ENTROPY OF $X,|\mathcal{X}|=M, \operatorname{Pr}(X=j)=p_{j}$

$$
\mathbf{H}(X)=\sum_{j}-p_{j} \log p_{j}=\mathbf{E}\left[-\log p_{X}(X)\right]
$$

$-\log p_{X}(X)$ is a rv, called the $\log \mathbf{p m f}$.
$\mathbf{H}(X) \geq 0$; Equality if X deterministic.
$\mathbf{H}(X) \leq \log M$; Equality if X equiprobable.
If X and Y are independent random symbols, then the random symbol $X Y$ takes on sample value $x y$ with probability $p_{X Y}(x y)=p_{X}(x) p_{Y}(y)$.

$$
\begin{aligned}
\mathbf{H}(X Y) & =\mathbf{E}\left[-\log p_{X Y}(X Y)\right]=\mathbf{E}\left[-\log p_{X}(X) p_{Y}(Y)\right] \\
& =\mathbf{E}\left[-\log p_{X}(X)-\log p_{Y}(Y)\right]=\mathbf{H}(X)+\mathbf{H}(Y)
\end{aligned}
$$

For a discrete memoryless source, a block of n random symbols, X_{1}, \ldots, X_{n}, can be viewed as a single random symbol X^{n} taking on the sample value $\mathrm{x}^{n}=x_{1} x_{2} \cdots x_{n}$ with probability

$$
p_{\mathrm{X}^{n}}\left(\mathrm{x}^{n}\right)=\prod_{j=1}^{n} p_{X}\left(x_{j}\right)
$$

The random symbol X^{n} has the entropy

$$
\begin{aligned}
\mathbf{H}\left(\mathbf{X}^{n}\right) & =\mathbf{E}\left[-\log p_{\mathrm{X}^{n}}\left(\mathbf{X}^{n}\right)\right]=\mathbf{E}\left[-\log \prod_{j=1}^{n} p_{X}\left(X_{j}\right)\right] \\
& =\mathbf{E}\left[\sum_{j=1}^{n}-\log p_{X}\left(X_{j}\right)\right]=n \mathbf{H}(X)
\end{aligned}
$$

Fixed-to-variable prefix-free codes
Segment input into n-blocks $\mathbf{X}^{n}=X_{1} X_{2} \cdots X_{n}$.
Form min-length prefix-free code for X^{n}.
This is called an n-to-variable-length code

$$
\mathbf{H}\left(\mathbf{X}^{n}\right)=n \mathbf{H}(X)
$$

$$
\begin{gathered}
\mathbf{H}\left(\mathrm{X}^{n}\right) \leq \mathbf{E}\left[L\left(\mathrm{X}^{n}\right)\right]_{\min }<\mathbf{H}\left(\mathrm{X}^{n}\right)+1 \\
\bar{L}_{\min , n}=\frac{\mathbf{E}\left[L\left(X^{n}\right)\right]_{\min }}{n} \quad \mathrm{bpss} \\
\mathbf{H}(X) \leq \bar{L}_{\min , n}<\mathbf{H}(X)+1 / n
\end{gathered}
$$

WEAK LAW OF LARGE NUMBERS (WLLN)

Let Y_{1}, Y_{2}, \ldots be sequence of rv's with mean \bar{Y} and variance σ_{Y}^{2}.

The sum $S=Y_{1}+\cdots+Y_{n}$ has mean $n \bar{Y}$ and variance $n \sigma_{Y}^{2}$

The sample average of Y_{1}, \ldots, Y_{n} is

$$
A_{Y}^{n}=\frac{S}{n}=\frac{Y_{1}+\cdots+Y_{n}}{n}
$$

It has mean and variance

$$
\mathrm{E}\left[A_{y}^{n}\right]=\bar{Y} ; \quad \operatorname{VAR}\left[A_{Y}^{n}\right]=\frac{\sigma_{Y}^{2}}{n}
$$

Note: $\lim _{n \rightarrow \infty} \operatorname{VAR}[S]=\infty \quad \lim _{n \rightarrow \infty} \operatorname{VAR}\left[A_{Y}^{n}\right]=0$.

The distribution of A_{Y}^{n} clusters around \bar{Y}, clustering more closely as $n \rightarrow \infty$.

