)

have small total variation:
TV QAn,Bn , P

n
AB ε

∈ [ ]

(24.21)

Note that condition (24.21) guarantees that
believe he sees the truly iid An,Bn . The

( ) ≤

( )

any tester (permutation invariant or not) is fooled to
minimal required rate turns out to be (Cuff’2012):

R =
→
min
→

I(A,B;U
A U B

a quantity known as Wyner’s common information C

)

(A;B). Showing that Wyner’s common
information is a lower-bound is not hard. Indeed, since Q n

An,Bn PAB (in TV) we have

I(QAt−1,Bt−1 ,QAtBt At−1,Bt−1 I PAt−1,Bt

≈

−1 , PAtBt At−1,Bt−1 0

(Here one
(

needs
)

to use finiteness of the

∣

alphabet

) ≈

of

(

A and B and the

∣

bounds

)

relating

=

H P H Q
with TV P,Q ). We have (under Q!)

( )− ( )

nR =H(W ) ≥ I

∑
T

(An,Bn;W (24.22)

≥
=
I(At,B ;W

)

I A ,B ;At 1
t t t

t 1

− Bt−1 (24.23)

≈∑
T

=
I(At,Bt;W

) − ( )

t 1

) (24.24)

≳ nC(A;B) (24.25)

where in the last step we used the crucial observation that under Q there is a Markov chain

At →W → Bt

and that Wyner’s common information PA,B ↦ C(A;B) should be continuous in the total variation
distance on PA,B. Showing achievability is a little more involved.
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§ 25. Evaluating R(D). Lossy Source-Channel separation.

Last time: For stationary memoryless (iid) sources and separable distortion, under the assumption
that Dmax <∞.

R( ˆD) = Ri(D) = inf I
PS∣S ∶

S;S .
ˆ E ˆd(S,S)≤D

( )

25.1 Evaluation of R D

So far we’ve proved some properties

( )

about the rate distortion function, now we’ll compute its value
for a few simple statistical sources. We’ll do this in a somewhat unsatisfying way: guess the answer,
then verify its correctness. At the end, we’ll show that there is a pattern behind this method.

25.1.1 Bernoulli Source

∼ ( ) ≤ / (

( ) =

ˆ ˆBer p p 1 2, with Hamming distortion d S,S) = 1{S =/ S} ˆLet S , and alphabets
Then

A = {0, 1}.
d sn, ŝn 1

A =

n∥s
n − ŝn∥Hamming is the bit-error rate.

Claim: R D h p h D +

Proof. Since D

(

max

) = ∣ ( ) − ( )∣

= p, in the sequel we can assume D < p for otherwise
= +

there is nothing
∼

to show.
(Ac

( )

hievabilit
′

y) We’re free
′(

to

−

cho

)

ose

+ (

an

−
∣

ˆ ˆy P
′)

ˆ

=

, so choose S
′ <

S Z, where S Ber pS S

is suc

( ′) Z

Ber D , and p h
(

th
)

at p 1 D 1 p D p so that p p. In other words, the backw
channel P ˆ is a BSC D . This induces some forward channel P ˆ . Then,S S S S

⊥⊥

ard

∼

∣

( ˆ) = ( ) − ( ∣ ˆI S;S H S H S S h p h D

∣

Since one such P ˆ∣ exists, we have the upper bound

)

R

(Con

(DS S

= ( ) − ( )

)

) ≤ h(p) − h D).

verse

(

First proof: For any PŜ∣S such that P [S ≠ Ŝ] ≤D ≤ p ≤ 1 ,2

I( ˆS;S) = H(S) −H(S∣Ŝ)

= ( ) − ( + ˆ∣ ˆ)

≥

H S

H

h p

h

(S

p

) −

H S S S

H(S + Ŝ)

= ( ) − (

≥

P [S ≠ ˆh S])

( ) − h(D)

Second proof: Here is a more general strategy. Denote the random transformation from the

achievability proof by P ˆ
∗
∣

ˆ. Now we need to show that there is no better Q ˆ with Q d S,S D
S S S∣S E [ ( )] ≤
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and a smaller mutual information. Then consider the chain:

R(D) ≤ I(PS ,Q ˆ∣ ) =D(Q ∣ ˆ∥PSS S S S ∣QŜ)

= ( ∣ ∥ ∣ ∣ ) +E [
PS∣Ŝ

D Q ˆ P ˆ Q ˆ Q logS S S S S

Marginal

]

( Q ˆSS

w

= PSQŜ∣S

And e can minimize this expression

) = ( ( )

PS

∣ ∥ ∣ ∣ ) + +E ˆ ¯ ˆD Q ˆ P ˆ Q ˆ H S Q logD1 S S logD1 S SS S S S S

by taking Q ∣ ˆ = P ∣ ˆ, givingS S S S

[ { =/ } + { = }]

≥ + ( ) + [ = ˆ] ( − ) + [ =/ ˆ0 H S P S S log 1 D P S S logD h

Since the upper and lower bound agree, we have R

]

D h

≥

p

(p) − h(D) (D ≤ 1/2) (25.1)

( ) = ∣ ( ) − h(D)∣+.

For example, when p = 1/2, D = .11, then R(D) = 1/2 bit. In the Hamming game where we
compressed 100 bits down to 50, we indeed can do this while achieving 11% average distortion,
compared to the naive scheme of storing half the string and guessing on the other half, which
achieves 25% average distortion.

Interpretation: By WLLN, the distribution PnS = Ber p n concentrates near the Hamming
sphere of radius np as n grows large. The above result about Hamming sources tells us that the
optimal reconstruction points are from Pn where

)

( n

′
ˆ Ber

(

= p′) p′ < p, which concentrates on a sphere
S

of radius np (note the reconstruction points are some exponentially small subset of this sphere).

S(0, np)

S(0, np′)

Hamming Spheres

It is interesting to note that none of the reconstruction points are the same as any of the possible
source values (with high probability).

25.1.2 Gaussian Source

The Gaussian

(

source

) =

ˆis defines as

Claim: 1

= R, S ∼ N (0, σ2), d(a, â

R D

A = A ) = ∣a − â∣2 (MSE distortion).

2 log+ σ2
.

Proof. Since Dmax =

D

σ2, in the
=

sequel we can assume D σ2 for otherwise there is nothing to show.
ˆ ˆ(Achievability) Choose S S

<

+Z , where S ∼ N (0, σ2 −D) ⊥⊥ Z ∼ N (0,D . In other words, the
backward channel P ∣ ˆ is AWGN with noise po

=

w

N

er

(

D. Since everything is jointly Gaussian, theS S

forward channel can be easily found to be P

)

Ŝ∣
σ2

S
−D
σ2 S, σ

2−D
σ2 D). Then

I(S; Ŝ) =
1 σ2

log
2 D

Ô⇒ R(D) ≤
1

2
log

σ2

D
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ˆ(Converse) Let P ˆ∣ be any conditional distribution such that E S 2

∗
P S D. Denote theS S

forward channel in the achievability by P ˆ∣ . We use the same trick as b
S S

∣

efore

− ∣ ≤

I(
P

PS , PŜ∣S) = D(PS

∗
∗ ∣

∣
ˆS

ˆ P
S∣Ŝ ∣PŜ) +EP

⎡
⎢
⎢
⎢
⎢
logS∥

S

⎣
PS

⎤
⎥
⎥
⎥
⎥
⎦

≥ EP
⎡
⎢
⎢
⎢
⎢
⎣

log
P ∗
S∣Ŝ

⎡

PS

⎤
⎥
⎥
⎥
⎥
⎦

= EP
⎢
⎢
⎢
⎢

1

⎢
⎢

log

⎣

√
2πD

e−
(S−Ŝ)2

2D

1√
2S

e
2πσ2

−
2σ2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
1

2
log

σ2

D
+

log e

2
EP [

S2

σ2
−

∣S − Ŝ∣2

D
]

≥
1 σ2

log
2

.
D

Again, the upper and lower bounds agree.

The interpretation in the Gaussian case is very similar
grows large, our source distribution concentrates on S(0,

√to the case of the Hamming source. As n
nσ2) (n-sphere in Euclidean space rather

than Hamming), and our reconstruction points on S(0,
√
n σ2 D . So again the picture is two

nested sphere.
How sensitive is the rate-distortion formula to the Gaussianit

( −

y assumption

))

of the source?

Theorem
( ) = ( −

25.1.
)

Assume that ES 0 and VarS σ2. Let the distortion metric be quadratic:
d s, ŝ s ŝ 2. Then

= =

1

2
log+

σ2

D
−D(PS∥N (0, σ2)) ≤ R(D) = inf

PŜ∣S ∶E(Ŝ−S)2≤D
I(S; Ŝ) ≤

1

2
log+

σ2

.
D

Note: This result is in exact parallel to what we proved in Theorem 17.6 for additive-noise channel
capacity:

1

2
log (1 +

P

σ2
) ≤ sup

PX ∶EX2≤P
I(X;X +Z) ≤

1

2
log (1 +

P
.

σ
) 2

2
+D(PZ∥N (0, σ

where

))

EZ 0 and VarZ σ2.
Note: A simple

=

consequence
=

of Theorem 25.1 is that for source distributions with a density,
the rate-distortion function grows according to 1

2 log 1

(

in the low-distortion regime as long asD
D PS∥N (0, σ2)) is finite. In

(

f

)

ac

=

t, the first inequality, known as the Shannon lower bound, is

asymptotically tight, i.e., R D 1
2 log σ2

D −D(PS∥N (0, σ2)) + o(1) as D → 0. Therefore in this
regime performing uniform scalar quantization with accuracy 1√

Pr

(

is in fact asymptotically optimal
D

within an o 1) term.

oof. Again, assume D <Dmax = σ
2. Let SG ∼ N (0, σ2).
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(Achievability) Use the same P ∗
Ŝ∣S = N (σ

2−D
σ2 S, σ

2−D of
σ2 D) in the achievability pro of Gaussian

rate-distortion function:

R(D) ≤ I

σ D
I

(PS , PŜ
∗
∣S)

= (
2

S;
−

σ2
S +W ) W ∼ N (0,

σ2 −D

σ2
D)

≤ I(SG;
σ2 −D

SG
σ2

+W ) by Gaussian saddle point (Theorem 4.6)

=
1

2
log

σ2

.
D

(Converse) For any P ˆ∣
ˆsuch that E(Ŝ −S)2 ≤D. Let PS S S

∗
∣Ŝ = N (S,D denote AWGN with noise

power D. Then

)

I( ˆS;S) = D(PS∣Ŝ∥PS ∣PŜ)

⎡

= ( ∗
∣ ∥ ∣ ∣ ) +E

⎢
⎢
⎢

P ∗

⎢

S∣Ŝ
D P ˆ P PS S ˆ P ˆ log

S S S

⎣
PSG

⎤
⎥
⎥
⎥
⎥
⎦

−D(PS∥PSG)

≥ EP

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

log

1√
2πD

e−
(S−Ŝ)2

2D

1√
2S

e
2πσ2

−
2σ2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−D(PS∥PSG)

≥
1

2
log

σ2

D
D

− (PS∥PSG).

