
6.450, Lecture 2, 9/14/09; REVIEW

Input
✲

Source

Encoder
✲

Channel

Encoder
❄

Channel

✛
Source

Decoder
✛

Channel

Decoder

Binary
Interface

✛
Output

Separation of source and channel coding.

1

REASONS FOR BINARY INTERFACE

• Standardization (Simplifies implementation)

• Layering (Simplifies conceptualization)

• Loses nothing in performance (Shannon says)

2

input
✲

discrete
✲ ✲sampler quantizer

waveform coder
❄

reliable
analog symbol binary
sequence sequence Channel

output tableanalog
✛

discrete
✛ ✛ ✛

waveform lookup
filter decoder

Layering of source coding

3

input
✲

discrete
✲ ✲sampler quantizer

waveform coder
❄

reliable
analog symbol binary
sequence sequence Channel

output tableanalog
✛

discrete
✛ ✛ ✛

waveform lookup
filter decoder

⇑
A waveform source is usually sampled or

expanded into a series, producing a sequence

of real or complex numbers.

4

input
✲

discrete
✲ ✲sampler quantizer

waveform coder
❄

reliable
analog symbol binary
sequence sequence Channel

output tableanalog
✛

discrete
✛ ✛ ✛

waveform lookup
filter decoder

⇑
The analog sequence is encoded by

quantization into sequence of symbols.

5

input
✲

discrete
✲ ✲sampler quantizer

waveform coder
❄

reliable
analog symbol binary
sequence sequence Channel

output tableanalog
✛

discrete
✛ ✛ ✛

waveform lookup
filter decoder

⇑
Both analog and discrete sources then require

binary encoding of sequence of symbols.

6

DISCRETE SOURCE CODING

OBJECTIVE: Map sequence of symbols into

binary sequence with unique decodability.

SIMPLEST APPROACH: Map each source sym

bol into an L-tuple of binary digits.

Choose L as smallest integer satisfying 2L ≥ M,

i.e.,

log2 M ≤ L < log2 M + 1; L = dlog2 Me

7

Example (for alphabet {red, blue, green,
yellow, purple, magenta}):

red 000→
blue 001→
green 010→
yellow 011→
purple 100→
magenta 101→

This can be easily decoded.

Example: the ASCII code maps let

ters, numbers, etc. into bytes.

These are called fixed length codes.

8

FIXED-TO-FIXED LENGTH SOURCE

CODES

Segment source symbols into n-tuples.

Map each n-tuple into binary L-tuple where

log2 M
n ≤ L < log2 M

n + 1; L = dn log2 Me

Let L = Ln be number of bits per source symbol

1
log2 M ≤ L < log2 M +

n

9

VARIABLE LENGTH SOURCE CODES

Motivation: Probable symbols should have shorter

codewords than improbable to reduce bpss.

A variable-length source code C encodes each

symbol x in source alphabet to a binary
X

codeword C(x) of length l(x).

For example, for X = {a, b, c}

C(a) = 0

C(b) = 10

C(c) = 11

10

Decoder must parse the received sequence.

Requires unique decodability: For every string

of source letters {x1, x2, . . . , xn}, the encoded

output {C(x1)C(x2), . . . , C(xn)} must be distinct,

i.e., must differ from {C(x01)C(x2
0), . . . , C(xm

0)} for

any other source string {x1
0 , . . . , x0m}.

If C(x1) · · · C(xn) = C(x1
0) · · · C(xm

0), decoder must

fail on one of these inputs.

We will show that prefix-free codes are uniquely

decodable.

11

Unique Decodability: For every string of source

letters {x1, x2, . . . , xn}, the encoded output

{C(x1)C(x2), . . . , C(xn)} must be distinct, i.e., must

differ from {C(x01)C(x2
0), . . . , C(xm

0)} for any other

source string {x1
0 , . . . , x0m}.

If C(x1) · · · C(xn) = C(x1
0) · · · C(x0m), decoder must

fail on one of these inputs.

Example: Consider a 0, b 01, c 10→ → →

Then ac 010 and ba 010,→ →

Not uniquely decodable.

