Measure and complements

We listed the rational numbers in [-T/2, T/2]as a_1, a_2, \ldots

$$\mu\{\bigcup_{i=1}^{k} a_i\} = \sum_{i=1}^{k} \mu([a_i, a_i]) = 0$$

The complement of $\bigcup_{i=1}^{k} a_i$ is $\bigcap_{i=1}^{k} \overline{a}_i$ where \overline{a}_i is all $t \in [-T/2, T/2]$ except a_i .

Thus $\bigcap_{i=1}^{k} \overline{a}_i$ is a union of k+1 intervals, filling [-T/2, T/2] except a_1, \ldots, a_k .

In the limit, this is the union of an uncountable set of irrational numbers; the measure is T.

MEASURABLE FUNCTIONS

A function $\{u(t) : \mathbb{R} \to \mathbb{R}\}$ is measurable if $\{t : u(t) < b\}$ is measurable for each $b \in \mathbb{R}$.

The Lebesgue integral exists if the function is measurable and if the limit in the figure exists.

For $u(t) \ge 0$, the Lebesgue approximation might be infinite for all ε . Example: u(t) = |1/t|.

If approximation finite for any ε , then changing ε to $\varepsilon/2$ adds at most $\varepsilon/2$ to approximation.

For a positive and negative function u(t) define a positive and negative part:

$$u^{+}(t) = \begin{cases} u(t) \text{ for } t : u(t) \ge 0\\ 0 \quad \text{for } t : u(t) < 0 \end{cases}$$
$$u^{-}(t) = \begin{cases} 0 \quad \text{for } t : u(t) \ge 0\\ -u(t) \quad \text{for } t : u(t) < 0. \end{cases}$$

$$u(t) = u^{+}(t) - u^{-}(t).$$

If u(t) is measurable, then $u^+(t)$ and $u^-(t)$ are also and can be integrated as before.

$$\int u(t) = \int u^+(t) - \int u^-(t) \, dt.$$

except if both $\int u^+(t) dt$ and $\int u^-(t) dt$ are infinite, then the integral is undefined.

For $\{u(t) : [-T/2, T/2] \rightarrow \mathbb{R}\}$, the functions |u(t)|and $|u(t)|^2$ are non-negative.

They are measurable if u(t) is.

 $|u(t)| = u^+(t) + u^-(t)$ thus $\int |u(t)| dt = \int u^+(t) dt + \int u^-(t) dt$ Def: u(t) is \mathcal{L}_1 if measurable and $\int |u(t)| dt < \infty$.

Def: u(t) is \mathcal{L}_2 if measurable and $\int |u(t)|^2 dt < \infty$.

A complex function $\{u(t) : [-T/2, T/2] \rightarrow \mathbb{C}\}$ is measurable if both $\Re[u(t)]$ and $\Im[u(t)$ are measurable.

Def: u(t) is \mathcal{L}_1 if $\int |u(t)| dt < \infty$.

Since $|u(t)| \leq |\Re(u(t)| + |\Im(u(t)|)|$, it follows that u(t) is \mathcal{L}_1 if and only if $\Re[u(t)]$ and $\Im[u(t)]$ are \mathcal{L}_1 .

Def: u(t) is \mathcal{L}_2 if $\int |u(t)|^2 dt < \infty$. This happens if and only if $\Re[u(t)]$ and $\Im[u(t)]$ are \mathcal{L}_2 .

If $|u(t)| \ge 1$ for given t, then $|u(t)| \le |u(t)|^2$.

Otherwise $|u(t)| \leq 1$. For all t,

 $|u(t)| \le |u(t)|^2 + 1.$

For $\{u(t) : [-T/2, T/2 \to \mathbb{C}],$ $\int_{-T/2}^{T/2} |u(t)| dt \leq \int_{-T/2}^{T/2} [|u(t)|^2 + 1] dt$ $= T + \int_{-T/2}^{T/2} |u(t)|^2 dt$

Thus \mathcal{L}_2 finite duration functions are also \mathcal{L}_1 .

Back to Fourier series:

Note that $|u(t)| = |u(t)e^{2\pi i ft}|$ Thus, if $\{u(t) : [-T/2, T/2] \to \mathbb{C}\}$ is \mathcal{L}_1 , then $\int |u(t)e^{2\pi i ft}| dt < \infty.$ $|\int u(t)e^{2\pi i ft} dt| \leq \int |u(t)| dt < \infty.$

If u(t) is \mathcal{L}_2 and time-limited, it is \mathcal{L}_1 and same conclusion follows.

Theorem: Let $\{u(t) : [-T/2, T/2] \rightarrow \mathbb{C}\}$ be an \mathcal{L}_2 function. Then for each $k \in \mathbb{Z}$, the Lebesgue integral

$$\hat{u}_k = \frac{1}{T} \int_{-T/2}^{T/2} u(t) e^{-2\pi i k t/T} dt$$

exists and satisfies $|\hat{u}_k| \leq \frac{1}{T} \int |u(t)| dt < \infty$. Furthermore,

$$\lim_{k_0 \to \infty} \int_{-T/2}^{T/2} \left| u(t) - \sum_{k=-k_0}^{k_0} \widehat{u}_k e^{2\pi i k t/T} \right|^2 dt = 0,$$

where the limit is monotonic in k_0 .