Remark: The theory of quantization and the rate distortion theory at large have played a
significant role in pure mathematics. For instance, Hilbert’s thirteenth problem was partially solved
by Arnold and Kolmogorov after they realized that they could classify spaces of functions looking
at the optimal quantizer for such functions.

25.2* Analog of saddle-point property in rate-distortion

In the computation of R(D) for the Hamming and Gaussian source, we guessed the correct form
of the rate distortion function. In both of their converse arguments, we used the same trick to
establish that any other P ˆ∣ gave a larger value for R(D). In this section, we formalize this trick,S S
in an analogous manner to the saddle point property of the channel capacity. Note that typically
we don’t need any tricks to compute R(D), since we can obtain a solution in parametric form to
the unconstrained convex optimization

min I( ˆ ˆS;S λE d S,S
PŜ∣S

In fact there are also iterative algorithms (Blah

) +

ut-Arimoto)

[ ( )]

that computes R(D). However, for
peace of mind it is good to know there are some general reasons why tricks like we used in
Hamming/Gaussian actually are guaranteed to work.
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Theorem 25.2. 1. Supp
[

ose PY ∗ and ≪ [ (

( )] ≤

PX ∣Y ∗ PX are found with the property that E d X,Y D
and for any PXY with E d X,Y D we have

∗)] ≤

E [
dPX

log
∣Y ∗

X Y I X;Y
dPX

∗ . (25.2)

Then R(D) = I(X;Y
) R

for
(

.

( ∣ )] ≥ ( )

2. Suppose that I

∗

X
)

;Y ∗ = (D
and any PXY satisfying

). Then for any regular branch of conditional probability PX ∣Y ∗

• E[d(X,Y D and

• PY ≪ PY ∗

)]

and

≤

• I(X;Y

the inequality

)

(

<

25.2

∞

) holds.

Remarks:

1. The first part is a sufficient condition for optimality of a given PXY ∗ . The second part gives a
necessary condition that is convenient to narrow down the search. Indeed, typically the set of
PXY satisfying those conditions is rich enough to infer from (25.2):

dPX
log

∣Y ∗

x
dPX

( ∣y

e

) = R(D) − θ d(x, y) −D

for a positiv θ 0.

[ ] ,

2. Note that the second

>

part is not valid without PY PY condition. The counter-example to

A

this
= {

and
}

various other erroneous (but frequently encountered)

∗

generalizations is the following:
ˆ0,1 , PX = Bern(1/2 0

≪

), A = { ,1,0′,1′ and

d(0,0) = d(0,0

}

′) = 1 − d(0,1) = 1 − d(0,1′) = 0 .

The R(D) = ∣1 − h(D)∣+, but there are a bunch of non-equivalent optimal PY ∣X , PX ∣Y and
PY ’s.

Proof. First part is just a repetition of the proofs above, so we focus on part 2. Suppose there exists
a counter-example PXY achieving

I1 = E [
dPX

log
∣Y ∗

X Y I
dPX

∗ R D .

Notice that whenever I(X;Y ) <∞ we have

( ∣ )] < = ( )

I1 = I(X;Y ) −D(PX ∣Y ∥PX ∣Y ∗ ∣PY ) ,

and thus
D(PX ∣Y ∥PX ∣Y ∗ ∣PY ) <∞ . (25.3)

Before going to the actual proof, we describe the principal idea. For every λ we can define a joint
distribution

PX,Yλ = λPX,Y + (1 λ
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Then, we can compute

I(X;Yλ) = E [
PX

log
∣Yλ

PX
(X ∣Yλ)] = E [log

PX ∣Yλ
PX ∣Y ∗

PX ∣Y ∗

PX
] (25.4)

=D(PX ∣Yλ∥PX ∣Y ∗ ∣PYλ) +E [
PX ∣Y ∗(X ∣Yλ)

(25.5)

=

P

−

X

D(PX ∣Yλ∥PX ∣Y ∗ ∣PYλ) + λI1 + (1 λ I

]

) ∗ . (25.6)

From here we will conclude, similar to Prop. 4.1, that the first term is o λ and thus for sufficiently
small λ we should have I(X;Yλ) < R(D)

∈ [

, con
]

tradicting optimality of coupling PX,Y .
We proceed to details. For every λ 0,1 define

( )
∗

ρ1(y) ≜
dPY
dPY ∗

(y) (25.7)

λ(y) ≜
λρ1(y)

(25.8)¯λρ1 y λ
(λ

=
¯P

)
∣ = λ(y λ

y
)P

X Y

( ) +

(25.9)

dPY

∣ = + (y)P

λ

∣ ∗=

D y

=

X

λdP +

Y y X

¯
Y λdPY ∗ = (

Y y

( ) =

¯λρ1 y λ dPY

D(P ∥P

∗ (25.10)

∣

( = (

X Y =

)

y X ∣Y ∗=
( )

∥

y

λ

( ) + )

(25.11)

Dλ y D P
X ∣Y = P

y X ∣Y ∗=y

)

) . (25.12)

Notice:
On {ρ1 = 0} ∶ λ(y) =D(

( ) >

y Dλ y 0

and otherwise λ y 0. By convexity of divergence

) = ( ) =

Dλ(y) ≤ λ(y)D(y

and therefore
1

)

Dλ y 1 ρ1 y 0 D y 1 ρ1 y 0 .
λ y

Notice that by (25.3) the function

( )
(

ρ1

)

y

{ (

) (y

)

( D ) is

>

non-negativ

} ≤ ( ) {

e and

( ) >

PY

}

-integrable. Then, applying
dominated convergence theorem we get

∗

lim
λ→0

∫
1

{ρ1> }
dPY

0
∗

λ(y)
Dλ(y)ρ1(y) = ∫{ρ1>0}

dPY ∗ρ1(y) lim
λ→0

1
Dλ y 0 (25.13)

λ y

where in the last step we applied the result from Lecture 4

( )
( ) =

D(P ∥Q

since for each y on the set ρ1

)

0

<∞

we hav

Ô

e λ

⇒ D(λP + λ̄Q∥Q) = o(λ

y 0 as λ 0.

)

On the other hand, notice that

∫ ∗

1

{ > } ( )→ →

{ρ1> }
dPY

0 λ(y)
Dλ(y)ρ1(y)1{ρ1(y) > 0} =

1

λ
∫{ρ1>0}

dPY ∗(λρ1(y) + λ̄)Dλ(y) (25.14)

=
1

λ
∫{ρ1>0}

dPYλDλ(y) (25.15)

=
1 1

dP
λ
∫Y

YλDλ(y) =
λ
D(P

(λ)
X ∣Y ∥PX ∣Y ∗ ∣PYλ) , (25.16)

260



where in the penultimate step we used Dλ(y) = 0 on {ρ1 = 0}. Hence, (25.13) shows

D(P
(λ)
∣ ∥PX ∣Y ∗ ∣PYλ) = o(λ) , λ→ 0 .

X Y

Finally, since

P
(λ
X

)
∣Y ○ PYλ = PX ,

we have

I(X;Yλ) =D(P
(λ
X

)
∣Y ∥PX ∣Y

∗

∗ ∣PYλ) + λ [
dP

E X
log

∣Y
dPX

(X ∣Y )] + λ̄E [log
dPX ∣Y ∗

X Y

+

dPX

∗ (25.17)

= I∗ + λ(I1 − I
∗) o(λ ,

( ∣ )]

) (25.18)

contradicting the assumption
I(X;Yλ) ≥ I

∗ = R(D) .

25.3 Lossy joint source-channel coding

The lossy joint source channel coding problem refers to the fundamental limits of lossy compression
followed by transmission over a channel.

Problem Setup:
(

or an A
)

ˆF -valued ({S1, S2, . . .} and distortion metric d ∶ Ak ×Ak → R, a lossy
JSCC is a pair f, g such that

fk Ð→ n Ð
ch.

S X →
g

Y n Ð→ Ŝk

Definition 25.1. (f, g) is a ( ˆk,n,D)-JSCC if E[d(Sk, Sk)] ≤D.

Source JSCC enc Channel JSCC dec Ŝk

R = k
n

Sk Xn Y n

where ρ is the bandwidth expansion factor :

ρ =
n

channel uses/symbol.
k

Our goal is to minimize ρ subject to a fidelity guarantee by designing the encoder/decoder pairs
smartly. The asymptotic fundamental limit for a lossy JSCC is

ρ∗(D) =
n

lim sup
n→∞

min{ k,n,D code
k

For simplicity in this lecture we will focus on JSCC

∶ ∃(

for

)

stationary

− }

memoryless sources with
separable distortion + stationary memoryless channels.
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25.3.1 Converse

The converse for the JSCC is quite simple. Note that since there is no ε under consideration, the
strong converse is the same as the weak converse. The proof architecture is identical to the weak
converse of lossless JSCC which uses Fano’s inequality.

Theorem 25.3 (Converse). For any source such that

Ri(D) =
1

lim
k→∞

I Sk ˆinf ;Sk
k ˆP k k

ˆk kS ∣S
∶E[d(S ,S )]≤D

we have

( )

ρ∗(D) ≥
Ri(D)

Ci

Remark: The requirement of this theorem on the source isn’t too stringent; the limit expression
for Ri D typically exists for stationary sources (like for the entropy rate)

ˆProof.

(

Tak

)

e a (k,n,D)-code Sk →Xn

ˆinf

→ Y n → Sk. Then

I(Sk;Sk) ≤ I(Sk ˆ;Sk
P ˆk ∣ kS S

Which follows from data processing and taking

)

inf/sup.

