Measure and complements

We listed the rational numbers in [$-T / 2, T / 2$] as a_{1}, a_{2}, \ldots

$$
\mu\left\{\bigcup_{i=1}^{k} a_{i}\right\}=\sum_{i=1}^{k} \mu\left(\left[a_{i}, a_{i}\right]\right)=0
$$

The complement of $\bigcup_{i=1}^{k} a_{i}$ is $\bigcap_{i=1}^{k} \bar{a}_{i}$ where \bar{a}_{i} is all $t \in[-T / 2 . T / 2]$ except a_{i}.

Thus $\bigcap_{i=1}^{k} \bar{a}_{i}$ is a union of $k+1$ intervals, filling $[-T / 2, T / 2]$ except a_{1}, \ldots, a_{k}.

In the limit, this is the union of an uncountable set of irrational numbers; the measure is T.

MEASURABLE FUNCTIONS

A function $\{u(t): \mathbb{R} \rightarrow \mathbb{R}\}$ is measurable if $\{t: u(t)<b\}$ is measurable for each $b \in \mathbb{R}$.

The Lebesgue integral exists if the function is measurable and if the limit in the figure exists.

$-T / 2 \quad T / 2$
Horizontal crosshatching is what is added when $\varepsilon \rightarrow \varepsilon / 2$. For $u(t) \geq 0$, the integral must exist (with perhaps an infinite value).

For $u(t) \geq 0$, the Lebesgue approximation might be infinite for all ε. Example: $u(t)=|1 / t|$.

If approximation finite for any ε, then changing ε to $\varepsilon / 2$ adds at most $\varepsilon / 2$ to approximation.

Continued halving of interval adds at most $\varepsilon / 2+\varepsilon / 4+\cdots+\rightarrow \varepsilon$.

If any approximation is finite, integral is finite.

For a positive and negative function $u(t)$ define a positive and negative part:

$$
\begin{aligned}
u^{+}(t) & = \begin{cases}u(t) & \text { for } t: u(t) \geq 0 \\
0 & \text { for } t: u(t)<0\end{cases} \\
u^{-}(t) & =\left\{\begin{array}{cc}
0 & \text { for } t: u(t) \geq 0 \\
-u(t) & \text { for } t: u(t)<0
\end{array}\right. \\
u(t) & =u^{+}(t)-u^{-}(t)
\end{aligned}
$$

If $u(t)$ is measurable, then $u^{+}(t)$ and $u^{-}(t)$ are also and can be integrated as before.

$$
\int u(t)=\int u^{+}(t)-\int u^{-}(t) d t
$$

except if both $\int u^{+}(t) d t$ and $\int u^{-}(t) d t$ are infinite, then the integral is undefined.

For $\{u(t):[-T / 2, T / 2] \rightarrow \mathbb{R}\}$, the functions $|u(t)|$ and $|u(t)|^{2}$ are non-negative.

They are measurable if $u(t)$ is.
$|u(t)|=u^{+}(t)+u^{-}(t) \quad$ thus $\int|u(t)| d t=\int u^{+}(t) d t+\int u^{-}(t) d t$
Def: $u(t)$ is \mathcal{L}_{1} if measurable and $\int|u(t)| d t<\infty$.
Def: $u(t)$ is \mathcal{L}_{2} if measurable and $\int|u(t)|^{2} d t<\infty$.

A complex function $\{u(t):[-T / 2, T / 2] \rightarrow \mathbb{C}\}$ is measurable if both $\Re[u(t)]$ and $\Im[u(t)$ are measurable.

Def: $\mathbf{u (t)}$ is \mathcal{L}_{1} if $\int|u(t)| d t<\infty$.
Since $|u(t)| \leq \mid \Re(u(t)|+| \Im(u(t) \mid$, it follows that $u(t)$ is \mathcal{L}_{1} if and only if $\Re[u(t)]$ and $\Im[u(t)]$ are \mathcal{L}_{1}.

Def: $u(t)$ is \mathcal{L}_{2} if $\int|u(t)|^{2} d t<\infty$. This happens if and only if $\Re[u(t)]$ and $\Im[u(t)]$ are \mathcal{L}_{2}.

If $|u(t)| \geq 1$ for given t, then $|u(t)| \leq|u(t)|^{2}$.
Otherwise $|u(t)| \leq 1$. For all t,

$$
|u(t)| \leq|u(t)|^{2}+1 .
$$

For $\{u(t):[-T / 2, T / 2 \rightarrow \mathbb{C}]$,

$$
\begin{aligned}
\int_{-T / 2}^{T / 2}|u(t)| d t & \leq \int_{-T / 2}^{T / 2}\left[|u(t)|^{2}+1\right] d t \\
& =T+\int_{-T / 2}^{T / 2}|u(t)|^{2} d t
\end{aligned}
$$

Thus \mathcal{L}_{2} finite duration functions are also \mathcal{L}_{1}.

