```
6.450, Lecture 2, 9/14/09; REVIEW
```


Separation of source and channel coding.

REASONS FOR BINARY INTERFACE

- Standardization (Simplifies implementation)
- Layering (Simplifies conceptualization)
- Loses nothing in performance (Shannon says)

Layering of source coding

A waveform source is usually sampled or expanded into a series, producing a sequence of real or complex numbers.

The analog sequence is encoded by quantization into sequence of symbols.

Both analog and discrete sources then require binary encoding of sequence of symbols.

DISCRETE SOURCE CODING

OBJECTIVE: Map sequence of symbols into binary sequence with unique decodability.

SIMPLEST APPROACH: Map each source symbol into an L-tuple of binary digits.

Choose L as smallest integer satisfying $2^{L} \geq M$, i.e.,

$$
\log _{2} M \leq L<\log _{2} M+1 ; \quad L=\left\lceil\log _{2} M\right\rceil
$$

Example (for alphabet $\{$ red, blue, green, yellow, purple, magenta\}):

$$
\begin{array}{ll}
\text { red } \rightarrow & 000 \\
\text { blue } \rightarrow & 001 \\
\text { green } \rightarrow & 010 \\
\text { yellow } \rightarrow & 011 \\
\text { purple } \rightarrow & 100 \\
\text { magenta } \rightarrow & 101
\end{array}
$$

This can be easily decoded.
Example: the ASCII code maps letters, numbers, etc. into bytes.

These are called fixed length codes.

FIXED-TO-FIXED LENGTH SOURCE CODES

Segment source symbols into n-tuples.

Map each n-tuple into binary L-tuple where

$$
\log _{2} M^{n} \leq L<\log _{2} M^{n}+1 ; \quad L=\left\lceil n \log _{2} M\right\rceil
$$

Let $\bar{L}=\frac{L}{n}$ be number of bits per source symbol

$$
\log _{2} M \leq \bar{L}<\log _{2} M+\frac{1}{n}
$$

VARIABLE LENGTH SOURCE CODES

Motivation: Probable symbols should have shorter codewords than improbable to reduce bpss.

A variable-length source code \mathcal{C} encodes each symbol x in source alphabet \mathcal{X} to a binary codeword $\mathcal{C}(x)$ of length $l(x)$.

For example, for $\mathcal{X}=\{a, b, c\}$

$$
\begin{aligned}
& \mathcal{C}(a)=0 \\
& \mathcal{C}(b)=10 \\
& \mathcal{C}(c)=11
\end{aligned}
$$

Decoder must parse the received sequence.
Requires unique decodability: For every string of source letters $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, the encoded output $\left\{\mathcal{C}\left(x_{1}\right) \mathcal{C}\left(x_{2}\right), \ldots, \mathcal{C}\left(x_{n}\right)\right\}$ must be distinct, i.e., must differ from $\left\{\mathcal{C}\left(x_{1}^{\prime}\right) \mathcal{C}\left(x_{2}^{\prime}\right), \ldots, \mathcal{C}\left(x_{m}^{\prime}\right)\right\}$ for any other source string $\left\{x_{1}^{\prime}, \ldots, x_{m}^{\prime}\right\}$.

If $\mathcal{C}\left(x_{1}\right) \cdots \mathcal{C}\left(x_{n}\right)=\mathcal{C}\left(x_{1}^{\prime}\right) \cdots \mathcal{C}\left(x_{m}^{\prime}\right)$, decoder must fail on one of these inputs.

We will show that prefix-free codes are uniquely decodable.

Unique Decodability: For every string of source letters $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, the encoded output $\left\{\mathcal{C}\left(x_{1}\right) \mathcal{C}\left(x_{2}\right), \ldots, \mathcal{C}\left(x_{n}\right)\right\}$ must be distinct, i.e., must differ from $\left\{\mathcal{C}\left(x_{1}^{\prime}\right) \mathcal{C}\left(x_{2}^{\prime}\right), \ldots, \mathcal{C}\left(x_{m}^{\prime}\right)\right\}$ for any other source string $\left\{x_{1}^{\prime}, \ldots, x_{m}^{\prime}\right\}$.

If $\mathcal{C}\left(x_{1}\right) \cdots \mathcal{C}\left(x_{n}\right)=\mathcal{C}\left(x_{1}^{\prime}\right) \cdots \mathcal{C}\left(x_{m}^{\prime}\right)$, decoder must fail on one of these inputs.

Example: Consider $a \rightarrow 0, b \rightarrow 01, c \rightarrow 10$

Then $a c \rightarrow 010$ and $b a \rightarrow 010$,

Not uniquely decodable.