12

Unique Decodability: For every string of source

letters {x1, x2, . . . , xn}, the encoded output

{C(x1)C(x2) · · · C(xn)} must be distinct, i.e., must

differ from {C(x01)C(x02) · · · C(xm
0)} for any other

source string {x1
0 , . . . , x0m}.

If C(x1) · · · C(xn) = C(x1
0) · · · C(x0m), decoder must

fail on one of these inputs.

Example: Consider a 0, b 01, c 11→ → →

Then accc 0111111=016; bccc 01111111=017 .→ →

This can be shown to be uniquely decodable.

13

PREFIX-FREE CODES

A code is prefix-free if no codeword is a prefix
of any other codeword. A prefix of a string
y1, . . . , yk is y1, . . . , yi for any i ≤ k.

A prefix-free code can be represented by a bi
nary tree which grows from left to right; leaves
represent codewords.

✟✟✟
1✟✟✟✟ b

a 0

✟✟✟✟1✟✟✟❍❍❍0❍
✟✟✟

1✟✟✟✟ c
b
→

11
❍❍❍❍❍0

❍
❍❍❍0 c

→
101

❍ ❍❍
❍❍ a

❍
❍❍

→

Every codeword is at a leaf, but not all leaves
are codewords. Empty leaves can be short
ened. A full code tree has no empty leaves.

14

✏✏✏✏✏✏ bb
✏✏✏✏✏✏PPPPPP

✟✟✟✟✟✟PPPPPP

bc
b ba

❍ ✏✏✏✏✏✏ cb
❍✓

✓ ❍
❍

✏✏✏✏✏✏PPPPPP cc1
✓

✓ ❍❍PPPPPP✓ c ca
✓

✓

✓

❅

❅ 0
✏✏✏✏✏✏ab

❅

❅

✟✟✟✟✟✟PPPPPP❅ a ac
❅PPPPPPaa

Prefix-free codes are uniquely decodable:

Construct a tree for a concatenation of code-

words.

To decode, start at the left, and parse when

ever a leaf in the tree is reached.

15

THE KRAFT INEQUALITY

The Kraft inequality is a test on the existence
of prefix-free codes with a given set of code-
word lengths {l(x), x ∈ X}.

Theorem (Kraft): Every prefix-free code for
an alphabet X with codeword lengths {l(x), x ∈
X} satisfies

X
2−l(x) ≤ 1 (1)

x∈X

Conversely, if (1), then a prefix-free code with
lengths {l(x)} exists.

Moreover, a prefix-free code is full iff (1) is
satisfied with equality.

16

We prove this by associating codewords with

base 2 expansions i.e., ‘decimals’ in base 2.

Represent binary codeword y1, y2, . . . , ym as

.y1y2 · · · ym = y1/2 + y2/4 + · · · + ym2−m

1.0
✻

Interval [1/2, 1)

1 −→ .1 ❄
✻

Interval [1/4, 1/2)
❄01 −→ .01

✻

Interval [0, 1/4)
❄00 −→ .00

17

Represent binary codeword y1, y2, . . . , ym as

.y1y2 · · · ym = y1/2 + y2/4 + · · · + ym2−m

1.0

1 −→ .1

01 −→ .01

00 −→ .00

✻

Interval [1/2, 1)

❄
✻

Interval [1/4, 1/2)

❄

✻

Interval [0, 1/4)
❄

C(aj) is a prefix of C(ai) if and only if the expan

sion of C(aj) contains the expansion of C(ai) in

its “approximation interval.”

18

1.0
✻

Interval [1/2, 1)

❄
✻

1 −→ .1
Interval [1/4, 1/2)
❄01 −→ .01

✻

Interval [0, 1/4)
❄00 −→ .00

C(aj) is a prefix of C(ai) if and only if the expan

sion of C(aj) contains the expansion of C(ai) in

its “approximation interval.”

Thus a code is a prefix code iff the base 2

approximation intervals are disjoint.

19

1.0

1 −→ .1

01 −→ .01

00 −→ .00

✻

Interval [1/2, 1)

❄
✻

Interval [1/4, 1/2)

❄

✻

Interval [0, 1/4)
❄

A code is a prefix code iff the base 2 approxi

mation intervals are disjoint.

