
DISCRETE MEMORYLESS SOURCE

(DMS) Review


•	 The source output is an unending sequence, 
X1, X2, X3, . . . , of random letters, each from 
a finite alphabet X . 

•	 Each source output X1, X2, . . . is selected 
from X using a common probability mea
sure with pmf pX(x). 

•	 Each source output Xk is statistically inde
pendent of all other source outputs X1, . . . , 
Xk−1, Xk+1, . . . . 

•	 Without loss of generality, let X be {1, . . . , M}
and denote pX(i), 1 ≤ i ≤ M as pi. 
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OBJECTIVE: Minimize expected length L of 
prefix codes for a given DMS. 

Let l1, . . . , lM be integer codeword lengths. 

Lmin = min 
l1,... ,lM :

P 
2−li≤1 


 




MX 

=1i

pili



 




Without the integer constraint, li = − log pi 
minimizes L̄min, so 

li = − log pi (desired length) 

. 
Lmin(non−int) = 

X 
−pi log pi = H(X) 

i 

H(X) is the entropy of X. It is the expected 
value of − log p(X) and the desired expected 
length of the binary codeword. 
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Theorem: Let Lmin be the minimum expected 

codeword length over all prefix-free codes for 

X. Then 

H(X) ≤ Lmin < H(X) + 1 

Lmin = H(X) iff each pi is integer power of 2. 

✟ 

✟✟✟
1✟✟✟ b 

a 0


✟✟✟✟1✟✟✟❍❍❍0❍
→ 

11
b 
❍

❍❍❍0 
❍

❍ c c 
→ 

101 
❍❍❍❍ a 

→ 

Note that if p(a) = 1/2, p(b) = 1/4, p(c) = 1/4, 
then each binary digit is IID, 1/2. This is gen

eral. 
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Huffman Coding Algorithm


Above theorem suggested that good codes have 
li ≈ log(1/pi). 

Huffman took a different approach and looked 
at the tree for a prefix-free code. 

1 
✟✟✟✟✟✟✟ C(2) 

p1 = 0.6 
❍

✟✟✟
1✟✟✟✟❍

❍0❍ p2 = 0.3 
❍❍❍❍❍0 

❍ C(3) p3 = 0.1 
❍❍❍❍ C(1) 

Lemma: Optimal prefix-free codes have the 
property that if pi > pj then li ≤ lj. This means 
that pi > pj and li > lj can’t be optimal. 

Lemma: Optimal prefix-free codes are full. 
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The sibling of a codeword is the string formed


by changing the last bit of the codeword.


Lemma: For optimality, the sibling of each


maximal length codeword is another codeword.


Assume that p1 ≥ p2 ≥ · · · ≥ pM .


Lemma: There is an optimal prefix-free code


in which C(M − 1) and C(M) are maximal length


siblings.


Essentially, the codewords for M −1 and M can


be interchanged with max length codewords.


The Huffman algorithm first combines C(M −1)


and C(M) and looks at the reduced tree with


M − 1 nodes.
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After combining two least likely codewords as 

sibliings, we get a “reduced set” of probabili

ties. 

symbol pi 
1 0.4 
2 0.2 
3 0.15 
4 0.151 0.25 

✥✥0✥✥✥✥✥ 

5 0.1 

Finding the optimal code for the reduced set


results in an optimal code for original set. Why?
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Finding the optimal code for the reduced set

results in an optimal code for original set. Why?


For any code for the reduced set X 0, let ex
pected length be L0. 

The expected length of the corresponding code 
for X has L = L0 + pM−1 + pM . 

symbol pi 
1 0.4 
2 0.2 
3 0.15 
4 
5 

0.15 
0.1 ✥✥✥✥✥✥✥ 

 0.25 
1 

0 
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Now we can tie together (siblingify?) the least


two probable nodes in the reduced set.


symbol pi 
1 0.4	 1 0.4 
2	 0.2 2 0.2 1 0.353 0.15	 3 0.15✥✥✥0✥✥✥✥ 

4 0.151 0.25 4 0.151 0.25 
✥✥0✥✥✥✥✥	

✥✥✥0✥✥✥✥ 

5 0.1	 5 0.1 
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1

2

3

4

5

Surely the rest is obvious. 

