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Separation of source and channel coding.
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REASONS FOR BINARY INTERFACE 

• Standardization (Simplifies implementation)


• Layering (Simplifies conceptualization) 

• Loses nothing in performance (Shannon says)
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Layering of source coding
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⇑
A waveform source is usually sampled or


expanded into a series, producing a sequence


of real or complex numbers.
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⇑
The analog sequence is encoded by


quantization into sequence of symbols.
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input 
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✲ ✲sampler quantizer


waveform coder 
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reliable 
analog symbol binary 
sequence sequence Channel 

output tableanalog 
✛ 

discrete
✛ ✛ ✛ 

waveform lookup
filter decoder 

⇑
Both analog and discrete sources then require


binary encoding of sequence of symbols.
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DISCRETE SOURCE CODING 

OBJECTIVE: Map sequence of symbols into 

binary sequence with unique decodability. 

SIMPLEST APPROACH: Map each source sym

bol into an L-tuple of binary digits. 

Choose L as smallest integer satisfying 2L ≥ M, 

i.e., 

log2 M ≤ L < log2 M + 1; L = dlog2 Me 
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Example (for alphabet {red, blue, green, 
yellow, purple, magenta}): 

red 000→
blue 001→ 
green 010→
yellow 011→
purple 100→
magenta 101→

This can be easily decoded. 

Example: the ASCII code maps let

ters, numbers, etc. into bytes. 

These are called fixed length codes. 
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FIXED-TO-FIXED LENGTH SOURCE


CODES


Segment source symbols into n-tuples. 

Map each n-tuple into binary L-tuple where 

log2 M
n ≤ L < log2 M

n + 1; L = dn log2 Me 

Let L = Ln be number of bits per source symbol 

1 
log2 M ≤ L < log2 M + 

n 
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VARIABLE LENGTH SOURCE CODES 

Motivation: Probable symbols should have shorter 

codewords than improbable to reduce bpss. 

A variable-length source code C encodes each


symbol x in source alphabet to a binary
X 

codeword C(x) of length l(x). 

For example, for X = {a, b, c} 

C(a) = 0

C(b) = 10

C(c) = 11
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Decoder must parse the received sequence. 

Requires unique decodability: For every string 

of source letters {x1, x2, . . . , xn}, the encoded 

output {C(x1)C(x2), . . . , C(xn)} must be distinct, 

i.e., must differ from {C(x01)C(x2
0 ), . . . , C(xm

0 )} for 

any other source string {x1
0 , . . . , x0m}. 

If C(x1) · · · C(xn) = C(x1
0 ) · · · C(xm

0 ), decoder must 

fail on one of these inputs. 

We will show that prefix-free codes are uniquely 

decodable. 
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Unique Decodability: For every string of source 

letters {x1, x2, . . . , xn}, the encoded output 

{C(x1)C(x2), . . . , C(xn)} must be distinct, i.e., must 

differ from {C(x01)C(x2
0 ), . . . , C(xm

0 )} for any other 

source string {x1
0 , . . . , x0m}. 

If C(x1) · · · C(xn) = C(x1
0 ) · · · C(x0m), decoder must 

fail on one of these inputs. 

Example: Consider a 0, b 01, c 10→ → → 

Then ac 010 and ba 010,→ → 

Not uniquely decodable. 
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Unique Decodability: For every string of source 

letters {x1, x2, . . . , xn}, the encoded output 

{C(x1)C(x2) · · · C(xn)} must be distinct, i.e., must 

differ from {C(x01)C(x02) · · · C(xm
0 )} for any other 

source string {x1
0 , . . . , x0m}. 

If C(x1) · · · C(xn) = C(x1
0 ) · · · C(x0m), decoder must 

fail on one of these inputs. 

Example: Consider a 0, b 01, c 11→ → → 

Then accc 0111111=016; bccc 01111111=017 .→ → 

This can be shown to be uniquely decodable. 
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PREFIX-FREE CODES


A code is prefix-free if no codeword is a prefix 
of any other codeword. A prefix of a string 
y1, . . . , yk is y1, . . . , yi for any i ≤ k. 