≤ I(Xk;Y k) ≤ sup I Xn;Y n

P nX

→∞

Normalizing

(

by 1/k

)

and taking the liminf
as n

1
(LHS) lim inf

n→∞ n
sup
PXn

I(Xn;Y n) = Ci

(RHS) lim inf
n→∞

1 ˆinf I Skn ;Skn Ri D
k Pn ˆkS n ∣ kS n

And therefore, any sequence of

( ) = ( )

(kn, n,D)-codes satisfies

n
lim sup
n→∞ kn

≥
Ri(D)

Ci

Note: Clearly the assumptions in Theorem 25.3 are satisfied for memoryless sources. If the source
S is iid Bern(1/2) with Hamming distortion, then Theorem 25.3 coincides with the weak converse
for channel coding under bit error rate in Theorem 14.4:

k ≤
nC

1 − h pb

which we proved using
(

ad ho
)

c
=

techniques. In the case
SNR

)

of channel with cost constraints, e.g., the
AWGN channel with C 1

(

2 log(1 + SNR), we have

pb ≥ h
−1 (1 −

C(SNR)

R

This is often referred to as the Shannon limit in plots comparing

)

the bit-error rate of practical codes.
See, e.g., Fig. 2 from [RSU01] for BIAWGN (binary-input) channel. This is erroneous, since the
pb above refers to the bit-error of data bits (or systematic bits), not all of the codeword bits. The
latter quantity is what typically called BER in the coding-theoretic literature.
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25.3.2 Achievability via separation

The proof strategy is similar to the lossless JSCC: We construct a separated lossy compression
and channel coding scheme using our tools from those areas, i.e., let the JSCC encoder to be
the concatenation of a loss compressor and a channel encoder, and the JSCC decoder to be the
concatenation of a channel decoder followed by a loss compressor, then show that this separated
construction is optimal.

Theorem 25.4. For any stationary memoryless source ( ˆPS , , , d satisfying assumption A1
(below), and for any stationary memoryless channel PY ∣X ,

A A )

ρ∗(D) =
R(D)

C

Note: The assumption on the source is to control the distortion incurred by the channel decoder
making an error. Although we know that this is a low-probability event, without any assumption
on the distortion metric, we cannot say much about its contribution to the end-to-end average
distortion. This will not be a problem if the distortion metric is bounded (for which Assumption A1
is satisfied of course). Note that we do not have this nuisance in the lossless JSCC because we at
most suffer the channel error probability (union bound).

The assumption is rather technical which can be skipped in the first reading. Note that it is
trivially satisfied by bounded distortion (e.g., Hamming), and can be shown to hold for Gaussian
source and MSE distortion.

Proof. The converse direction follows from the previous theorem. For the other direction, we
constructed a separated compression / channel coding scheme. Take

Sk →W → Ŝk compressor to W ∈ [2kR(D)+o(k)] with E[d(Sk ˆ, Sk D

W →Xn → Y n → Ŵ maximal probability of error channel code

)]

(assuming

≤

kR(D) ≤ nC + o(n

with P ˆW W ε PW

))

So that the overall system is

[ =/ ] ≤ ∀

Sk ˆW Xn Y n Ŵ Sk

Note that here we need a maxim

Ð→

um probabilit

Ð→ Ð

y

→

of error

Ð→

code

Ð→

since when we concatenate these
two schemes, W at the input of the channel is the output of the source compressor, which is not
guaranteed to be uniform. Now that we have a scheme, we must analyze the average distortion to
show that it meets the end-to-end distortion constraint. We start by splitting the expression into
two cases

E[d(Sk ˆ, Sk

By assumption on our lossy

)] = E[ ( k ˆd S ,Sk ˆW 1 W W E k ˆd S ,Sk ˆ ˆW 1 W W

code, w
{

e kno

(

w
ˆ

)) { = }] + [ ( ( )) { =/ }]

that the probability of the event W W
cannot E ˆsay anything about d Sk, Sk

≤

=/

Ŵ
}

that the first term is D. In the second term, we know

[ ( ( ))]

is small by assumption on our channel code, but we

∃ → →

unless, for example, d is bounded. But by Lemma 25.1
(below), code Sk ˆW Sk such that

(1) E[d(Sk ˆ, Sk)] ≤D holds

(2) d(ak ˆ
0, S

k

length k
)

from
≤ ˆL for all quantization outputs Sk, where ak0 = (a0, . . . , a0) is some fixed string of

the Assumption A1 below.
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The second bullet says that all points in the reconstruction space are “close” to some fixed string.
Now we can deal with the troublesome term

E[d(Sk ˆ, Sk(Ŵ ))1{W =/ Ŵ

(by point (2) above)

}] ≤ E[1{W =/ Ŵ}λ(d(Sk, âk0
ˆλE 1 W W d Sk, âk0

λo 1 λLε 0 as ε 0

) +

≤

ak Ŝk

[ { =/ } ( )] +

d 0,

≤ ( ) + → →

ˆλ

(

E[1{W

))]

=/ W}L]

where in the last step we applied the same uniform integrability argument that showed vanishing of
the expectation in (24.20) before.

(
In
)

all, our scheme meets the average distortion constraint. Hence we conclude that for ∀ρ
R D

>

C ,∃ sequence of (k,n,D + o(1))-codes.

The following assumption is critical to
A

the previous
Assumption A1: For a source (

theorem:
ˆ ˆPS , ,A, d), ∃λ ≥ 0, a0 ∈ A, â0 ∈ A such that

1. d(a, â) ≤ λ(d(a, âo) + d

2. E d S, â0 (so that

(a0, â (generalized triangle inequality)

max

∀a, â

D

))

too).

3. E

[ ( )] <∞ <∞

[d( ˆa0, S)] <∞ for any output distribution P ˆ achieving the rate-distortion function RS (D
at some D.

)

4. d(a0, â0) <∞.

ˆThis assumption says that the spaces and have “nice centers”, in the sense that the distance
between any two points is upper bounded

A

by a constan
A

t times the distance from the centers to each
point (see figure below).

âa

a0 â0

A Â

b
b

b b

But the assumption isn’t easy to verify, or clear which sources satisfy the assumptions. Because of
this, we now give a few sufficient conditions for Assumption A1 to hold.

Trivial Condition: If the distortion function is bounded, then the assumption A1 holds
ˆautomatically. In other words, if we have a discrete source with finite alphabet , and a

finite distortion function d(a, â) <∞, then A1 holds.

A

More

= A

general

(

ly,

)

w

=

e ha

(

ve the following criterion.

ˆTheorem 25.5 (Criterion for satisfying A1). If and d a, â ρq a, â for

∣A∣

some

∣A∣ <

metric

∞

ρ
with q 1, and Dmax inf â0 E d S, â0 , then A1 holds.

)

Proof.

≥

Take a0

≜ [ (

finite

)] <

= â0 that achieves D

∞

p (in fact, any points can serve as centers in a metric
space). Then

(
1

2
ρ(a, â))q ≤ (

1

2
ρ(a, a0) +

1 q

ρ
2

(a0, â

(Jensen’s)

))

≤
1

2
ρq(a, a0) +

1
ρq

2
(a0, â
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And thus d(a, â) ≤ 2q−1(d(a, a0) + d(a0, â)). Taking λ = 2q−1 verifies (1) and (2) in A1. To verify
(3), we can use this generalized triangle inequality for our source

d( ˆ ˆa0, S) ≤ 2q−1(d(a0, S) + d(S,S

Then taking the expectation of both sides gives

))

E[ ˆd(a0, S)] ≤ 2q−1(E[d(a0, S)] +E
2

[d( ˆS,S)])

≤ q−1(Dmax +D

So that condition (3) in A1 holds.

) <∞

So we see that metrics raised to powers (e.g. squared Euclidean norm) satisfy the condition A1.
The lemma used in Theorem 25.4 is now given.

∣
ˆ ˆLemma

>

25.1.

[ (

Fix

)]

a source satisfying A1 and an arbitrary P ˆ . Let R I S;S , L max E d a0, S , d a0, â0S S

and
∈

ˆD E d S,S
(

. Then, there exists a k,2kR,D -code such that for every reconstruction point
ˆx̂ Ak we have d ak0, x̂ L.

> ( ) > { [ ( )] ( )}

ˆ ˆ

( )

Proof. Let X = Ak,

) ≤

X = Ak and PX = P kS , PY ∣X = P kˆ∣ . Then apply the achievability bound for
S S

excess distortion from Theorem 24.4 with

d1(x, x̂)
⎪
⎧⎪

= ⎨
d(x, x̂) d x̂

o/w

(ak0, ) ≤

⎪⎪+∞

L

Note that this is NOT a separable distortion

⎩

metric. Also note that without any change in d1-
distortion we can remove all (if any) reconstruction points x̂ with d ak0, x̂ L. Furthermore, from

ˆthe WLLN we have for any D
( )

>D′ > E[d
>

P d X,Y D P d

(S,S′)]

′ d ak ˆSk ˆ, Sk D′ P , Sk1 0 L 0

ˆ ˆas k (since E d

[

S,

(

S

)

D

>

and

] ≤

E

[

a0

(

, S L

)

).

>

Th

]

us,

+ [ ( ) > ]→

points
→∞

c1, . . . , cM

[

suc
( )] < ′ [ ] <

( )

overall we get M 2kR reconstruction
h that

P[ min
∈[ ]

d(Sk, cj) >D 0

=

j M

′

and d(ak0, cj L. By adding cM 1 â0, . . . , â0 we get

]→

E

) ≤

k, c

+

[
∈
min
[ + ]

d(S j)] ≤D E
j M 1

= ( )

′ + [d(Sk, cM+1

where the last estimate follows from uniform integrabi

)1 d ′
]

Sk, cj D D
M

′ o 1 ,

lit

{ min
j

y

∈[

≤

as in

(

the vanishing

) > }]

of

=

expectation

+ ( )

in (24.20).
Thus, for sufficiently large n the expected distortion is D, as required.

To summarize the results in this section, under stationarity and memorylessness assumptions on
the source and the channel, we have shown that the following separately-designed scheme achieves
the optimal rate for lossy JSCC: First compress the data, then encode it using your favorite channel
code, then decompress at the receiver.

Source JSCC enc Channel
R(D) bits/sec ρC bits/sec
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25.4 What is lacking in classical lossy compression?

Examples of some issues with the classical compression theory:

• compression: we can apply the standard results in compression of a text file, but it is extremely
difficult for image files due to the strong spatial correlation. For example, the first sentence
and the last in Tolstoy’s novel are pretty uncorrelated. But the regions in the upper-left
and bottom-right corners of one image can be strongly correlated. Thus for practicing the
lossy compression of videos and images the key problem is that of coming up with a good
“whitening” basis.

• JSCC: Asymptotically the separation principle sounds good, but the separated systems can
be very unstable - no graceful degradation. Consider the following example of JSCC.

Example: Source = Bern(1 ,2) channel = BSC(δ).