But the sum of disjoint approximation intervals

is at most 1.

20

1.0

1 −→ .1

01 −→ .01

00 −→ .00

✻

Interval [1/2, 1)

❄
✻

Interval [1/4, 1/2)

❄

✻

Interval [0, 1/4)
❄

The sum of disjoint approximation intervals is

at most 1.

Code is full iff approximation intervals fill up

[0, 1)

21

DISCRETE MEMORYLESS SOURCES

•	 The source output is an unending sequence,
X1, X2, X3, . . . , of randomly selected letters
from a finite set X , called the source al
phabet.

•	 Each source output X1, X2, . . . is selected
from X using a common probability mea
sure.

•	 Each source output Xk is statistically inde
pendent of the other source outputs X1, . . . ,
Xk−1, Xk+1,

22

Probability Structure for Discrete Sources

English text: e, i, and o are far more probable

than q, x, and z.

Successive letters are dependent; (th and qu).

Some letter strings are words, others are not.

Long term grammatical constraints.

The discrete memoryless source is a toy model

that can be easily generalized after understand

ing it.

23

PREFIX-FREE CODES FOR DMS

Let l(x) be the length of the codeword for let

ter x ∈ X .

Then L(X) is a random variable (rv) where

L(X) = l(x) for X = x.

Thus L(X) = l(x) with probability pX(x).

E(L) = L =
X

pX(x)l(x)
x

Thus L is the number of encoder output bits

per source symbol.

24

OBJECTIVE: choose integers {l(x)} subject to

Kraft to minimize L.

Let X = {1, 2, . . . , M} with pmf p1, . . . , pM .

Denote the unknown lengths by l1, . . . , lM .

Lmin = min
l1,... ,lM :

P
2−li≤1

MX

=1i

pili

Forget about the lengths being integer for now.
Minimize Lagrangian:

P
i(pili + ∏2−li).

@
P

i(pili + ∏2−li)
= pi − ∏(ln 2)2−li = 0

@li

Choose ∏ so that the optimizing {li} satisfy
P

i 2
−li = 1. Then any other choice of {li} sat

isfying constraint will have a larger L̄.

25

@
P

i(pili + ∏2−li)
= pi − ∏(ln 2)2−li = 0

@li
If we choose ∏ = 1/ ln 2, then

pi = 2−li

li = − log pi

Lmin(non−int.) =
X

−pi log pi = H(X)
i

H(X) is called the entropy of the rv X. We
will see that it is the minimum number of bi
nary digits per symbol needed to represent the
source.

For now, it is a lower bound for prefix-free
codes.

26

Theorem: Entropy bounds

Let Lmin be the minimum expected codeword
length over all prefix-free codes for X. Then

H(X) ≤ Lmin < H(X) + 1

Lmin = H(X) iff each pi is integer power of 2.

Proof of H(X) ≤ L for prefix-free codes:

Let l1, . . . , lM be codeword lengths.

H(X) − L =
X

i
pi log

p

1

i
−

X

i
pili

=
X

pi log
2−li

,
i pi

27

°

°
°

°
°

°
°

°
°

°
°

°
°

°
°

u−1

u1

ln u

The inequality ln u ≤ u−1 or log u ≤ (log e)(u−1).

This inequality is strict except at u = 1.

H(X) − L =
X

i
pi log

2−li
≤

X

i
pi

"
2−li

− 1

log e

pi pi

=
X

i

h
2−li − pi

i
log e ≤ 0

Equality occurs iff pi = 2−li for each i.

28

Theorem: Entropy bound for prefix-free codes:

H(X) ≤ Lmin < H(X) + 1

Lmin = H(X) iff each pi is integer power of 2.

Proof that Lmin < H(X) + 1:

Choose li = d− log(pi)e. Then

li < − log(pi) + 1 so Lmin ≤ L < H(X) + 1

li ≥ log(pi) so
X

2−li ≤
X

pi = 1
i i

29

MIT OpenCourseWare
http://ocw.mit.edu

6.450 Principles of Digital Communication I

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