Chebyshev: for $\varepsilon>0, \operatorname{Pr}\left\{\left|A_{Y}^{n}-\bar{Y}\right| \geq \varepsilon\right\} \leq \frac{\sigma_{Y}^{2}}{n \varepsilon^{2}}$
For any $\varepsilon, \delta>0$, large enough n,

$$
\operatorname{Pr}\left\{\left|A_{Y}^{n}-\bar{Y}\right| \geq \varepsilon\right\} \leq \delta
$$

ASYMPTOTIC EQUIPARTITION PROPERTY (AEP)

Lete X_{1}, X_{2}, \ldots, be output from DMS.
Define log pmf as $w(x)=-\log p_{X}(x)$.
$w(x)$ maps source symbols into real numbers.
For each $j, W\left(X_{j}\right)$ is a rv; takes value $w(x)$ for $X_{j}=x$. Note that

$$
\mathrm{E}\left[W\left(X_{j}\right)\right]=\sum_{x} p_{X}(x)\left[-\log p_{X}(x)\right]=H(X)
$$

$W\left(X_{1}\right), W\left(X_{2}\right), \ldots$ sequence of iid rv's.

For $X_{1}=x_{1}, X_{2}=x_{2}$, the outcome for $W\left(X_{1}\right)+$ $W\left(X_{2}\right)$ is

$$
\begin{aligned}
w\left(x_{1}\right)+w\left(x_{2}\right) & =-\log p_{X}\left(x_{1}\right)-\log p_{X}\left(x_{2}\right) \\
& =-\log \left\{p_{X}\left(x_{1}\right) p_{X}\left(x_{2}\right)\right\} \\
& =-\log \left\{p_{X_{1} X_{2}}\left(x_{1} x_{2}\right)\right\}=w\left(x_{1} x_{2}\right)
\end{aligned}
$$

where $w\left(x_{1} x_{2}\right)$ is -log pmf of event $X_{1} X_{2}=x_{1} x_{2}$

$$
W\left(X_{1} X_{2}\right)=W\left(X_{1}\right)+W\left(X_{2}\right)
$$

$X_{1} X_{2}$ is a random symbol in its own right (takes values $\left.x_{1} x_{2}\right)$. $W\left(X_{1} X_{2}\right)$ is -log pmf of $X_{1} X_{2}$

Probabilities multiply, log pmf's add.

For $\mathbf{X}^{n}=\mathbf{x}^{n} ; \mathbf{x}^{n}=\left(x_{1}, \ldots, x_{n}\right)$, the outcome for $W\left(X_{1}\right)+\cdots+W\left(X_{n}\right)$ is

$$
\sum_{j=1}^{n} w\left(x_{j}\right)=-\sum_{j=1}^{n} \log p_{X}\left(x_{j}\right)=-\log p_{\mathbf{X}^{n}}\left(\mathrm{x}^{n}\right)
$$

Sample average of \log pmf's is

$$
S_{W}^{n}=\frac{W\left(X_{1}\right)+\cdots W\left(X_{n}\right)}{n}=\frac{-\log p_{\mathbf{X}^{n}}\left(\mathbf{X}^{n}\right)}{n}
$$

WLLN applies and is

$$
\begin{gathered}
\operatorname{Pr}\left(\left|A_{W}^{n}-\mathbf{E}[W(X)]\right| \geq \varepsilon\right) \leq \frac{\sigma_{W}^{2}}{n \varepsilon^{2}} \\
\operatorname{Pr}\left(\left|\frac{-\log p_{\mathrm{X}^{n}}\left(\mathbf{X}^{n}\right)}{n}-H(X)\right| \geq \varepsilon\right) \leq \frac{\sigma_{W}^{2}}{n \varepsilon^{2}} .
\end{gathered}
$$

Define typical set as

$$
T_{\varepsilon}^{n}=\left\{\mathbf{x}^{n}:\left|\frac{-\log p_{\mathbf{X}^{n}}\left(\mathbf{x}^{n}\right)}{n}-H(X)\right|<\varepsilon\right\}
$$

As $n \rightarrow \infty$, typical set approaches probability 1:

$$
\operatorname{Pr}\left(\mathbf{X}^{n} \in T_{\varepsilon}^{n}\right) \geq 1-\frac{\sigma_{W}^{2}}{n \varepsilon^{2}}
$$

We can also express T_{ε}^{n} as

$$
\begin{aligned}
& T_{\varepsilon}^{n}=\left\{\mathbf{x}^{n}: n(H(X)-\varepsilon)<-\log p_{\mathbf{X}^{n}}\left(\mathrm{x}^{n}\right)<n(H(X)+\varepsilon)\right\} \\
& T_{\varepsilon}^{n}=\left\{\mathrm{x}^{n}: 2^{-n(H(X)+\varepsilon)}<p_{\mathbf{X}^{n}}\left(\mathrm{x}^{n}\right)<2^{-n(H(X)-\varepsilon)}\right\} .
\end{aligned}
$$

Typical elements are approximately equiprobable in the strange sense above.