R
1. separate compressor and channel encoder designed for

(D)
1C(δ

2. a simple JSCC:

)

ρ

=

= 1,Xi = Si
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Part VI

Advanced topics
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§ 26. Multiple-access channel

26.1 Problem motivation and main results

Note: In network community, people are mostly interested in channel access control mechanisms
that help to detect or avoid data packet collisions so that the channel is shared among multiple
users.

The famous ALOHA protocal achieves

∑Ri
i

where C is the (single-user) capacity of the channel.

≈ 0.37C

1

In information theory community, the goal is to achieve

Ri C
i

The key to achieve this is to use coding so that

∑

collisions

>

are resolvable.
In the following discussion we shall focus on the case with two users. This is without loss of

much generality, as all the results can easily be extended to N users.

Definition 26.1.

• Multiple-access channel: P n n n
Y n An,Bn , n 1,2, . . . .

• a (n,M1,M2, ε

{ ∣ ∶ A × B → Y = }

) code is specified by

f1 ∶ [M
n n

∶ Y →

1

n

] ,

g

→ A f2 ∶ [M2]→ B

[M1] × [M2]

1Note that there is a lot of research about how to achieve even these 37%. Indeed, ALOHA in a nutshell simply
postulates that everytime a user has a packet to transmit, he should attempt transmission in each time slot with
probability p, independently. The optimal setting of p is the inverse of the number of actively trying users. Thus, it is
non-trivial how to learn the dynamically changing number of active users without requiring a central authority. This
is how ideas such as exponential backoff etc arise.
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W1,W2 ∼ uniform, and the codes achieves

P[{W1 ≠ ˆ ˆW1}⋃{W2 ≠W2

• Fundamental limit of capacity region

}] ≤ ε

R∗(n, ε) = {(R ,R ) ∶ ∃ a (n,2nR1
1 2 ,2nR2 , ε) code

• Asymptotics:

}

Cε = [ lim inf
n

R∗

closure

→
n,

denotes

∞
( ε

where [⋅] the of a set.

)]

Note: lim inf and lim sup of a sequence of sets {An :

lim inf An = {ω ∶ ω ∈ An,
n

}

∀n ≥ n0

lim supAn
n

}

= {ω

•

∶ ω infinitely occur}

lim ε ε
ε 0

Theorem 26.1 (Capacity region).

C = C = ⋂
>
C

Cε =co
PA

⋃ Penta
,PB

(PA, PB) (26.1)

=[
=
⋃ Penta PA U , PB U PU (26.2)

PU,A,B PUPA∣UPB∣U

( ∣ ∣

where

∣ )]

(

co
⋅ ⋅)

is the set operator of constructing the convex hull followed by taking the closure, and
Penta , is defined as follows:

Penta PA, PB

⎧⎪⎪⎪
R1,R2

≤ ≤ ( ∣ ) ⎪⎫

( ) =
⎪⎪
⎨( ) ∶

0 R I A;Y B

⎩

0 ≤
1

R2 ≤ I(
⎪

B;Y A
R1 +R2 ≤ I(A,B

∣

;Y
)

⎪⎪
⎬

)
⎪

Penta

⎪⎪⎭

(PA∣U , PB∣U ∣PU) ⎨

⎧⎪⎪⎪
B

0
≤

= ( ≤

U
R1,R2) ∶

0 R1

R2

≤

≤

I A;Y ,
I

R

( ∣

U

) ⎫

(B;Y ∣A,U

1 R2 I A,B;Y

⎪
) ⎬

⎪⎪

Note: the two forms in

⎪⎪⎩
⎪

(

(26.1
) ≤

) and (26.2)
(

are
) ≤

equivalent without

+ ≤

cost

(

constrain

∣ )

ts.

⎪⎪⎭
⎪

In the case when
constraints such as Ec1 A P1 and Ec2 B P2 are present, only the second expression yields the
true capacity region.
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26.2 MAC achievability bound

First, we introduce

∀

a lemma which will be used in the proof of Theorem 26.1.

Lemma 26.1.
(

PA, PB
)

, PY ∣A,B such that PA,B,Y = PAPBPY ∣A,B, and ∀γ1, γ2, γ12 > 0, ∀M1,M2,
there exists a M1,M2, ε MAC code such that:

ε ≤P[{i12(A,B;Y ) ≤ log γ

−
12}⋃{i1(A;Y ∣B) ≤ log γ

−
1}⋃{i2(B;Y ∣A) ≤ log γ

−
2

+ (M − 1)(M − 1)e γ12 + (M − 1)e γ1 + (M − 1)e γ2
1 2 1 2

}]

(26.3)

Proof. We again use the idea of random coding.
Generate the codebooks

c1, . . . , cM1 ∈ A, d1, . . . , dM2

where the codes are drawn i.i.d from distributions: c1, . . . , cM1

∈ B

′
∼ i.i.d. PA, d1, . . . , dM2 i.i.d. PB.

The decoder operates in the following way: report (m,m ) if it is the unique pair that
∼

satisfies:

(P12)

(

i12 cm, dm ; y

P1)

log γ12

i1

( ′ ) >

(cm; y∣dm′) > log γ1

P2 i2 dm′ ; y cm log γ2

Evaluate the expected error probabilit

( )

y:

( ∣ ) >

EP (cM1 M
e 1 , d 2

1 ) = P[{(W1,W2) violate (P12

impostor W1,W2

) or (P1) or (P2)}

′ ′ that satisfy P12 and P1 and P2

by symmetry of random co

⋃

des,

{∃

we have

( ) ( ) ( ) ( )}]

Pe = E[Pe∣W1 =m,W2 =m
′] = P[{(m,m′) violate (P12) or (P1) or (P2)}

⋃{∃ impostor (i ≠m,j ≠m′) that satisfy (P12) and (P1) and (P2)}]

⇒ Pe ≤ P[{i12(A,B;Y ) ≤ log γ12}⋃{i1(A;Y ∣B) ≤ log γ1}⋃{i2(B;Y ∣A) ≤ log γ2}] + P[E12] + P[E1] + P[E2]
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where

P[E12] = P[{∃(i ≠m,j ≠m′) s.t. i12(

≤ ( − )( − ) [ (

cm, dm′ ; y

M1 1 M2 1

) > log γ12

P i12

}]

A,

=

B;Y ) > log γ12

E

]

[e i12 A,B;Y

≤ −
1 i12 A,B;Y log γ12

γ12

− ( )

P

{ ( ) > }]

[ ]

e

E2 = P[{∃(j
M

≠ ′) ( ∣ ) > }]

≤ ( 2 − 1)

m s.t. i2 dj ; y ci log γ2

P[i2(

=

B;Y A log γ

e−
2

E [ i2(B;Y
A

∣A)
∣ ) >

≤

1{i2(B;Y ∣

[ − ∣ ] = −
A log

γ

]

A

EA e 2 A

) > γ2

e γ2

similarly P

}∣ ]

[E1] ≤ e
−γ1

Note: [Intuition] Consider the decoding step when a random codebook is used. We observe Y
and need to solve an M -ary hypothesis testing problem: Which of PY A cm,B dm

duced the sample Y ?
′ m,m

pro
′ M1 M2

Recall that in P2P channel coding, we had a similar problem and

{

the

∣

M-ary

= =

hyp

}

othesis

∈[

testing

]×[ ]

problem was converted to M binary testing problems:

PY ∣ =
1

X cj vs PY−j ≜∑
i≠j

PY X
1

∣ =ci PY
M

I.e. distinguish cj (hypothesis H0) against the average

−

distribution

≈

induced by all other codewords
(hyp

=

othesis
○

H1), which for a random coding ensemble cj PX is very well approximated by
PY PY ∣X PX . The optimal test for this problem is roughly

∼

PY ∣X=c
PY

≳ log(M − 1) Ô⇒ decide PY ∣X=cj (26.4)

since the prior for H0 is 1
M , while the prior for H1 is M−1 .M

The proof above followed the same idea except that this time because of the two-dimensional
grid structure:
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there are in fact binary HT of three kinds

(P12) ∼ test PY ∣A=cm,B=
1

dm′
vs

(M1 − 1)(M2 − 1)
∑
i≠m

∑
j≠m′

PY ∣A=ci,B=dj ≈ PY

(P1) ∼ test PY ∣A=cm,B=dm′
vs

1

−
∑ PY ∣A= ′

≈ PY ∣
≠

ci,B=dm B d
M1 1 i m

= m′

(P2) ∼
1

test PY ∣A=cm,B=dm′
vs P

′
Y c

2 1
=c

M m

j
∣A

m
= m,B=dj PY ∣A

And analogously to (26.4) the optimal tests are

−

giv

∑
≠

en by comparing

≈

the respective information
densities with logM1M2, logM1 and logM2.

Another observation following from the proof is that the following decoder would also achieve
exactly the same performance:

• Step 1: rule out all cells i, j with i12 ci, dj ;Y logM1M2.

• Step 2: If the messages remaining

( )

are

(

NOT all

)

in

≲

one row or one column, then FAIL.

• ˆStep 3a: If the messages remaining are all in one column m′ then declare W2 =m
′

( ∣ ) ≲

. Rule out
all entries in that column with i1 ci;Y dm′ logM1. If more than one entry remains, FAIL.

ˆOtherwise declare the unique remaining entry m as W1 m.

• Step 3b: Similarly with column replaced by row, i1 with

=

i2 and logM1 with logM2.

The importance of this observation is that in the regime when RHS of (26.3) is small, the
decoder always finds it possible to basically decode one message, “subtract” its influence and then
decode the other

(

message.
)

Whic
C

h of the possibilities 3a/3b appears more often depends on the
operating point R1,R2 inside .

26.3 MAC capacity region proof

Proof. 1. Show

Take 1,R2

C

(R ) ∈

is

C

convex.

ε/2, and take (R1
′

( / )

,R2

We merge the n,2nR1 ,2nR2 , ε 2 code

′

way: in the c

)

an
sharing first n hannels, use

∈ Cε/2.

d the (n,2nR1 ,2nR2 , ε/2) code in the following time-
the first set of codes, and in the last n channels, use

the second set of codes.
Thus we formed a new (2n,2R1+R1

′

,2R2+R2
′

, ε) code, we know that

1

2
Cε/2 +

1
ε

2
C /2 ⊂ Cε

take limit at both sides
1

2
C +

1

2
C ⊂ C

also we know that C ⊂ 1
2C +

1 ,2C therefore C = 1
2C +

1 is2C convex.