A prefix-free code can be represented by a bi
nary tree which grows from left to right; leaves 
represent codewords. 

✟✟✟
1✟✟✟✟ b

a 0 

✟✟✟✟1✟✟✟❍❍❍0❍
✟✟✟

1✟✟✟✟ c
b 
→ 

11 
❍❍❍❍❍0 

❍
❍❍❍0 c 

→ 
101 

❍ ❍❍
❍❍ a 

❍
❍❍ 

→ 

Every codeword is at a leaf, but not all leaves 
are codewords. Empty leaves can be short
ened. A full code tree has no empty leaves. 
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✏✏✏✏✏✏ bb 
✏✏✏✏✏✏PPPPPP 

✟✟✟✟✟✟PPPPPP 

bc 
b ba 

❍ ✏✏✏✏✏✏ cb 
❍✓

✓ ❍
❍

✏✏✏✏✏✏PPPPPP cc1
✓

✓ ❍❍PPPPPP✓ c ca 
✓ 

✓

✓

❅


❅ 0 
✏✏✏✏✏✏ab 

❅

❅


✟✟✟✟✟✟PPPPPP❅ a ac 
❅PPPPPPaa


Prefix-free codes are uniquely decodable: 

Construct a tree for a concatenation of code-

words. 

To decode, start at the left, and parse when

ever a leaf in the tree is reached. 
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THE KRAFT INEQUALITY


The Kraft inequality is a test on the existence 
of prefix-free codes with a given set of code-
word lengths {l(x), x ∈ X}. 

Theorem (Kraft): Every prefix-free code for 
an alphabet X with codeword lengths {l(x), x ∈ 
X} satisfies 

X 
2−l(x) ≤ 1 (1) 

x∈X 

Conversely, if (1), then a prefix-free code with 
lengths {l(x)} exists. 

Moreover, a prefix-free code is full iff (1) is 
satisfied with equality. 
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We prove this by associating codewords with 

base 2 expansions i.e., ‘decimals’ in base 2. 

Represent binary codeword y1, y2, . . . , ym as 

.y1y2 · · · ym = y1/2 + y2/4 + · · · + ym2−m 

1.0 
✻ 

Interval [1/2, 1) 

1 −→ .1 ❄ 
✻ 

Interval [1/4, 1/2)
❄01 −→ .01 

✻ 

Interval [0, 1/4)
❄00 −→ .00 
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Represent binary codeword y1, y2, . . . , ym as 

.y1y2 · · · ym = y1/2 + y2/4 + · · · + ym2−m 

1.0 

1 −→ .1


01 −→ .01


00 −→ .00


✻ 

Interval [1/2, 1) 

❄ 
✻ 

Interval [1/4, 1/2)

❄ 

✻ 

Interval [0, 1/4)
❄ 

C(aj) is a prefix of C(ai) if and only if the expan

sion of C(aj) contains the expansion of C(ai) in 

its “approximation interval.” 
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1.0 
✻ 

Interval [1/2, 1) 

❄ 
✻

1 −→ .1 
Interval [1/4, 1/2)
❄01 −→ .01 

✻ 

Interval [0, 1/4)
❄00 −→ .00 

C(aj) is a prefix of C(ai) if and only if the expan

sion of C(aj) contains the expansion of C(ai) in 

its “approximation interval.” 

Thus a code is a prefix code iff the base 2 

approximation intervals are disjoint. 
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1.0 

1 −→ .1


01 −→ .01


00 −→ .00


✻ 

Interval [1/2, 1) 

❄ 
✻ 

Interval [1/4, 1/2)

❄ 

✻ 

Interval [0, 1/4)
❄ 

A code is a prefix code iff the base 2 approxi

mation intervals are disjoint. 

But the sum of disjoint approximation intervals 

is at most 1. 
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1.0 

1 −→ .1


01 −→ .01


00 −→ .00


✻ 

Interval [1/2, 1) 

❄ 
✻ 

Interval [1/4, 1/2)

❄ 

✻ 

Interval [0, 1/4)
❄ 

The sum of disjoint approximation intervals is 

at most 1. 