0.4 ❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤ 

0.2 1 (0.35) 1PPPPPPPPPPPPPP✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘ 

✥✥✥✥✥0✥✥✥✥✥✥ 

0.15 1 (0.6) 0 

0.15 1 (0.25) 0✏✏✏✏✏✏✏✏✏✏✏✏✏✏

✥✥✥✥✥0✥✥✥✥✥✥ 

0.1 
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DISCRETE SOURCE CODING: REVIEW


The Kraft inequality, 
P

i 2
−li ≤ 1, is a necessary 

and sufficient condition on prefix-free code-

word lengths. 

Given a pmf, p1, . . . , pM on a set of symbols, 

the Huffman algorithm constructs a prefix-free 

code of minimum expected length, Lmin = 
P

i pili. 

A discrete memoryless source (DMS) is a se

quence of iid discrete chance variables X1, X2, . . . . 

The entropy of a DMS is H(X) = 
P

i −pi log(pi). 

Theorem: H(X) ≤ Lmin < H(X) + 1. 
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ENTROPY OF X, |X | = M, Pr(X=i) = pi 

H(X) = 
X 
−pi log pi = E[− log pX(X)] 

i 

− log pX(X) is a rv, called the log pmf. 

H(X) ≥ 0; Equality if X deterministic. 

H(X) ≤ log M; Equality if X equiprobable. 

For independent rv’s X, Y , XY is also a chance 

variable taking on the sample value xy with 

probability pXY (xy) = pX(x)pY (y). 

H(XY ) = E[− log p(XY )] = E[− log p(X)p(Y )] 

= E[− log p(X) − log p(Y )] = H(X) + H(Y ) 
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For a discrete memoryless source, a block of 

n random symbols, X1, . . . , Xn, can be viewed 

as a single random symbol Xn taking on the 

sample value xn = x1x2 . . . xn with probability 

n

pXn(xn) = 
Y 

pX(xi) 
i=1 

The random symbol Xn has the entropy 

n

H(Xn) = E[− log p(Xn)] = E[− log 
Y 

pX(Xi)] 
i=1 

n
 

= E 
X 

− log pX(Xi) = nH(X) 
i=1 

12




Fixed-to-variable prefix-free codes 

Segment input into n-blocks Xn = X1X2 . . . Xn. 

Form min-length prefix-free code for Xn . 

This is called an n-to-variable-length code 

H(Xn) = nH(X)


H(Xn) ≤ E[L(Xn)]min < H(Xn) + 1


E[L(Xn)]min
Lmin,n = bpss 
n


H(X) ≤ Lmin,n < H(X) + 1/n


L̄min,n → H(X) 
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WEAK LAW OF LARGE NUMBERS

(WLLN)


Let Y1, Y2, . . . be sequence of rv’s with mean Y 
and variance σY 

2 . 

The sum A = Y1 + + Yn has mean nY and· · · 
variance nσY 

2 

The sample average of Y1, . . . , Yn is 

A Y1 + + Yn
Sn = = 

· · · 
Y n n


It has mean and variance 

σn 
E[Sy

n] = Y ; VAR[SY
n ] = Y 

n 
Note: limn→1 VAR[A] = 1 limn→1 VAR[Sn ]=0.Y 
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1 

y 

FSn 
Y 
(y) 
FS2n 

Y 
(y)✛ 

❍❍ 
✻ 

❄ 

✻ 
✲ 

❄ 

✲ 

Pr{|Sn 
Y −Y | < ≤} 

Pr{|S2n 
Y −Y | < ≤} 

Y −≤ Y Y +≤ 

The distribution of Sn clusters around Y , clus-Y 
tering more closely as n → 1. 

Chebyshev: for ≤ > 0, Pr{|Sn 
Y − Y | ≥ ≤} ≤ 

σ2 
Y 

n≤2 

For any ≤, δ > 0, large enough n, 

Pr{|Sn 
Y − Y | ≥ ≤} ≤ δ 
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ASYMPTOTIC EQUIPARTITION 

PROPERTY (AEP) 

Let X1, X2, . . . , be output from DMS. 

Define log pmf as w(x) = − log pX(x). 

w(x) maps source symbols into real numbers. 

For each j, W (Xj) is a rv; takes value w(x) for 

Xj = x. Note that 

E[W (Xj)] = 
X 

pX(x)[− log pX(x)] = H(X) 
x 

W (X1), W (X2), . . . sequence of iid rv’s. 
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For X1 = x1, X2 = x2, the outcome for W (X1)+ 

W (X2) is 

w(x1) + w(x2)	 = − log pX(x1) − log pX(x2) 

= − log{pX1
(x1)pX2

(x2)} 

= − log{pX1X2
(x1x2)} = w(x1x2) 

where w(x1x2)	 is -log pmf of event X1X2 = x1x2 

W (X1X2) = W (X1) + W (X2) 

X1X2 is a random symbol in its own right (takes 

values x1x2). W (X1X2) is -log pmf of random 

symbol X1X2. 