Note: the set addition is defined in the following way:

A + B ≜ {(a + b) ∶ a ∈ A, b ∈ B}
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2. Achievability

STP: ∀PA, PB,∀(R1,R2) ∈ Penta(PA, PB),

Apply Lemma 26.1 with:

∃(n,2nR1 ,2nR2 , ε)code.

PA → PnA, PB → Pn n

= =

B, PY ∣A,B → PY ∣A,B

M1 2nR1 , M2 2nR2 ,

log γ12 n I A,B;Y δ , log γ1 n I A;Y B δ , log γ2 n I B;Y A δ .

we have that

=

there

( (

exists a

) − )

(M1,M2, ε

= ( ( ∣ ) − ) = ( ( ∣ ) − )

) code with

ε ≤P[{
1

n

n

∑
k=1

i12(Ak,Bk;Yk) ≤ log γ12 − δ}⋃{
1

n

n

∑
k=1

i1(Ak;Yk∣Bk) ≤ log γ1 − δ}

⋃{
1
∑
n

i (B ;Y ∣A ) ≤ log γ − δ}]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

2
k=

k k k
n 1

2nR

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

1

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

1

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

2

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

nR2

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

1

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

e

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

2

γ12

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

2nR

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
○
¸
1

1 1

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

e

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

γ1

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

2nR

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

2

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

1 e

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

γ2

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

+ ( − )( − ) − + (

2

− ) − + − ) −

○

(

by WLLN,

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

< (

the first
∣ ) −

part goes to
+

zero,
<

and
(

for an

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

y

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

R

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

,

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

) −
1 R2 such that R1 I A;Y B δ

and R2 I B
(

;Y A
) ∈

δ and R1 R2 I A,B;Y δ, the second part goes to zero as well.
Therefore, if R1,R2 interior of the Penta, there exists

(

a

)

(M1,M2, ε

< ( ∣ ) −

= o(1)) code.

3. Weak converse

1
Q[W1 = Ŵ1,W2 = Ŵ2] = P ˆ ˆ, W1 W1,W2 W2 1 ε

M1M2

d-proc:

[ = = ] ≥ −

d(1 − ε∥
1

M1M2
) ≤ inf

Q∈(∗)
D(P ∥Q) = I(An,Bn;Y n)

⇒R1 +R2 ≤
1
I

n
(An,Bn;Y n) + o(1)
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To get separate bounds, we apply the same trick to evaluate the information flow from the
link between A→ Y and B → Y separately:

Q1[W2 = Ŵ2] =
1

M2
, P[W2 = Ŵ2] ≥ 1 − ε

d-proc:

d(1 − ε∥
1

inf D P Q I Bn;Y n An1
M2 Q1 1

⇒ ≤
1

R2

) ≤
∈(∗ )

( ∥ ) = ( ∣ )

I
n

(Bn;Y n∣An) + o(1

similarly we can show that

)

R2 ≤
1

n
I(An;Y n∣Bn) + o(1)

For memoryless channels, we know that 1 In (An,Bn;Y n) ≤ 1

→
k I Ak,Bk;Yk . Similarly, sincen

given Bn the channel An Y n is still memoryless we have

n n

∑ ( )

I An;Y n Bn I A n
k;Yk B I Ak;Yk Bk

k 1 k 1

Notice that each (Ai,B

( ∣ ) ≤ ∑
=

( ∣ ) = ∑

i B

=

) pair corresponds to (PAk , P k
), k

( ∣ )

∀ define

0 R1,k I Ak;Yk Bk
Pentak(PAk , PBk (

⎪⎩
⎪
⎨
⎪⎪
⎪⎧

) =
⎪
R1,k,R2,k) ∶ 0

R

≤ ≤ ( ∣ )

≤ R2,k ≤ I(B

1,k

∣ ⎬
⎪⎪
⎪⎫

)

therefore

+R2,k ≤ I(
k;Yk Ak
Ak,Bk;Yk)

⎪⎪⎪⎭

(
1

R1,R2) ∈ [
n
∑
k

Pentak]

⇒C ∈ co
PA

⋃ Penta
,PB

274



§ 27. Examples of MACs. Maximal Pe and zero-error capacity.

27.1 Recap

Last time we defined the multiple access channel as the sequence of random transformations

{P n n n
Y n∣AnBn ∶ A × B → Y , n = 1,2, . . .

Furthermore, we showed that its capacity region is

}

C = {(R1,R
nR

2) ∶ ∃(n,2 1 ,2nR2 , ε) −MAC code} = co ⋃
PAPB

Penta(PA, PB)

were co denotes the convex hull of the sets Penta, and Penta is

R1 I

Penta PA, PB

⎧⎪⎪⎪⎪
R2

R

≤

I

R

(

⎪
(

Y

⎪
I

∣

( ) = ⎨ ≤

A;

B;Y

)

1 2

∣

B

⎩⎪
⎪ +

A)

MA

(A,B;Y

So a general C and one Penta region looks like

≤ )

An

Bn

PY n|AnBn Y n

R2

I(A,B;Y )
I(B;Y |A)

R1

I(A;Y |B)

Note that the union of Pentas need not look like a Penta region itself, as we will see in a later
example.

27.2 Orthogonal MAC

The trivial MAC
(

is when each input sees its own independent channel: PY AB PY APY B where
the receiver sees YA, YB . In this situation, we expect that each transmitter can achieve it’s own
capacity, and no more than

)

that. Indeed, our theorem above shows exactly this:

∣ = ∣ ∣

⎪
(

⎪
⎧
⎪
⎪ ≤

) = ⎨

R1

≤

I A

Penta PA, PB R2 I

( ;Y

B

∣B

;Y A

R R I A,

)

B

= ( )

⎪⎪
1

(

2

∣ ) =

I A;

I(

Y

B;Y

;Y

)

Where in this case the last constraint is not

⎩⎪
⎪

applicable;

+ ≤ (

it does not

)

restrict the capacity region.
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A

B

YA

R1

R2

C2PY |A

PY |B
C1

YB

Hence our capacity region is a rectangle bounded by the individual capacities of each channel.

27.3 BSC MAC

Before introducing this channel, we need a definition and a theorem:

Definition 27.1 (Sum Capacity). Csum max R1 R2 R1,R2 C

Theorem 27.1. Csum = maxA⊥B I(A,B;

≜

⊥ Y

{ + ∶ ( ) ∈ }

Proof. Since the max above is achieved by

)

an extreme point on one of the Penta regions, we can
drop the convex closure operation to get

max{R1 +R2 ∶ (R1,R2) ∈

{ + ∈

co ⋃

∶ ( )

Penta PA, PB max R1 R2 R1,R2 Penta PA, PB

max R1 R2 R1,R2 Penta(PA, Y
P

(

PB

)}

max

=

I A,B;
A,PB

)} ≤
PA,PB

{ + ∶ ( ) ∈⋃ ( )}

Where the last step follows from the definition of Penta.

(

Now w

)

e need to show that the constraint
on
(

R1 R2 in Penta is active at at least one point, so we need to show that I A,B;Y I A;Y B
I B;Y

+

∣A) when A ⊥⊥ B, which follows from applying Kolmogorov identities
( ) ≤ ( ∣ )+

I(A;Y,B) =

Ô

0 + I(A

I

∣ ) = ( ) + ( ∣ ) Ô⇒ ( ) ≤ ( ∣ )

Hence maxPA,PB R1 R2

⇒

R1

(

;Y B

) =

I A

(

;Y

) +

I A

(

;B Y I A;Y I A;Y B

A,B;Y I A;Y I B;Y ∣A) ≤ I(A;Y ∣B) + I(B;Y ∣A

{ + ∶ ( ,R2) ∈ Penta(PA, PB

)

)} = maxPAPB I(A,B;Y )

We now look at the BSC MAC, defined by

Y = A +

∼ (

B

A,

)

Z

Ber

+ mod 2

Z δ

B 0,1

Since the output Y can only be 0 or 1, the

∈

capacit

{ }

y of this channel can be no larger than 1 bit. If
B doesn’t transmit at all, then A can achieve capacity 1 h δ (and B can achieve capacity when
A doesn’t transmit), so that R1,R2 1 h δ . By time sharing we can obtain any point between
these two. This gives an inner bound

− (

≤

on
−

the
(

capacit
)

y region. F

)

or an outer bound, we use Theorem
27.1, which gives

Csum = max I
PAPB

(A,B;Y ) = max I A,B;A B Z

=

PAPB

max H A B Z H Z 1 h δ
PAP

( + + )

B

Hence R1 +R2 ≤ 1 − h(δ), so by this outer bound,

(

we

+

can

+

do

)

no

−

better

( ) =

than

−

time

( )

sharing between
the two individual channel capacity points.
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A

B

R2

1− h(δ)

R1

1− h(δ)

Y

Remark: Even though this channel seems so simple, there are still hidden things about it, which
we’ll see later.

27.4 Adder MAC

Now we analyze the Adder MAC, which is a noiseless channel defined by:

Y

A,

= A +B (over Z
B 0,1

)

Intuitively, the game here is that when both A and B send either 0 or 1, we receiver 0 or 2 and can
decode perfectly. However, when A sends 0

∈

and

{

B

}

send 1, the situation is ambiguous. To analyze
this channel, we start with an interesting fact

Interesting Fact 1: Any deterministic MAC (Y f A,B
this, just expand I A,B;Y .

Therefore, the sum capacity of this MAC is

= ( )

(

) = maxH(

)

has Csum Y ). To see

1
Csum = max

⊥⊥
H

B
(A +B) =H

A
(

4
,
1

2
,
1

4
) =

3
bits

( / )

2

Which is achieved when both A and B are Ber 1 2 . With this, our capacity region is

Penta(Ber

⎧⎪⎪
(

R

1/2),Ber(1/2)) =
⎪⎪
⎨

1 I A;Y B H A 1

⎪⎪⎪⎪⎩

R2

R

≤ (

;

∣

1 + A,

)

≤ I(B Y ∣

(

A

I

)

≤

H B 1

R2 B

= ( ) =

=

;Y

( ) =

) = 3/2

So the channel can be described by

A

B

R2

1

R1

1

Y
R1 +R2 ≤ 3/2

Now we can ask: how do we achieve the corner points of the region, e.g. R1 1 2 and R2 1? The
answer gives insights into how to co

/

→

de for this channel. Take the greedy codeb
=

ook B
space),

{0,1}n (the
entire then the channel A Y is a DMC:

=

=

0

1

0

1

2

1
2

1
2

1
2

1
2
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Which we recognize as a BEC(1/2) (no preference to either 1 or 1), which has capacity 1 2. How
ˆdo we decode? The idea is successive cancellation, where first

−

we decode A, then remove A
/

from Y ,
then decode B.