The complementary, atypical set of strings, satisfy

$$
\operatorname{Pr}\left[\left(T_{\varepsilon}^{n}\right)^{c}\right] \leq \frac{\sigma_{W}^{2}}{n \varepsilon^{2}}
$$

For any $\varepsilon, \delta>0$, large enough $n, \operatorname{Pr}\left[\left(T_{\varepsilon}^{n}\right)^{c}\right]<\delta$.

For all $\mathrm{x}^{n} \in T_{\varepsilon}^{n}, p_{\mathrm{X}^{n}}\left(\mathrm{x}^{n}\right)>2^{-n[H(X)+\varepsilon]}$.

$$
\begin{gathered}
1 \geq \sum_{\mathrm{x}^{n} \in T_{\varepsilon}^{n}} p_{\mathbf{X}^{n}}\left(\mathrm{x}^{n}\right)>\left|T_{\varepsilon}^{n}\right| 2^{-n[H(X)+\varepsilon]} \\
\left|T_{\varepsilon}^{n}\right|<2^{n[H(X)+\varepsilon]} \\
1-\delta \leq \sum_{\mathrm{x}^{n} \in T_{\varepsilon}^{n}} p_{\mathbf{X}^{n}}\left(\mathrm{x}^{n}\right)<\left|T_{\varepsilon}^{n}\right| 2^{-n[H(X)-\varepsilon]} \\
\left|T_{\varepsilon}^{n}\right|>(1-\delta) 2^{n[H(X)-\varepsilon]}
\end{gathered}
$$

Summary: $\operatorname{Pr}\left[\left(T_{\varepsilon}^{n}\right)^{c}\right] \approx 0, \quad\left|T_{\varepsilon}^{n}\right| \approx 2^{n \mathbf{H}(X)}$,

$$
p_{\mathrm{X}^{n}}\left(\mathrm{x}^{n}\right) \approx 2^{-n \mathbf{H}(X)} \quad \text { for } \mathrm{x}^{n} \in T_{\varepsilon}^{n} .
$$

EXAMPLE

Consider binary DMS with $\operatorname{Pr}[X=1]=p_{1}<1 / 2$.

$$
\mathbf{H}(X)=-p_{1} \log p_{1}-p_{0} \log \left(p_{0}\right)
$$

Consider a string x^{n} with n_{1} ones and n_{0} zeros.

$$
\begin{gathered}
p_{\mathrm{X}^{n}}\left(\mathrm{x}^{n}\right)=p_{1}^{n_{1}} p_{0}^{n_{0}} \\
\frac{-\log p_{\mathrm{X}^{n}}\left(\mathrm{x}^{n}\right)}{n}=-\frac{n_{1}}{n} \log p_{1}-\frac{n_{0}}{n} \log p_{0}
\end{gathered}
$$

The typical set T_{ε}^{n} is the set of strings for which

$$
\mathbf{H}(X) \approx \frac{-\log p_{\mathrm{X}^{n}}\left(\mathrm{x}^{n}\right)}{n}=-\frac{n_{1}}{n} \log p_{1}-\frac{n_{0}}{n} \log p_{0}
$$

In the typical set, $n_{1} \approx p_{1} n$. For this binary case, a string is typical if it has about the right relative frequencies.

$$
\mathbf{H}(X) \approx \frac{-\log p_{\mathbf{X}^{n}}\left(\mathrm{x}^{n}\right)}{n}=-\frac{n_{1}}{n} \log p_{1}-\frac{n_{0}}{n} \log p_{0}
$$

The probability of a typical n-tuple is about

$$
p_{1}^{p_{1} n} p_{0}^{p_{0} n}=2^{-n \mathbf{H}(X)} .
$$

The number of n-tuples with $p_{1} n$ ones is

$$
\frac{n!}{\left(p_{1} n\right)!\left(p_{0} n\right)!} \approx 2^{n \mathbf{H}(X)}
$$

Note that there are 2^{n} binary strings. Most of them are collectively very improbable.