\mathcal{L}_{2} functions $[-T / 2, T / 2] \rightarrow \mathbb{C}$

\mathcal{L}_{1} functions $[-T / 2, T / 2] \rightarrow \mathbb{C}$
Measurable functions $[-T / 2, T / 2] \rightarrow \mathbb{C}$

Back to Fourier series:

Note that $|u(t)|=\left|u(t) e^{2 \pi i f t}\right|$
Thus, if $\{u(t):[-T / 2, T / 2] \rightarrow \mathbb{C}\}$ is \mathcal{L}_{1}, then

$$
\begin{gathered}
\int\left|u(t) e^{2 \pi i f t}\right| d t<\infty \\
\left|\int u(t) e^{2 \pi i f t} d t\right| \leq \int|u(t)| d t<\infty
\end{gathered}
$$

If $u(t)$ is \mathcal{L}_{2} and time-limited, it is \mathcal{L}_{1} and same conclusion follows.

Theorem: Let $\{u(t):[-T / 2, T / 2] \rightarrow \mathbb{C}\}$ be an \mathcal{L}_{2} function. Then for each $k \in \mathbb{Z}$, the Lebesgue integral

$$
\widehat{u}_{k}=\frac{1}{T} \int_{-T / 2}^{T / 2} u(t) e^{-2 \pi i k t / T} d t
$$

exists and satisfies $\left|\widehat{u}_{k}\right| \leq \frac{1}{T} \int|u(t)| d t<\infty$. Furthermore,

$$
\lim _{k_{0} \rightarrow \infty} \int_{-T / 2}^{T / 2}\left|u(t)-\sum_{k=-k_{0}}^{k_{0}} \widehat{u}_{k} e^{2 \pi i k t / T}\right|^{2} d t=0
$$

where the limit is monotonic in k_{0}.

The most important part of the theorem is that

$$
u(t) \approx \sum_{k=-k_{0}}^{k_{0}} \widehat{u}_{k} e^{2 \pi i k t / T}
$$

where the energy difference between the terms goes to 0 as $k_{0} \rightarrow \infty$, i.e.,

$$
\lim _{k_{0} \rightarrow \infty} \int_{-T / 2}^{T / 2}\left|u(t)-\sum_{k=-k_{0}}^{k_{0}} \widehat{u}_{k} e^{2 \pi i k t / T}\right|^{2} d t=0
$$

We abbreviate this convergence by

$$
u(t)=\text { I.i.m. } \sum_{k} \widehat{u}_{k} e^{2 \pi i k t / T} \operatorname{rect}\left(\frac{t}{T}\right)
$$

$$
u(t)=\text { I.i.m. } \sum_{k} \widehat{u}_{k} e^{2 \pi i k t / T} \operatorname{rect}\left(\frac{t}{T}\right)
$$

This does not mean that the sum on the right converges to $u(t)$ at each t and does not mean that the sum converges to anything.

There is an important theorem by Carleson that says that for \mathcal{L}_{2} functions, the sum converges a.e. That is, it converges to $u(t)$ except on a set of t of measure 0 .

This means that it converges for all integration purposes.

It is often important to go from sequence to function. The relevant result about Fourier series then is

Theorem: If a sequence of complex numbers $\left\{\widehat{u}_{k} ; k \in \mathbb{Z}\right\}$ satisfies $\sum_{k}\left|\widehat{u}_{k}\right|^{2}$, then an \mathcal{L}_{2} function $\{u(t):[-T / 2, T / 2] \rightarrow \mathbb{C}\}$ exists satisfying

$$
u(t)=\text { I.i.m. } \sum_{k} \widehat{u}_{k} e^{2 \pi i k t / T} \operatorname{rect}\left(\frac{t}{T}\right)
$$

Aside from all the mathematical hoopla (which is important), there is a very simple reason why so many things are simple with Fourier series. The expansion functions,

$$
\theta_{k}(t)=e^{2 \pi i k t / T} \operatorname{rect}(t / T)
$$

are orthogonal. That is

$$
\int \theta_{k}(t) \theta_{j}^{*}(t) d t=T \delta_{k, j}
$$

This is the feature that let us solve for $\widehat{u}_{k}(t)$ from the Fourier series $u(t)=\sum_{k} \widehat{u}_{k} \theta_{k}(t)$.