Probabilities multiply, log pmf’s add. 
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For Xn = xn; xn = (x1, . . . , xn), the outcome for 

W (X1) + + W (Xn) is· · · 
Xn

w(xj) = − 
Xn 

log pX(xj) = − log pXn(xn)
j=1 j=1 

Sample average of log pmf’s is 

Sn W (X1) + W (Xn) − log pXn(Xn) 
= 

· · · 
= W n n 

WLLN applies and is 

Pr 
µ ØØØSn 

ØØØ ≥ ≤ 
∂ 

≤ 
n

σ

≤

2

2W − E[W (X)] W 

σ2 
WPr 

√ ØØØØØ 
− log pXn(Xn) − H(X) 

ØØØØØ ≥ ≤ 

! 

n 
≤ 

n≤2
. 
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Define typical set as


− log pXn(xn)
Tn = 

(

xn : 

ØØØØØ − H(X) 

ØØØØØ < ≤

)

≤ n


w 

FW n 
Y 
(w) 
FW 2n 

Y 
(w)✛ 

❍❍ 
✻ 

❄ 

✻ 
✲ 

❄ 

✲ 

Pr{T n 
≤ } 

Pr{T 2n 
≤ } 

1 

H−≤ H H+≤ 

As n →1, typical set approaches probability 1: 

σ2 
WPr(Xn ∈ T≤

n) ≥ 1 − 
n≤2 
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We can also express T≤
n as


( )

Tn = xn : n(H(X)−≤) < − log p(xn) < n(H(X)+≤)≤ 

( )

T≤
n = xn : 2−n(H(X)+≤) < pXn(xn) < 2−n(H(X)−≤) . 

Typical elements are approximately equiprob

able in the strange sense above. 

The complementary, atypical set of strings, 

satisfy 

σ2 
Pr[(Tn W 

≤ )
c] ≤ 

n≤2 

For any ≤, δ > 0, large enough n, Pr[(T≤
n)c] < δ. 
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For all Xn ∈ Tn 
≤ , pXn(Xn) > 2−n[H(X)+≤].


1 ≥ 
X 

pXn(Xn) > |Tn 
≤ | 2−n[H(X)+≤] 

Xn∈Tn 
≤ 

|T≤
n| < 2n[H(X)+≤] 

1 − δ ≤ 
X 

pXn(Xn) < |Tn 
≤ |2−n[H(X)−≤] 

Xn∈T≤
n 

|T≤
n| > (1 − δ)2n[H(X)−≤] 

Summary: Pr[(T≤
n)c] ≈ 0, |T≤

n| ≈ 2nH(X), 

pXn(Xn) ≈ 2−nH(X) for Xn ∈ Tn 
≤ . 
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EXAMPLE 

Consider binary DMS with Pr[X=1] = p < 1/2. 

H(X) = −p log p − (1−p) log(1−p) 

The typical set T≤
n is the set of strings with 

about pn ones and (1−p)n zeros. 

The probability of a typical string is about 
ppn(1−p)(1−p)n = 2−nH(X). 

The number of n-strings with pn ones is (pn)!(
n
n
! 
−pn)! 

Note that there are 2n binary strings. Most of 
them are collectively very improbable. 

The most probable strings have almost all ze
ros, but there aren’t enough of them to mat
ter. 

22




Fixed-to-fixed-length source codes


For any ≤, δ > 0, and any large enough n, assign 

fixed length code word to each Xn ∈ T≤. 

Since |T≤| < 2n[H(X)+≤], L ≤ H(X)+≤+1/n. 

Pr{failure} ≤ δ. 

Conversely, take L ≤ H(X) − 2≤, and n large. 

Since |T≤
n| > (1 − δ)2n[H(X)−≤], most of typical 

set can not be assigned codewords. 

Pr{failure} > 1 − δ − 2−≤≤n 1→ 
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Kraft inequality for unique decodability


Suppose {li} are lengths of a uniquely decod

able code and 
P

i 2
−li = b. We show that b > 1 

leads to contradiction. Choose DMS with pi = 

(1/b)2−li, i.e., li = − log(bpi). 

L = 
X 

pili = H(X) − log b 
i 

Consider string of n source letters. Concatena

tion of code words has length less than n[H(X)− 

b/2] with high probability. Thus fixed length 

code of this length has low failure probability. 

Contradiction. 
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