The most probable strings have almost all zeros, but there aren't enough of them to matter.

Fixed-to-fixed-length source codes
For any $\varepsilon, \delta>0$, and any large enough n, assign fixed length codeword to each $\mathrm{x}^{n} \in T_{\varepsilon}^{n}$.

Since $\left|T_{\varepsilon}^{n}\right|<2^{n[H(X)+\varepsilon]}, \quad \bar{L} \leq H(X)+\varepsilon+\frac{1}{n}$.

$$
\operatorname{Pr}\{\text { failure }\} \leq \delta
$$

Conversely, take $\bar{L} \leq H(X)-2 \varepsilon$, and n large.
Probability of failure will then be almost 1 .

For any $\varepsilon>0$, the probability of failure will be almost 1 if $\bar{L} \leq H(X)-2 \varepsilon$ and n is large enough:

We can provide codewords for at most $2^{n \mathbf{H}(X)-2 \varepsilon n}$ source n-tuples. Typical n-tuples have at most probability $2^{-n \mathbf{H}(X)+\varepsilon n}$.

The aggregate probability of typical n-tuples assigned codewords is at most $2^{-\varepsilon n}$.

The aggregate probability of typical n-tuples not assigned codewords is at least $1-\delta-2^{-n \varepsilon}$.

$$
\operatorname{Pr}\{\text { failure }\}>1-\delta-2^{-\varepsilon n} \rightarrow 1
$$

General model: Visualize any kind of mapping from the sequence of source symbols X^{∞} into a binary sequence Y^{∞}.

Visualize a decoder that observes encoded bits, one by one. For each n, let D_{n} be the number of observed bits required to decode X^{n} (decisions are final).

The rate rv, as a function of n, is D_{n} / n.
In order for the rate in bpss to be less than $\mathbf{H}(X)$ in any meaningful sense, we require that D_{n} / n be smaller than $\mathbf{H}(X)$ with high probability as $n \rightarrow \infty$.

Theorem: For a DMS and any coding/decoding technique, let $\varepsilon, \delta>0$ be arbitrary. Then for large enough n,

$$
\operatorname{Pr}\left\{D_{n} \leq n[\mathbf{H}(X)-2 \varepsilon]\right\}<\delta+2^{-\varepsilon n}
$$

Proof: For given n, let $m=\lfloor n[\mathbf{H}(X)-2 \varepsilon]\rfloor$. Suppose that x^{n} is decoded upon observation of y^{j} for some $j \leq m$. Only x^{n} can be decoded from y^{m}. There are only 2^{m} source n-tuples (and thus at most 2^{m} typical n-tuples) that can be decoded by time m. Previous result applies.

Questions about relevance of AEP and fixed-to-fixed length source codes:

1) Are there important real DMS sources? No, but DMS model provides memory framework.
2) Are fixed-to-fixed codes at very long length practical? No, but view length as product lifetime to interpret bpss.
3) Do fixed-to-fixed codes with rare failures solve queueing issues? No, queueing issues arise only with real-time sources, and discrete sources are rarely real time.

MARKOV SOURCES

A finite state Markov chain is a sequence S_{0}, S_{1}, \ldots of discrete cv's from a finite alphabet \mathcal{S} where $q_{0}(s)$ is a pmf on S_{0} and for $n \geq 1$,

$$
\begin{aligned}
Q\left(s \mid s^{\prime}\right) & =\operatorname{Pr}\left(S_{n}=s \mid S_{n-1}=s^{\prime}\right) \\
& =\operatorname{Pr}\left(S_{n}=s \mid S_{n-1}=s^{\prime}, S_{n-2}=s_{n-2} \ldots, S_{0}=s_{0}\right)
\end{aligned}
$$

for all choices of $s_{n-2} \ldots, s_{0}$, We use the states to represent the memory in a discrete source with memory.

Example: Binary source $X_{1}, X_{2}, \ldots ; S_{n}=\left(X_{n-1} X_{n}\right)$

Each transition from a state has a single and distinct source letter.

Letter specifies new state, new state specifies letter.

Transitions in graph imply positive probability.
A state s is accessible from state s^{\prime} if graph has a path from $s^{\prime} \rightarrow s$.