Unique Decodability: For every string of source letters $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, the encoded output $\left\{\mathcal{C}\left(x_{1}\right) \mathcal{C}\left(x_{2}\right) \cdots \mathcal{C}\left(x_{n}\right)\right\}$ must be distinct, i.e., must differ from $\left\{\mathcal{C}\left(x_{1}^{\prime}\right) \mathcal{C}\left(x_{2}^{\prime}\right) \cdots \mathcal{C}\left(x_{m}^{\prime}\right)\right\}$ for any other source string $\left\{x_{1}^{\prime}, \ldots, x_{m}^{\prime}\right\}$.

If $\mathcal{C}\left(x_{1}\right) \cdots \mathcal{C}\left(x_{n}\right)=\mathcal{C}\left(x_{1}^{\prime}\right) \cdots \mathcal{C}\left(x_{m}^{\prime}\right)$, decoder must fail on one of these inputs.

Example: Consider $a \rightarrow 0, b \rightarrow 01, c \rightarrow 11$
Then $a c c c \rightarrow 0111111=01^{6} ; \quad b c c c \rightarrow 01111111=01^{7}$.

This can be shown to be uniquely decodable.

PREFIX-FREE CODES

A code is prefix-free if no codeword is a prefix of any other codeword. A prefix of a string y_{1}, \ldots, y_{k} is y_{1}, \ldots, y_{i} for any $i \leq k$.

A prefix-free code can be represented by a binary tree which grows from left to right; leaves represent codewords.

$$
\begin{aligned}
& a \rightarrow 0 \\
& b \rightarrow 11 \\
& c \rightarrow 101
\end{aligned}
$$

Every codeword is at a leaf, but not all leaves are codewords. Empty leaves can be shortened. A full code tree has no empty leaves.

Prefix-free codes are uniquely decodable:
Construct a tree for a concatenation of codewords.

To decode, start at the left, and parse whenever a leaf in the tree is reached.

THE KRAFT INEQUALITY

The Kraft inequality is a test on the existence of prefix-free codes with a given set of codeword lengths $\{l(x), x \in \mathcal{X}\}$.

Theorem (Kraft): Every prefix-free code for an alphabet \mathcal{X} with codeword lengths $\{l(x), x \in$ $\mathcal{X}\}$ satisfies

$$
\begin{equation*}
\sum_{x \in \mathcal{X}} 2^{-l(x)} \leq 1 \tag{1}
\end{equation*}
$$

Conversely, if (1), then a prefix-free code with lengths $\{l(x)\}$ exists.

Moreover, a prefix-free code is full iff (1) is satisfied with equality.

We prove this by associating codewords with base 2 expansions i.e., 'decimals' in base 2.

Represent binary codeword $y_{1}, y_{2}, \ldots, y_{m}$ as

$$
. y_{1} y_{2} \cdots y_{m}=y_{1} / 2+y_{2} / 4+\cdots+y_{m} 2^{-m}
$$

Represent binary codeword $y_{1}, y_{2}, \ldots, y_{m}$ as

$$
. y_{1} y_{2} \cdots y_{m}=y_{1} / 2+y_{2} / 4+\cdots+y_{m} 2^{-m}
$$

$\mathcal{C}\left(a_{j}\right)$ is a prefix of $\mathcal{C}\left(a_{i}\right)$ if and only if the expansion of $\mathcal{C}\left(a_{j}\right)$ contains the expansion of $\mathcal{C}\left(a_{i}\right)$ in its "approximation interval."

$\mathcal{C}\left(a_{j}\right)$ is a prefix of $\mathcal{C}\left(a_{i}\right)$ if and only if the expansion of $\mathcal{C}\left(a_{j}\right)$ contains the expansion of $\mathcal{C}\left(a_{i}\right)$ in its "approximation interval."

Thus a code is a prefix code iff the base 2 approximation intervals are disjoint.

A code is a prefix code iff the base 2 approximation intervals are disjoint.

But the sum of disjoint approximation intervals is at most 1 .

The sum of disjoint approximation intervals is at most 1 .

Code is full iff approximation intervals fill up $[0,1)$

DISCRETE MEMORYLESS SOURCES

- The source output is an unending sequence, $X_{1}, X_{2}, X_{3}, \ldots$, of randomly selected letters from a finite set \mathcal{X}, called the source alphabet.
- Each source output X_{1}, X_{2}, \ldots is selected from \mathcal{X} using a common probability measure.
- Each source output X_{k} is statistically independent of the other source outputs X_{1}, \ldots, X_{k-1}, X_{k+1}, \ldots.

Probability Structure for Discrete Sources

English text: e, i, and o are far more probable than q, x, and z.

Successive letters are dependent; (th and qu).

Some letter strings are words, others are not.

Long term grammatical constraints.

The discrete memoryless source is a toy model that can be easily generalized after understanding it.