Code is full iff approximation intervals fill up


[0, 1) 
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DISCRETE MEMORYLESS SOURCES


•	 The source output is an unending sequence, 
X1, X2, X3, . . . , of randomly selected letters 
from a finite set X , called the source al
phabet. 

•	 Each source output X1, X2, . . . is selected 
from X using a common probability mea
sure. 

•	 Each source output Xk is statistically inde
pendent of the other source outputs X1, . . . , 
Xk−1, Xk+1, . . . . 

22




Probability Structure for Discrete Sources


English text: e, i, and o are far more probable


than q, x, and z.


Successive letters are dependent; (th and qu).


Some letter strings are words, others are not.


Long term grammatical constraints.


The discrete memoryless source is a toy model 

that can be easily generalized after understand

ing it. 
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PREFIX-FREE CODES FOR DMS


Let l(x) be the length of the codeword for let

ter x ∈ X . 

Then L(X) is a random variable (rv) where 

L(X) = l(x) for X = x. 

Thus L(X) = l(x) with probability pX(x). 

E(L) = L = 
X 

pX(x)l(x) 
x 

Thus L is the number of encoder output bits 

per source symbol. 
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OBJECTIVE: choose integers {l(x)} subject to

Kraft to minimize L.


Let X = {1, 2, . . . , M} with pmf p1, . . . , pM .

Denote the unknown lengths by l1, . . . , lM .


Lmin = min 
l1,... ,lM :

P 
2−li≤1 


 




MX 

=1i

pili



 




Forget about the lengths being integer for now. 
Minimize Lagrangian: 

P
i(pili + ∏2−li). 

@ 
P

i(pili + ∏2−li)
= pi − ∏(ln 2)2−li = 0 

@li 

Choose ∏ so that the optimizing {li} satisfy
P

i 2
−li = 1. Then any other choice of {li} sat

isfying constraint will have a larger L̄. 
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@ 
P

i(pili + ∏2−li)
= pi − ∏(ln 2)2−li = 0 

@li 
If we choose ∏ = 1/ ln 2, then 

pi = 2−li 

li = − log pi 

Lmin(non−int.) = 
X 

−pi log pi = H(X) 
i 

H(X) is called the entropy of the rv X. We 
will see that it is the minimum number of bi
nary digits per symbol needed to represent the 
source. 

For now, it is a lower bound for prefix-free 
codes. 
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Theorem: Entropy bounds 

Let Lmin be the minimum expected codeword 
length over all prefix-free codes for X. Then 

H(X) ≤ Lmin < H(X) + 1 

Lmin = H(X) iff each pi is integer power of 2. 

Proof of H(X) ≤ L for prefix-free codes: 

Let l1, . . . , lM be codeword lengths. 

H(X) − L = 
X 

i 
pi log 

p

1 

i 
− 

X 

i 
pili 

= 
X 

pi log 
2−li

,
i pi 
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°


° 
° 

° 
° 

° 
° 

° 
° 

° 
° 

° 
° 

° 
° 

u−1 

u1 

ln u 

The inequality ln u ≤ u−1 or log u ≤ (log e)(u−1).


This inequality is strict except at u = 1.


H(X) − L = 
X 

i 
pi log 

2−li 
≤ 

X 

i 
pi 

" 
2−li 

− 1 

# 

log e

pi pi


= 
X 

i 

h
2−li − pi 

i 
log e ≤ 0


Equality occurs iff pi = 2−li for each i.
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Theorem: Entropy bound for prefix-free codes: 

H(X) ≤ Lmin < H(X) + 1 

Lmin = H(X) iff each pi is integer power of 2. 

Proof that Lmin < H(X) + 1: 

Choose li = d− log(pi)e. Then 

li < − log(pi) + 1 so Lmin ≤ L < H(X) + 1 

li ≥ log(pi) so 
X 

2−li ≤ 
X 

pi = 1 
i i 
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