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Measure and complements


We listed the rational numbers in [−T/2, T/2] 

as a1, a2, . . .  

k k

µ{ ai} = µ([ai, ai]) = 0 
i=1 i=1 

The complement of 
�

i
k 
=1 ai is 

�
i
k 
=1 ai where ai 

is all t ∈ [−T/2.T/2] except ai. 

Thus 
�

i
k 
=1 ai is a union of k+1 intervals, filling 

[−T/2, T/2] except a1, . . .  , ak. 

In the limit, this is the union of an uncountable 

set of irrational numbers; the measure is T . 
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MEASURABLE FUNCTIONS


A function {u(t) : R R} is measurable if → 
{t : u(t) < b} is measurable for each b ∈ R. 

The Lebesgue integral exists if the function is

measurable and if the limit in the figure exists.


3ε


2ε


−T/2 T/2 
Horizontal crosshatching is what is added when

ε ε/2. For u(t) ≥ 0, the integral must exist
→
(with perhaps an infinite value). 

2




ε 

For u(t) ≥ 0, the Lebesgue approximation might 

be infinite for all ε. Example: u(t) = |1/t|. 

If approximation finite for any ε, then changing 

ε to ε/2 adds at most ε/2 to approximation. 

Continued halving of interval adds at most 

ε/2 + ε/4 + + ε.· · · →

3ε 

2ε 

−T/2 T/2 

If any approximation is finite, integral is finite.
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For a positive and negative function u(t) define 

a positive and negative part: 

u +(t) = 	
u(t) for t : u(t) ≥ 0 
0 for t : u(t) < 0 

u−(t) =  
0 for t : u(t) ≥ 0 

−u(t) for t : u(t) < 0. 

u(t) = u +(t) − u−(t). 

If u(t) is measurable, then u+(t) and u−(t) are 

also and can be integrated as before. 

u(t) =  u +(t) − u−(t) dt. 

except if both u+(t) dt and u−(t) dt are infi

nite, then the integral is undefined. 
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� � � 
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For {u(t) : [−T/2, T/2] → R}, the functions |u(t)|
and |u(t)|2 are non-negative. 

They are measurable if u(t) is. 

|u(t)| = u +(t) + u−(t) thus |u(t)| dt = u +(t) dt + u−(t) dt 

Def: u(t) is L1 if measurable and |u(t)| dt < ∞. 

Def: u(t) is L2 if measurable and 
� |u(t)|2 dt < ∞. 
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A complex function {u(t) : [−T/2, T/2] C} is
→
measurable if both �[u(t)] and �[u(t) are mea

surable. 

Def: u(t) is L1 if |u(t)| dt < ∞. 

Since |u(t)| ≤ |�(u(t)| + |�(u(t)|, it follows that


u(t) is L1 if and only if �[u(t)] and �[u(t)] are


L1.


Def: u(t) is L2 if 
� |u(t)|2 dt < ∞. This happens


if and only if �[u(t)] and �[u(t)] are L2.
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If |u(t)| ≥ 1 for given t, then |u(t)| ≤ |u(t)|2 . 

Otherwise |u(t)| ≤ 1. For all t, 

|u(t)| ≤ |u(t)|2 + 1. 

For {u(t) : [−T/2, T/2 C],→� T/2 � T/2 

−T/2
|u(t)| dt ≤

−T/2
[|u(t)|2 + 1] dt � T/2 

= T + 
−T/2

|u(t)|2 dt 

Thus L2 finite duration functions are also L1. 
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L2 functions [−T/2, T/2] → C 
� 

� 
L1 functions [−T/2, T/2] → C � 

� 
Measurable functions [−T/2, T/2] → C � 
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Back to Fourier series: 

Note that |u(t)| = |u(t)e2πift| 

Thus, if {u(t) : [−T/2, T/2] C} is L1, then →

|u(t)e 2πift| dt < ∞. 

| u(t)e 2πift dt| ≤  |u(t)| dt < ∞. 

If u(t) is L2 and time-limited, it is L1 and same 

conclusion follows. 
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Theorem: Let {u(t) : [−T/2, T/2] C} be an L2→ 

function. Then for each k ∈ Z, the Lebesgue 

integral 

1 � T/2 
ûk = u(t) e−2πikt/T dt 

T −T/2 

1exists and satisfies |ûk| ≤
thermore, 

|u(t)| dt < ∞. Fur-
T


� T/2

lim


k0→∞ −T/2


2


dt = 0,

k0

u(t) − ûk e 2πikt/T


k=−k0


where the limit is monotonic in k0.
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The most important part of the theorem is 

that 

k0

u(t) ≈ ûke 
k=−k0 

2πikt/T


where the energy difference between the terms 

goes to 0 as k0 → ∞, i.e., 

� T/2

lim


k0→∞ −T/2


k0

u(t) − ûk e 2πikt/T

2


dt = 0,

k=−k0


We abbreviate this convergence by


u(t) = l.i.m. ûk e
2πikt/T rect( 
t


T

).


k
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� 
u(t) = l.i.m. ûk e 2πikt/T rect( 

t 
). 