PREFIX-FREE CODES FOR DMS

Let $l(x)$ be the length of the codeword for letter $x \in \mathcal{X}$.

Then $L(X)$ is a random variable (rv) where $L(X)=l(x)$ for $X=x$.

Thus $L(X)=l(x)$ with probability $p_{X}(x)$.

$$
E(L)=\bar{L}=\sum_{x} p_{X}(x) l(x)
$$

Thus \bar{L} is the number of encoder output bits per source symbol.

OBJECTIVE: choose integers $\{l(x)\}$ subject to Kraft to minimize \bar{L}.
Let $\mathcal{X}=\{1,2, \ldots, M\}$ with pmf p_{1}, \ldots, p_{M}.
Denote the unknown lengths by l_{1}, \ldots, l_{M}.

$$
\bar{L}_{\text {min }}=\min _{l_{1}, \ldots, l_{M}: \sum 2^{-l_{i} \leq 1}}\left\{\sum_{i=1}^{M} p_{i} l_{i}\right\}
$$

Forget about the lengths being integer for now. Minimize Lagrangian: $\sum_{i}\left(p_{i} l_{i}+\lambda 2^{-l_{i}}\right)$.

$$
\frac{\partial \sum_{i}\left(p_{i} l_{i}+\lambda 2^{-l_{i}}\right)}{\partial l_{i}}=p_{i}-\lambda(\ln 2) 2^{-l_{i}}=0
$$

Choose λ so that the optimizing $\left\{l_{i}\right\}$ satisfy $\sum_{i} 2^{-l_{i}}=1$. Then any other choice of $\left\{l_{i}\right\}$ satisfying constraint will have a larger \bar{L}.

$$
\frac{\partial \sum_{i}\left(p_{i} l_{i}+\lambda 2^{-l_{i}}\right)}{\partial l_{i}}=p_{i}-\lambda(\ln 2) 2^{-l_{i}}=0
$$

If we choose $\lambda=1 / \ln 2$, then

$$
\begin{gathered}
p_{i}=2^{-l_{i}} \\
l_{i}=-\log p_{i} \\
\bar{L}_{m i n}(\text { non-int. })=\sum_{i}-p_{i} \log p_{i}=\mathbf{H}(X)
\end{gathered}
$$

$H(X)$ is called the entropy of the rv X. We will see that it is the minimum number of binary digits per symbol needed to represent the source.

For now, it is a lower bound for prefix-free codes.

Theorem: Entropy bounds

Let $\bar{L}_{\min }$ be the minimum expected codeword length over all prefix-free codes for X. Then

$$
H(X) \leq \bar{L}_{\min }<H(X)+1
$$

$\bar{L}_{\min }=H(X)$ iff each p_{i} is integer power of 2.

Proof of $H(X) \leq \bar{L}$ for prefix-free codes:

Let l_{1}, \ldots, l_{M} be codeword lengths.

$$
\begin{aligned}
H(X)-\bar{L} & =\sum_{i} p_{i} \log \frac{1}{p_{i}}-\sum_{i} p_{i} l_{i} \\
& =\sum_{i} p_{i} \log \frac{2^{-l_{i}}}{p_{i}}
\end{aligned}
$$

The inequality $\ln u \leq u-1$ or $\log u \leq(\log e)(u-1)$.
This inequality is strict except at $u=1$.

$$
\begin{aligned}
\mathbf{H}(X)-\bar{L} & =\sum_{i} p_{i} \log \frac{2^{-l_{i}}}{p_{i}} \leq \sum_{i} p_{i}\left[\frac{2^{-l_{i}}}{p_{i}}-1\right] \log e \\
& =\sum_{i}\left[2^{-l_{i}}-p_{i}\right] \log e \leq 0
\end{aligned}
$$

Equality occurs iff $p_{i}=2^{-l_{i}}$ for each i.

Theorem: Entropy bound for prefix-free codes:

$$
\mathbf{H}(X) \leq \bar{L}_{\min }<\mathbf{H}(X)+1
$$

$\bar{L}_{\text {min }}=\mathbf{H}(X)$ iff each p_{i} is integer power of 2.

Proof that $\bar{L}_{\min }<\mathbf{H}(X)+1$:

Choose $l_{i}=\left\lceil-\log \left(p_{i}\right)\right\rceil$. Then

$$
\begin{gathered}
l_{i}<-\log \left(p_{i}\right)+1 \quad \text { so } \quad \bar{L}_{\min } \leq \bar{L}<\mathbf{H}(X)+1 \\
l_{i} \geq \log \left(p_{i}\right) \quad \text { so } \quad \sum_{i} 2^{-l_{i}} \leq \sum_{i} p_{i}=1
\end{gathered}
$$

MIT OpenCourseWare
http://ocw.mit.edu
6.450 Principles of Digital Communication I

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