An

Bn

Y n Dec
BEC(1/2)

Ân

B̂n

Using this strategy, we can use a single user code for the BEC (an object we understand well) to
attain capacity.

27.5 Multiplier MAC

The Multiplier MAC is defined as

Y

A

= AB

0,1 , B

Note that A Y can always be resolved,
capacity

∈ {

and

}

B

∈

can
region of this channel, we’ll use another interesting

{−1,1}

= ∣ ∣ be resolved whenever A 1. To find the

=

fact:
Interesting Fact 2: If A g Y

=

( ), then each Penta PA, PB is a rectangle with

R1 A
P ta(

H
en PA, PB

( )

⎧

) =
⎪⎪
⎨

≤

⎪⎩
⎪R2 I

( )

≤ (A,B;Y ) H A

Proof. Using the assumption that A = g(Y ) and expanding the

−

m

(

utual

)

information

I(A;Y ∣B) + I(B;Y ∣A) =H(A

H Y

) −

= ( ) −

H Y A H Y A,B H A,Y H Y A,B

H

(

Y

∣ ) − ( ∣

( ∣A,B) = I(A,B;

)

Y

= ( ) − ( ∣ )

Therefore the R1

)

+R2 constraint is not active, so our region is a rectangle.

By symmetry, we take PB = Ber(1/2). When PA = Ber(p), the output has H(Y ) = p + h(p).
Using the above fact, the capacity region for the Multiplier MAC is

C =
R

co

⎧

⋃
⎪⎪
⎨
⎪⎪

1 ≤H(A) = h(p

⎩R2 ≤H(Y ) −H(A

)

) = p

We can view this as the graph of the binary entropy function on its side, parametrized by p:

R1

1

1/2

R2

1

To achieve the extreme point 1,1 2 of this region, we can use the same scheme as for the Adder
MAC: take the codebook of A

(

to be
/ )

{0, 1}n, then B sees a BEC(1/2). Again, successive cancellation
decoding can be used.

For future reference we note:
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Lemma 27.1. The full capacity region of multiplier MAC is achieved with zero error.

Proof. For a given codebook D of user B the number of messages that user A can send equals the
total number of erasure patters that codebook D can tolerate with vanishing probability of error.
Fix rate R2 1 and let D be a row-span of a random linear nR2 n binary matrix. Then randomly
erase each column with probability 1 R2 ε. Since on average there will be n R2 ε columns left,
the resulting

<

matrix is still full-rank
−

and the
−

decoding is possible.

×

In other words,
( + )

P[D is decodable,# of erasures ≈ n(1

Hence, by counting the total number of erasures, for a random

−R2 − ε)]→ 1 .

linear code we have

E[# of decodable erasure patterns for D 2nh(1−R2−ε)+o(n) .

And result follows by selecting a random element of the D-ensem

] ≈

ble and then taking the codebook
of user A to be the set of decodable erasure patterns for a selected D.

27.6 Contraction MAC

The Contraction MAC is defined as

{0, 1, 2, 3} ∋ A

{−,+} ∋ B

Erasure Y
b

b

b

b b

b

b
b

b

b

b
b

b

b

B = + B = −
0 0 1e1
1 1 2
2 2 2 e2
3 3 3

Here, B is received perfectly, We can use the fact

⎧

above to see that the capacity region is

C =
⎪⎪
⎨

3

⎪

R1 ≤

⎩⎪

F

≤
2

R2 1

or future reference we note the following:

Lemma 27.2. The zero-error capacity of the contraction MAC satisfies

R1 ≤ h(1/3

R2 h p

) + (2/ − p)

≤ ( )

3 log 2 , (27.1)

(27.2)

for some p ∈ [0,1/2]. In particular, the point R1 =
3 , R2 1 is not achievable with zero error.2

Proof. Let C and D denote the zero-error codebooks of tw

=

o users. Then for each string bn , n

denote
U {anbn = ∶ aj ∈ {0,1} if bj = +, aj ∈ {2,3} if bj = −} .

∈ {+ −}

Then clearly for each bn we have
∣U ∣ ≤ 2d bbn

( n,D) ,

where d(bn,D) denotes the minimum Hamming distance from string bn to the set D. Then,

∣C ∣ ≤∑2d

bn

(bn,D) (27.3)

= 2
j
∑
n

j

=0

∣{bn ∶ d(bn,D) = j}∣ (27.4)
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For a given cardinality ∣D∣

= ( ) + ( )

the set that maximizes the above sum is the Hamming ball. Hence,
R2 h p O 1 implies

R2 ≤ max
∈[ ]

h(q) + (q − p) log 2
q p,1

= h(1/3) + (2/3 − p) log 2 .

27.7 Gaussian MAC

Perhaps the most important MAC is the Gaussian MAC. This is defined as

Y = A +B Z

Z ∼ N (

] ≤

0,1

E[A2 P

+

1

)

, E[B2 P2

Evaluating the mutual information, we see that the capacit

] ≤

y region is

I(A;Y ∣B) = I(
1

A;A +Z) ≤
2

log(1 + P1)

I(B;Y ∣A) = I(B;B +Z) ≤
1

1
2
≤ ( + P2

I

)

(A,B;Y ) = h(Y ) − h(Z) ≤
1

2
log(1 + P1 + P2)

A

B

Y

Z

R2

R1
1
2 log(1 + P1)

1
2 log(1 + P2)

1
2 log(1 + P1 + P2)

Where the region is Penta 0, P1 , 0, P2 . How do we achieve the rates in this region? We’ll
look at a few schemes.

(N ( ) N ( ))

1. TDMA: A and B switch off between transmitting at full rate and not transmitting at all. This
achieves any rate pair in the form

R1 =
1

λ
2

log(1 + P1), R2 = λ̄
1

log 1 P2
2

Which is the dotted line on the plot above. Clearly, there are

(

m

+

uch

)

better rates to be gained
by smarter schemes.

2. FDMA (OFDM): Dividing users into different frequency bands rather than time windows
gives an enormous advantage. Using frequency division, we can attain rates

R1 =
1

λ
2

log (1 +
P1

λ
) , R2 = λ̄

1

2
log (1 +

P2

λ̄
)
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In fact, these rates touch the boundary of the capacity region at its intersection with the
R1 = R2 line. The optimal rate occurs when the power at each transmitter makes the noise
look white:

P1

λ
=
P2

λ̄
Ô⇒ λ∗ =

P1

P1 + P2

While this touches the capacity region at one point, it doesn’t quite reach the corner points.
Note, however, that practical systems (e.g. cellular networks) typically employ power control
that ensures received powers Pi of all users are roughly equal. In this case (i.e. when P1 P2)
the point where FDMA

=

touches the capacity boundary is at a very desirable location of
symmetric rate R1 R2. This is one of the reasons why modern standards (e.g. LTE 4G)

=

do
not employ any specialized MAC-codes and use OFDM together with good single-user codes.

3. Rate Splitting/Successive Cancellation: To reach the corner points, we can use successive
cancellation, similar to the decoding schemes in the Adder and Multiplier MACs. We can use
rates:

R2 =
1

2
log(1 + P2)

R1 =
1

2
(log(1 + P1 + P2) − log(1 + P2)) =

1

2
log (1 +

P1

1 P2

The second expression suggests that A transmits at a rate for an AWGN

)

channel that has
power constraint P

+

1 and noise 1 + P2, i.e. the power used by B looks like noise to A.

A

B

Y

Z

Dec D1 Â

B̂Dec D2

E1

E2

Theorem 27.2. There exists a successive-cancellation code (i.e. E1,E2,D1,D2 ) that
achieves the corner points of the Gaussian MAC capacity region.

( )

Proof. Random coding: Bn ∼ N (

=

0, P )n. Since An2 now sees noise 1 + P2, there exists a code
for A with rate R 1

1 2 log(1 + P1/(1 + P2)).

This scheme (unlike the above two) can tolerate frame un-synchronization between the two
transmitters. This is because any chunk of length n has distribution 0, P n

2 . It has
generalizations to non-corner points and to arbitrary number of users. See

N

[R
(

U96]
)

for details.

27.8 MAC Peculiarities

Now that we’ve seen some nice properties and examples of MACs, we’ll look at cases where MACs
differ from the point to point channels we’ve seen so far.

1. Max probability of error average probability of error.

Theorem 27.3. C

=/

(max) =/ C
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Proof. The
≤ /

key observation for deterministic MAC is that C max C0 (zero error capacity)
when ε 1 2. This is because when any two strings can be confused,

( ) =
the maximum probability

of error

ˆmax
′
P[Ŵ1

m,m
=/ m ∪ W2 =/ m

′∣W1 =m,W2 =m
′

Must be larger than 1

]

/2.

For some of the channels we’ve seen

• Contraction MAC: C0 =/ C

• Multiplier MAC: C0 C

• Adder MAC: C0 C

=

=/ . For this channel, no one yet can show that C0,sum 3 2. The idea
is combinatorial in nature: produce two sets (Sidon sets) such that all pairwise sums
between the two do not overlap.

< /

2. Separation does not hold: In the point to point channel, through joint source channel coding
we saw that an optimal architecture is to do source coding then channel coding separately.
This doesn’t hold for the MAC. Take as a

=

simple example the
(

Adder
)

MAC with a correlated
source and bandwidth expansion factor ρ 1. Let the source S,T have joint distribution

1 3 1 3
PST 0

/

1
/

3

We encode Sn to channel input An and T

= [
/

]

is to not encoder at all; simply take Sj =

n to channel input Bn. The simplest possible scheme
Aj and Tj = Bj . Take the decoder

Yj = 0

Yj 1

Y 2

Ô⇒

ˆ ˆS T

= Ô⇒

0 0

0 1

j 1 1

Which gives P[Ŝn ˆSn, Tn Tn 1, since

=

w

Ô

e

⇒

are able to take advantage of the zero entry in
joint distribution of

=

our correlated

with a

=

source.