T
k 

This does not mean that the sum on the right 

converges to u(t) at each t and does not mean 

that the sum converges to anything. 

There is an important theorem by Carleson 

that says that for L2 functions, the sum con

verges a.e. That is, it converges to u(t) except 

on a set of t of measure 0. 

This means that it converges for all integration 

purposes. 
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It is often important to go from sequence to 

function. The relevant result about Fourier 

series then is 

Theorem: If a sequence of complex numbers 

{ûk; k ∈ Z} satisfies 
� 

k |ûk|2, then an L2 function 

{u(t) : [−T/2, T/2] C} exists satisfying → 

u(t) = l.i.m. ûk e 2πikt/T rect( 
t 
). 

T
k 
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Aside from all the mathematical hoopla (which 

is important), there is a very simple reason why 

so many things are simple with Fourier series. 

The expansion functions, 

θk(t) =  e 2πikt/T rect(t/T ) 

are orthogonal. That is 

θk(t)θj
∗(t) dt = Tδk,j 

This is the feature that let us solve for ûk(t) 

from the Fourier series u(t) =  k ûkθk(t). 
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Functions not limited in time 

We can segment an arbitrary L2 function into 
segments of width T . The mth segment is 
um(t) =  u(t)rect(t/T − m). We then have 

m0

u(t) = l.i.m.m0→∞ um(t) 
m=−m0 

This works because u(t) is L2. The energy in 
um(t) must go to 0 as m → ∞. 

By shifting um(t), we get the Fourier series: � t 
um(t) = l.i.m. ûk,m e 2πikt/T rect(

T 
− m), where 

k 

ˆ =
1 � ∞ 

u(t)e−2πikt/T rect(
T

t − m) dt, −∞ < k <  ∞.uk,m 
T −∞ 
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This breaks u(t) into a double sum expansion 

of orthogonal functions, first over segments, 

then over frequencies. 

u(t) = l.i.m. 
� 

ûk,m e 2πikt/T rect(
T

t − m) 
m,k 

This is the first of a number of orthogonal 

expansions of arbitrary L2 functions. 

We call this the T -spaced truncated sinusoid 

expansion. 
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� t 
u(t) = l.i.m. ûk,m e 2πikt/T rect(

T 
− m) 

m,k 

This is the conceptual basis for algorithms such 

as voice compression that segment the wave

form and then process each segment. 

It matches our intuition about frequency well; 

that is, in music, notes (frequencies) keep chang

ing. 

The awkward thing is that the segmentation


parameter T is arbitrary and not fundamental.
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C Fourier transform: u(t) : R C to û(f ) : R→ → 

û(f ) =  
∞ 

u(t)e−2πift dt. 
−∞ 

2πift df. u(t) =  
∞ 

û(f)e 
−∞ 

For “well-behaved functions,” first integral ex

ists for all f, second exists for all t and results 

in original u(t). 

What does well-behaved mean? It means that 

the above is true. 
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au(t) +  bv(t)


u∗(−t)


û(t)


u(t − τ )


u(t)e 2πif0t


u(t/T )


du(t)/dt

∞ 

u(τ )v(t − τ ) dτ � −∞
∞ 

u(τ )v∗(τ − t) dτ 
−∞ 

aû(f) +  bv̂(f).↔ 

û∗(f).↔ 

↔	 u(−f ). 

e−2πifτ û(f )↔ 

↔	 û(f − f0) 

T û(fT  ).↔ 

i2πfû(f ).
↔ 

û(f)v̂(f ).
↔ 

û(f)v̂∗(f).↔ 

Linearity 

Conjugate 

Duality 

Time shift 

Frequency shift 

Scaling 

Differentiation 

Convolution 

Correlation 
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� � 

Two useful special cases of any Fourier trans

form pair are: 

u(0) = 
∞ 

û(f) df ; 
−∞ 

û(0) = 
∞ 

u(t) dt. 
−∞ 

Parseval’s theorem: 
∞ 

u(t)v∗(t) dt = 
∞ 

û(f)v̂∗(f) df. 
−∞ −∞ 

Replacing v(t) by u(t) yields the energy equa

tion, 
∞ 

u(t)|2 dt = 
∞ 

u(f)|2 df. 
−∞

|
−∞

|ˆ
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