The period of s is gcd of path lengths from s back to s.

A finite state Markov chain is ergodic if all states are aperiodic and accessible from all other states.

A Markov source X_{1}, X_{2}, \ldots is the sequence of labeled transitions on an ergodic Markov chain.

Ergodic Markov chains have steady state probabilities given by

$$
\begin{align*}
q(s) & =\sum_{s^{\prime} \in \mathcal{S}} q\left(s^{\prime}\right) Q\left(s \mid s^{\prime}\right) ; \quad s \in \mathcal{S} \tag{1}\\
\sum_{s \in \mathcal{S}} q(s) & =1
\end{align*}
$$

Steady-state probabilities are approached asymptotically from any starting state, i.e., for all $s, s^{\prime} \in \mathcal{S}$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(S_{n}=s \mid S_{0}=s^{\prime}\right)=q(s) \tag{2}
\end{equation*}
$$

Coding for Markov sources
Simplest approach: use separate prefix-free code for each prior state.

If $S_{n-1}=s$, then encode X_{n} with the prefix-free code for s. The codeword lengths $l(x, s)$ are chosen for the pmf $p(x \mid s)$.

$$
\sum_{x} 2^{-l(x, s)} \leq 1 \quad \text { for each } s
$$

It can be chosen by Huffman algorithm and satisfies

$$
\mathbf{H}[X \mid s] \leq \bar{L}_{\min }(s)<\mathbf{H}[X \mid s]+1
$$

where

$$
\mathbf{H}[X \mid s]=\sum_{x \in \mathcal{X}}-P(x \mid s) \log P(x \mid s)
$$

If the pmf on S_{0} is the steady state pmf, $\{q(s)\}$, then the chain remains in steady state.

$$
\begin{equation*}
\mathbf{H}[X \mid S] \leq \bar{L}_{\min }<\mathbf{H}[X \mid S]+1, \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
\bar{L}_{\text {min }} & =\sum_{s \in \mathcal{S}} q(s) \bar{L}_{\text {min }}(s) \quad \text { and } \\
\mathbf{H}[X \mid S] & =\sum_{s \in \mathcal{S}} q(s) \mathbf{H}[X \mid s]
\end{aligned}
$$

The encoder transmits s_{0} followed by codeword for x_{1} using code for s_{0}.

This specifies s_{1} and x_{2} is encoded with code for s_{1}, etc.

This is prefix free and can be decoded instantaneously.

Conditional Entropy

$\mathbf{H}[X \mid S]$ for Markov is like $\mathbf{H}[X]$ for DMS.

$$
\mathbf{H}[X \mid S]=\sum_{s \in \mathcal{S}} \sum_{x \in \mathcal{X}} q(s) P(x \mid s) \log \frac{1}{P(x \mid s)}
$$

Note that

$$
\begin{aligned}
\mathbf{H}[X S] & =\sum_{s, x} q(s) P(x \mid s) \log \frac{1}{q(s) P(x \mid s)} \\
& =\mathbf{H}[S]+\mathbf{H}[X \mid S]
\end{aligned}
$$

Recall that

$$
\mathbf{H}[X S] \leq \mathbf{H}[S]+\mathbf{H}[X]
$$

Thus,

$$
\mathbf{H}[X \mid S] \leq \mathbf{H}[X]
$$

Suppose we use n-to-variable-length codes for each state.

$$
\begin{aligned}
\mathbf{H}\left[S_{1}, S_{2}, \ldots S_{n} \mid S_{0}\right] & =n \mathbf{H}[X \mid S] \\
\mathbf{H}\left[X_{1}, X_{2}, \ldots X_{n} \mid S_{0}\right] & =n \mathbf{H}[X \mid S]
\end{aligned}
$$

By using n-to-variable length codes,

$$
\mathbf{H}[X \mid S] \leq \bar{L}_{\min , n}<\mathbf{H}[X \mid S]+1 / n
$$

Thus, for Markov sources, $\mathbf{H}[X \mid S]$ is asymptotically achievable.

The AEP also holds for Markov sources.
$\bar{L} \leq \mathbf{H}[X \mid S]-\varepsilon$ can not be achieved, either in expected length or fixed length, with low probability of failure.

MIT OpenCourseWare
http://ocw.mit.edu
6.450 Principles of Digital Communication I

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