Can we achieve this separated

] =

source? Amazingly, even though the above scheme is so
simple, we can’t! The compressors in the separated architecture operate in the Slepian Wolf
region

⎧⎪⎪⎪⎪
R1

R2

R

≥

H

(

⎨

H S∣T

H

)

≥ (T ∣S

1 R2

)

S,T log 3

Hence th
≤

e sum rate for compression

⎪⎪⎪⎪⎩ +

must

≥

be

( ) =

≥

/

log 3, while the sum rate for the Adder MAC
must be 3 2, so these two regions do not overlap, hence we can not operate at a bandwidth
expansion factor of 1 for this source and channel.
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Slepian Wolf

1

1

1/2

1/2

3/2

log 3

R2

Adder MAC
R1

3. Linear codes beat generic ones: Consider a BSC-MAC and suppose that two users A and
B have independet k-bit messages W1,W2 ∈

+

Fk2.
/

Suppose the receiver is only interested in
estimating W1 W2. What is the largest ratio k n? Clearly, separation can achieve

k/n ≈
1

log 2 h δ
2

by simply creating a scheme in which both

(

W1 and

−

W

(

2

))

are estimated and then their sum is
computed.

A more clever solution is however to encode

An = G

Bn

Y n A

⋅

= G
n

⋅

W1 ,

W2 ,

Bn Zn G W W2 Zn1 .

where G is a generating matrix

=

of a

+

good

+

k-to-

=

n linear

( +

code.

) +

Then, provided that

k n log 2 h δ o n

the sum W1 W

< ( − ( )) + ( )

+ 2 is decodable (see Theorem 16.2). Hence even for a simple BSC-MAC there
exist clever ways to exceed MAC capacity for certain scenarios. Note that this “distributed
computation” can also be viewed as lossy source coding with a distortion metric that is only

ˆ ˆsensitive to discrepancy between W1 W2 and W1 W2.

4. Dispersion is unknown: We have seen

+

that for the

+

point-to-point channel, not only we know
the capacity, but the next-order terms (see Theorem 20.2). For the MAC-channel only the
capacity is known. In fact, let us define

Rsum
∗ (n, ε) ≜ sup{R1 +R2 ∶ (R1,R2) ∈R

∗(n, ε .

Now,
( /

tak
)

e Adder-MAC as an example. A simple exercise in random-co

)}

ding with PA PB
Ber 1 2 shows

=

Rsum
∗ (

3

=

n, ε) ≥
2

log 2 −

√
1

4n
Q−1(ε) log 2 +O(

logn
.

n

In the converse direction the situation is rather sad. In fact the best

)

bound we have is only
slightly better than the Fano’s inequality [?]. Namely for each ε > 0 there is a constant Kε > 0
such that

Rsum
∗ (n, ε) ≤

3

2
log 2 +Kε

logn
√
n
.
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So
→

it
∞

is not even known if sum-rate approaches sum-capacity from above or from below as
n ! What is even more surprising, is that the dependence of

=

the residual term on ε is not
clear at all. In fact, despite the decades of attempts, even for ε 0 the best known bound to
date is just the Fano’s inequality(!)

Rsum
∗ (n,0) ≤

3

2
.

284



§ 28. Random number generators

Let’s play the following game: Given a stream of Bern p bits, with unknown p, we want to turn
them into pure random bits, i.e., independent fair coin flips Bern 1 2 . Our goal is to find a universal
way to extract the most number of bits.

( )

In 1951 von Neumann proposed the following scheme: Divide

( / )

the stream into pairs of bits,
output 0 if 10, output 1 if 01, otherwise

=

do
−

nothing and move to the next pair. Since both 01 and
10 occur with probability pq (where q 1 p), regardless of the value of p, we obtain fair coin flips
at the output. To measure the efficiency of von Neumann’s scheme, note that, on average, we have
2n bits in and 2pqn bits out. So the efficiency (rate) is pq. The question is: Can we do better?

Several variations:

1. Universal v.s. non-universal: know the source distribution or not.

2. Exact v.s. approximately fair coin flips: in terms of total variation or Kullback-Leibler
divergence

We only focus on the universal generation of exactly fair coins.

28.1 Setup

Recall from Lecture 6 that {0,1}∗ = ∪k≥0{

∅

0,1
denotes

}k = {∅,0,1,00,01, . . . denotes the set of all finite-
length binary strings, where the empty string. For any x

}

0,1 ∗, let l x denote the
length of x.

Let’s first introduce the definition of random numb
∈

er generator formally

∈ { }

. If the

(

input

)

vector is
Xn, denote the output (variable-length) vector by Y {0,1}∗. Then the desired property of Y is
the following: Conditioned on the length

∶

of

{

Y

}

being

→ {

k, Y {

}

is uniformly distributed on 0,1

Definition

}k.

28.1 (Extractor). We say Ψ 0,1 ∗ 0,1 ∗ an extractor if

1. Ψ(x

i.i.d.
2.

) is a prefix of Ψ y if x is a prefix of y.

F
(

or
(

any
))

n
=

and any p

( )

∈ (0,1), if Xn Bern p , then Ψ Xn Bern 1 2 k conditioned on
l Ψ Xn k.

∼ ( ) ( ) ∼ ( / )

The rate of Ψ is
E l Ψ Xn

rΨ(p) = lim sup
n→∞

[ ( ( ))] i.i.d.
, Xn

n
∼ Bern(p).

Note
( )

that the von Neumann (

( ) =

scheme above defines a valid extractor Ψ (with Ψ x2n 1
vN vN

ΨvN x2n ), whose rate is rvN p pq.

+ ) =
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28.2 Converse

No extractor has a rate higher than the binary entropy function. The proof is simply data processing
inequality for entropy and the converse holds even if the extractor is allowed to be non-universal
(depending on p).

Theorem 28.1. For any extractor Ψ and any p

) ≥
1

r

∈ (0,1),

Ψ(p h(p) = p log2 p
+ q log2

1
.
q

Proof. Let L = Ψ(Xn). Then

nh p H Xn

where the step follows
on L k.

( ) = ( ) X

fr

≥H(Ψ( n H

om the assumption

)) = (Ψ(Xn)∣L) +H

on Ψ that Ψ

(L

X

)

n

≥H

is

(Ψ(Xn = E [L] bits,

( ) uniform

)∣L

o

)

ver {0,1}
=

k conditioned

The rate of von Neumann extractor and the entropy bound are plotted below. Next we present
two extractors, due to Elias [Eli72] and Peres [Per92] respectively, that attain the binary entropy
function. (More precisely, both ideas construct a sequence of extractors whose rate approaches the
entropy bound).

0 1
2

1
p

rate

1 bit

rvN

28.3 Elias’ construction of RNG from lossless compressors

The intuition behind Elias’ scheme is the following:

1. For iid Xn, the probability of each string only depends its type, i.e., the number of 1’s.
Therefore conditioned on the number of ones, Xn is uniformly distributed (over the type class).
This observation holds universally for any p.

2. Given a uniformly distributed random variable on some finite set, we can easily turn it
into variable-length
1 ,

{ }

↦ ∅ 2↦ 0 and 3

Lemma 28.1. Given U
conditioned on l f U

↦

fair coin flips. For example, if U is uniform over 1,2,3 , we can map
1.

[ ] ∶ [ ] → { }∗

( ( )) =

uniformly
( )

distributed on
{

M , there exists f M 0,1 such that
k, f U is uniformly over 0,1}k. Moreover,

log2M − 4 ≤ E[l(f(U))] ≤ log2M bits.

286



Proof. We defined f by partitioning M into subsets whose cardinalities are powers of two, and
assign elements in each subset to binary
of M by M n 2ii 0mi , where the most

[

strings
]

of that length. Formally, denote the binary expansion
significant bit mn 1 and n log2M 1. Those non-zero

m a partition M t ij ij
i’s defines j 0Mj , where Mi 2 . Map the elements of Mj to 0,1 .

To prove

=

the

∑ =

bound

= = ⌊ ⌋+

argument log2M H

[

on
]

the
U

=

H

∪

=

exp
=

ected length,
∣ ∣

the
= { }

)) ≥ H(f(U
follows from

1

( ) ≥ (f(U )∣ (

upp
(

er bound follows from
l f U))) = E[l(

y
f(U))]

the same entrop
, and the lower bound

E[l(f(U))] =
M

n

∑
i=0

mi2
i ⋅ i = n −

1

M

n

∑
i=0

mi2
i(n − i) ≥ n −

2n

M

n

∑
i=0

2i−n(n − i) ≥ n −
2n+1

n
M

≥ − 4,

where the last step follows from n ≤ log2M + 1.

Elias’ extrac
=

tor. Let w xn define the Hamming weight (number of ones) of a binary
Tk {xn

( )

∈ {0, 1}n ∶ w(xn) = k} define the Hamming sphere of radius k. For each 0 k
the function f from Lemma 28.1 to each Tk. This defines a mapping ΨE 0, 1 n 0,
we extend it to ΨE 0, 1 n 0, 1 by applying the mapping per n-bit block and

≤

discard

≤

string. Let

∶ ∗

incomplete

}

, w

block. Then
{

it

{ } → {

n e apply

∶ }

is
→

clear
{ }∗

1 and then
the last

that the rate is given by 1
nE l Ψ n

E X . By Lemma 28.1, we
have

n
E log 4

[ ( )( )]

(
w(Xn)

) − ≤ E l

Using Stirling’s expansion (see, e.g., [Ash65,

[

Lemma

(Ψ (
n

E)(X
n)] ≤ E log

w(Xn

4.7.1]), we have 2nh

)
)

(p)
√

8npq
≤ (n

k
) ≤ 2nh(p)√

=

where
πnpq

p 1 − q = k/
2

n ∈ (

( )

0,1) and [ ( )( )] = ( ) + ( )

→∞

hence E l ΨE Xn nh p O logn . Therefore the extraction rate
approaches h p as n .

28.4 Peres’ iterated von Neumann’s scheme

Main idea: Recycle the bits thrown away in von Neumann’s scheme and iterate. What did von
Neumann’s extractor discard: (a) bits from equal pairs. (b) location of the distinct pairs. To achieve
the entropy bound, we need to extract the

=

randomness
( ( ))

out of these two parts as well.
First some notations: Given x2n, let k l Ψ 2n

vN x denote the number of consecutive distinct
bit-pairs.

• Let 1

• Let 1

≤m1 < . . . <mk ≤ n denote the locations such that x2mj x2mj 1.

≤ i1 < . . . < in−k ≤ n denote the locations such that x2ij

≠ −

• yj x2mj , vj x2ij , uj x2j x2j

= x2ij−1.

Here yk are

=

the bits

=

that von

=

Neumann

⊕

’s

+1.

scheme outputs and both vn k and un are discarded. Note
that un is important because it encodes the location of the yk and

−

contains a lot of information.
Therefore

−
von Neumann’s scheme can be improved if we can extract the randomness out of both

vn k and un.
Peres’ extractor: For each t

• Set Ψ1 to be von Neumann’s

∈ N, recursively define an extractor Ψt as follows:

extractor Ψ , i.e., Ψ (x2n+1) = Ψ (x2n) = ykvN 1 1 .