Functions not limited in time
We can segment an arbitrary \mathcal{L}_{2} function into segments of width T. The m th segment is $u_{m}(t)=u(t) \operatorname{rect}(t / T-m)$. We then have

$$
u(t)=\text { I.i.m. } m_{0} \rightarrow \infty \sum_{m=-m_{0}}^{m_{0}} u_{m}(t)
$$

This works because $u(t)$ is \mathcal{L}_{2}. The energy in $u_{m}(t)$ must go to $\mathbf{0}$ as $m \rightarrow \infty$.

By shifting $u_{m}(t)$, we get the Fourier series:

$$
\begin{aligned}
u_{m}(t) & =\text { I.i.m. } \sum_{k} \widehat{u}_{k, m} e^{2 \pi i k t / T} \operatorname{rect}\left(\frac{t}{T}-m\right), \quad \text { where } \\
\widehat{u}_{k, m} & =\frac{1}{T} \int_{-\infty}^{\infty} u(t) e^{-2 \pi i k t / T} \operatorname{rect}\left(\frac{t}{T}-m\right) d t,-\infty<k<\infty
\end{aligned}
$$

This breaks $u(t)$ into a double sum expansion of orthogonal functions, first over segments, then over frequencies.

$$
u(t)=\text { I.i.m. } \sum_{m, k} \widehat{u}_{k, m} e^{2 \pi i k t / T} \operatorname{rect}\left(\frac{t}{T}-m\right)
$$

This is the first of a number of orthogonal expansions of arbitrary \mathcal{L}_{2} functions.

We call this the T-spaced truncated sinusoid expansion.

$$
u(t)=\text { I.i.m. } \sum_{m, k} \widehat{u}_{k, m} e^{2 \pi i k t / T} \operatorname{rect}\left(\frac{t}{T}-m\right)
$$

This is the conceptual basis for algorithms such as voice compression that segment the waveform and then process each segment.

It matches our intuition about frequency well; that is, in music, notes (frequencies) keep changing.

The awkward thing is that the segmentation parameter T is arbitrary and not fundamental.

Fourier transform: $u(t): \mathbb{R} \rightarrow \mathbb{C}$ to $\widehat{u}(f): \mathbb{R} \rightarrow \mathbb{C}$

$$
\begin{aligned}
\widehat{u}(f) & =\int_{-\infty}^{\infty} u(t) e^{-2 \pi i f t} d t \\
u(t) & =\int_{-\infty}^{\infty} \widehat{u}(f) e^{2 \pi i f t} d f
\end{aligned}
$$

For "well-behaved functions," first integral exists for all f, second exists for all t and results in original $u(t)$.

What does well-behaved mean? It means that the above is true.

$$
\begin{aligned}
a u(t)+b v(t) & \leftrightarrow a \widehat{u}(f)+b \widehat{v}(f) . \\
u^{*}(-t) & \leftrightarrow \widehat{u}^{*}(f) \\
\widehat{u}(t) & \leftrightarrow u(-f) \\
u(t-\tau) & \leftrightarrow e^{-2 \pi i f \tau} \widehat{u}(f) \\
u(t) e^{2 \pi i f_{0} t} & \leftrightarrow \widehat{u}\left(f-f_{0}\right) \\
u(t / T) & \leftrightarrow T \widehat{u}(f T) \\
d u(t) / d t & \leftrightarrow i 2 \pi f \widehat{u}(f) \\
\int_{-\infty}^{\infty} u(\tau) v(t-\tau) d \tau & \leftrightarrow \widehat{u}(f) \widehat{v}(f) \\
\int_{-\infty}^{\infty} u(\tau) v^{*}(\tau-t) d \tau & \leftrightarrow \widehat{u}(f) \widehat{v}^{*}(f)
\end{aligned}
$$

Linearity
Conjugate
Duality
Time shift
Frequency shift Scaling
Differentiation
Convolution
Correlation

Two useful special cases of any Fourier transform pair are:

$$
\begin{aligned}
& u(0)=\int_{-\infty}^{\infty} \widehat{u}(f) d f \\
& \widehat{u}(0)=\int_{-\infty}^{\infty} u(t) d t
\end{aligned}
$$

Parseval's theorem:

$$
\int_{-\infty}^{\infty} u(t) v^{*}(t) d t=\int_{-\infty}^{\infty} \widehat{u}(f) \widehat{v}^{*}(f) d f
$$

Replacing $v(t)$ by $u(t)$ yields the energy equation,

$$
\int_{-\infty}^{\infty}|u(t)|^{2} d t=\int_{-\infty}^{\infty}|\widehat{u}(f)|^{2} d f
$$

MIT OpenCourseWare
http://ocw.mit.edu
6.450 Principles of Digital Communication I

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