• Define Ψt by Ψt(x
2n) = Ψt(x

2n+1) = (Ψ1(x
2n),Ψt−1(u

n),Ψt−1(v
n−k)).
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Example: Input x = 100111010011 of length 2n =

(

12. Output recursively:

011)(110100)(101)

(1)(010)(10)(0)

(1)(0

Note that the bits that enter into the iteration are longer iid. To compute the rate of Ψt, it
is convenient to introduce the notion of exchangeabilit

)

y. We say Xn are exchangeable if the joint
distribution

[ ]

is invariant under permutation, that is, PX1,...,Xn = PXπ(1),...,Xπ(n) for any permutation π
on n . In particular, if Xi’s are binary, then Xn are exc

= (

hangeable
( ))

if and only if the joint distribution
only depends on the Hamming weight, i.e., PXn=xn p w xn . Examples: Xn is iid Bern p ; Xn

is uniform over the Hamming sphere Tk.

Lemma 28.2

=

(Ψt preserves exchangebility). Let X2n be exchangeable and L Ψ

( )

1 X2n . Then con-
i.i.d.

ditioned on L k, Y k, Un and V n−k are independent and exchangeable. Furthermor

= (

e, Y k

)

∼ Bern(1
2

and Un is uniform over Tk.

Pr
[

oof.
=

If suffices
=

to sho
−

w that y, y 0, 1 k, u, u Tk and v, v 0, 1 n k such that w v w v

)

,
P Y k y,U

(

n u,V n

−
k = v L

∀ ′ ∈ { } ′ ∈ ′ ∈ { } −

∣ = k] = P[ ′∣
)

Y k = y′, Un = u′, V n−k = v L k . Note that X2n and

′

the triple Y k, Un, V n k are in one-to-one correspondence of each other (to reconstruct

( ) =

X

(

2n

)

,
simply read the k distinct pairs from Y and fill them according to the

=

lo

]

cations ones in U and
fill the remaining equal pairs from V ). Finally, note that u,
input strings x and x of identical Hamming weight (w x

′ ′ ′

probability due to the exc

′

hangeability of X2n. [Examples:
y, u, v 11,1010,10 x 01110100 .]

(

y,
)

u,
=

y, v and
(

y
)

, u , v ond to two

(

2
)

k +
corresp

= (

2w v ) and hence of identical

( ) = ( )⇒ ′ = ( )

v 01, 1100, 01 x 10010011 ,

Computing the marginals, we conclude that both Y k and Un are uniform o

)

ver

⇒

their

= (

respectiv

)

e
support set.1

Lemma 28.3
( (

(Ψ is
))

an
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extractor). Let X2n n
t be exchangeable. Then Ψ 2 i.i.d.

t X Bern 1 2 condi-
tioned on l Ψt X

2n m.

Proof. Note that Ψ (X2n 0,1 . It is equivalent to show that for all

(

[

s

) ∼ ( /

t ) ∈ { } m 0,1 m,

)

P Ψt(X

∗

2n) = sm] =

=

2 mP l Ψ n
t X

2 m .

∈ { }

Proceed by induction on t. The base case of t 1

−

follows from Lemma 28.2 (the distribution of the
Y part). Assume Ψt−1 is an

=

extractor. Recall that

[

Ψ

( ( )) = ]

+ + ⊥⊥
t X

2n Ψ n n k
1 X2n ,Ψt 1 U ,Ψt 1 V

and write the

[

length

( )
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L

]

L1 L2 L3, where L2 L3 L1 by Lemma 28.2. Then
− − −

P Ψt X
2n sm
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∣
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m

P m
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[Ψt(X

2n) = s ∣L1 k P L1 k
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Lemma
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28.2
∑ ∑ P[L = k Y

= ] [ = ]

]P[ k = sk∣L = k]P[Ψ − (Un) = sk 1
k

+r

=
1

0 r=
1 t 1 k

0
+ ∣L1 = k]P[Ψt−1

m m k
induction
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1 = k]2
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= k]
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k

2−mP[L =m]
1If X2n is iid Bern(p), then V n−k is iid Bern(p2/(p2 + q2)), since L ∼ Binom(n, 2pq) and P[Y k = y,Un = u,V n−k =

v∣L = k] = 2−k ⋅ (n
k
)−1 ⋅ ( p2

p2+q2
)m( q2 n

2+ 2 ) −k−m, where m = w(v). In general we cannot say much more than the fact
p q

that V n−k is exchangeable.
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i.i.d.
Next we compute the rate of Ψt. Let X2n ∼ Bern(p). Then by SLLN, 1

2n l(Ψ1(X
2n)) ≜ Ln

2n

converges a.s. to pq. Assume that 1
2n l(Ψt−1(X

2n))
a.s.
ÐÐ→rt−1(p). Then

1 L
l

2n
(Ψt−1(X

2n)) =
n

2n
+

1

2n
l(Ψt−1(U

n)) +
1

2n
l(Ψt−1(V

n−Ln)).

Note that Un
i.i.d.
∼ Bern(2pq), V n−Ln ∣Ln

i.i.d.
∼ Bern(p2/(p2 + q2)) and Ln

a.s.
ÐÐ→∞. Then the induction

hypothesis implies that 1 Ð
a

l2n (Ψt−1(U
n)) Ð

.s
→
.
rt−1(2pq) and 1

2(n−Ln) l(Ψt−1(V
n−Ln))

a.s.
ÐÐ→rt−1(p

2/(p2 +

q2)). We obtain the recursion:

rt(p) = pq +
1

2
rt−1(2pq) +

p2 + q2

2
rt−1 (

p2

Trt 1 p , (28.1)
p2 q2 −

where the

+

another.

) ≜ (

≤

operator T maps a continuous function on [0,1] to Note

)( )

that f g pointwise
then Tf Tg. Then it can be shown that rt converges monotonically from below to the fixed-point
of T

=

, which turns out to be exactly the binary entropy function

∼ (

h. Instead of directly

≤

verifying
i.i.d.

Th

(

h

⊕

, next we give a simple proof: Consider X1,X2 Bern p . Then 2h p H X1,X2

H X1 X2,X1) =H(X1 ⊕X2) +H(X1∣X1 ⊕X2) = h(p
2

) ( ) = ( ) =

+ q2) + 2pqh(1
2) + (p2 + q2)h( p2

p2+q2 ).
The convergence of rt to h are shown in Fig. 28.1.
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Figure 28.1: Rate function rt for t = 1,4,10 versus the binary entropy function.

28.5 Bernoulli factory

Given a stream of Bern(p) bits
( (

with
))

unknown p, for what kind of function f 0,1 0,1 can
we simulate iid bits from Bern f p . Our discussion above deals with f p

∶ [ ] → [ ]

( ) ≡ 1 . The most famous2
example is whether we can simulate Bern 2p from Bern p , i.e., f p 2p 1. Keane and O’Brien
[KO94] showed that all f that
away from 0 or 1”: for all 0 p

( ) ( ) ( ) = ∧

doubling the bias is impossible.
The above result deals with

<

w

<

can be sim ts
1, min{f(

ulated are either constan or “polynomially bounded
p 1 f p p,1 p n

h

), for some n 1. In particular,

at f(p) can be sim

−

ulated

( )} ≥

in

{

pri

−

nciple.

}

What type

≥

of computational
devices are needed for such as task? Note that since r1 p is quadratic in p, all rate functions rt
that arise from the iteration (28.1) are rational functions (ratios of polynomials), converging to
the binary

<

entropy function as Fig. 28.1 shows. It turns

(

out

)

< (

that for any rational function f that
satisfies 0 f 1 on 0,1), we can generate independent Bern(f(p)) from Bern(p) using either of
the following schemes [MP05]:
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1. Finite-state machine (FSM): initial state (red), intermediate states (white) and final states
(blue, output 0 or 1 then reset to initial state).

2. Block simulation: let A k
0,A1 be disjoint subsets of {0, 1} . For each k-bit segment, output 0 if

falling in A0 or 1 if falling in A1. If neither, discard and move to the next segment. The block
size is at most the degree of the denominator polynomial of f .

The next table gives examples of these two realizations:

Goal Block simulation FSM

f(p) = 1/2 A0 = 10;A1 = 01

1

0

0

1

1

0

01

f(p) = 2pq A0 = 00,11;A1 = 01,10 0 1

0

1

0
1

0
1

pf(p) =
3

p3+q3 A0 = 000;A1 = 111

0

1

0

1

0

1

1

0

0

1

1

0

Exercise: How to generate f(p) = 1/3?
It turns out that the only

( )

t
=

yp
√
e of f that can be simulated using either FSM or block simulation

is rational function. For f p p, which satisfies Keane-O’Brien’s characterization, it cannot be
simulated by FSM or block simulation, but it can be simulated by pushdown automata (PDA),
which are FSM operating with a stack [MP05].

What is the optimal
h

entropy bound
(p)

Bernoulli factory with the best rate is unclear. Clearly, a converse is the

eh( bf(p)) , which can trivial (bigger than one).

28.6 Related problems

28.6.1 Generate samples from a given distribution

The problem of how to turn pure bits into samples of a given distribution P is in a way the opposite
direction of what we have been considering so far. This can be done via Knuth-Yao’s tree algorithm:
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Starting at the root, flip a fair coin for each edge and move down the tree until reaching a leaf node
and

(

outputting
) ≤ [ ] ≤

th
(

e sym
) +

bol. Let L denote the number of flips, which is a random variable. Then
H P E L H P 2bits.

Examples:

• To generate P = [1/2,1/4,1/4] on {a, b, c}, use the finite tree: E[L] = 1.5.

a

0

b

1

c

1

1

• To generate P = [1/3,2/3] on {a, b} (note that 2/3 =

[ ] =

0.1010 . . . ,1/3 = 0.0101 . . .), use the
infinite tree: E L 2 (geometric distribution)

a

0

b

0

a

0

⋮

1

1

1

28.6.2 Approximate random number generator

The goal is to design f ∶ X n → {0,1}k s.t. f(Xn

distances (TV or KL). One formulation is that D
) is
(

close to fair coin flips in distribution in certain
Pf(Xn)∥Uniform) = o(k

less
).

Intuitions: The connection to loss data compression is as follows: A good compressor
squeezes out all the redundancy of the source. Therefore its output should be close to pure bits,
otherwise we can compress it furthermore. So good lossless compressors should act like good
approximate random number generators.
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