The most important part of the theorem is that

$$u(t) \approx \sum_{k=-k_0}^{k_0} \hat{u}_k e^{2\pi i k t/T}$$

where the energy difference between the terms goes to 0 as $k_0 \rightarrow \infty$, i.e.,

$$\lim_{k_0 \to \infty} \int_{-T/2}^{T/2} \left| u(t) - \sum_{k=-k_0}^{k_0} \widehat{u}_k e^{2\pi i k t/T} \right|^2 dt = 0,$$

We abbreviate this convergence by

$$u(t) = \text{I.i.m.} \sum_{k} \hat{u}_k e^{2\pi i k t/T} \operatorname{rect}(\frac{t}{T}).$$

$$u(t) = \text{I.i.m.} \sum_{k} \hat{u}_k e^{2\pi i k t/T} \operatorname{rect}(\frac{t}{T}).$$

This does not mean that the sum on the right converges to u(t) at each t and does not mean that the sum converges to anything.

There is an important theorem by Carleson that says that for \mathcal{L}_2 functions, the sum converges a.e. That is, it converges to u(t) except on a set of t of measure 0.

This means that it converges for all integration purposes.

It is often important to go from sequence to function. The relevant result about Fourier series then is

Theorem: If a sequence of complex numbers $\{\hat{u}_k; k \in \mathbb{Z}\}\$ satisfies $\sum_k |\hat{u}_k|^2$, then an \mathcal{L}_2 function $\{u(t) : [-T/2, T/2] \to \mathbb{C}\}\$ exists satisfying

$$u(t) = \text{I.i.m.} \sum_{k} \hat{u}_k e^{2\pi i k t/T} \operatorname{rect}(\frac{t}{T}).$$

Aside from all the mathematical hoopla (which is important), there is a very simple reason why so many things are simple with Fourier series. The expansion functions,

$$\theta_k(t) = e^{2\pi i k t/T} \operatorname{rect}(t/T)$$

are orthogonal. That is

$$\int \theta_k(t)\theta_j^*(t) \, dt = T\delta_{k,j}$$

This is the feature that let us solve for $\hat{u}_k(t)$ from the Fourier series $u(t) = \sum_k \hat{u}_k \theta_k(t)$. Functions not limited in time

We can segment an arbitrary \mathcal{L}_2 function into segments of width *T*. The *m*th segment is $u_m(t) = u(t) \operatorname{rect}(t/T - m)$. We then have

$$u(t) = 1.i.m._{m_0 \to \infty} \sum_{m=-m_0}^{m_0} u_m(t)$$

This works because u(t) is \mathcal{L}_2 . The energy in $u_m(t)$ must go to 0 as $m \to \infty$.

By shifting $u_m(t)$, we get the Fourier series:

$$u_m(t) = \text{I.i.m.} \sum_k \hat{u}_{k,m} e^{2\pi i k t/T} \operatorname{rect}(\frac{t}{T} - m), \quad \text{where}$$
$$\hat{u}_{k,m} = \frac{1}{T} \int_{-\infty}^{\infty} u(t) e^{-2\pi i k t/T} \operatorname{rect}(\frac{t}{T} - m) dt, \quad -\infty < k < \infty.$$

This breaks u(t) into a double sum expansion of orthogonal functions, first over segments, then over frequencies.

$$u(t) = \text{I.i.m.} \sum_{m,k} \hat{u}_{k,m} e^{2\pi i k t/T} \operatorname{rect}(\frac{t}{T} - m)$$

This is the first of a number of orthogonal expansions of arbitrary \mathcal{L}_2 functions.

We call this the *T*-spaced truncated sinusoid expansion.

$$u(t) = \text{I.i.m.} \sum_{m,k} \hat{u}_{k,m} e^{2\pi i k t/T} \operatorname{rect}(\frac{t}{T} - m)$$

This is the conceptual basis for algorithms such as voice compression that segment the waveform and then process each segment.

It matches our intuition about frequency well; that is, in music, notes (frequencies) keep changing.

The awkward thing is that the segmentation parameter T is arbitrary and not fundamental.

Fourier transform: $u(t) : \mathbb{R} \to \mathbb{C}$ to $\hat{u}(f) : \mathbb{R} \to \mathbb{C}$

$$\hat{u}(f) = \int_{-\infty}^{\infty} u(t) e^{-2\pi i f t} dt.$$

$$u(t) = \int_{-\infty}^{\infty} \widehat{u}(f) e^{2\pi i f t} df.$$

For "well-behaved functions," first integral exists for all f, second exists for all t and results in original u(t).

What does well-behaved mean? It means that the above is true.

 $\begin{aligned} au(t) + bv(t) &\leftrightarrow a\widehat{u}(f) + b\widehat{v}(f). \\ u^*(-t) &\leftrightarrow \widehat{u}^*(f). \\ \widehat{u}(t) &\leftrightarrow u(-f). \\ u(t-\tau) &\leftrightarrow e^{-2\pi i f \tau} \widehat{u}(f) \\ u(t) e^{2\pi i f_0 t} &\leftrightarrow \widehat{u}(f-f_0) \\ u(t/T) &\leftrightarrow T \widehat{u}(fT). \\ du(t)/dt &\leftrightarrow i2\pi f \widehat{u}(f). \\ \int_{-\infty}^{\infty} u(\tau) v(t-\tau) d\tau &\leftrightarrow \widehat{u}(f) \widehat{v}(f). \\ \int_{-\infty}^{\infty} u(\tau) v^*(\tau-t) d\tau &\leftrightarrow \widehat{u}(f) \widehat{v}^*(f). \end{aligned}$

Linearity Conjugate Duality Time shift Frequency shift Scaling Differentiation Convolution Two useful special cases of any Fourier transform pair are:

$$u(0) = \int_{-\infty}^{\infty} \hat{u}(f) \, df;$$

$$\widehat{u}(0) = \int_{-\infty}^{\infty} u(t) dt.$$

Parseval's theorem:

$$\int_{-\infty}^{\infty} u(t)v^*(t) dt = \int_{-\infty}^{\infty} \hat{u}(f)\hat{v}^*(f) df.$$

Replacing v(t) by u(t) yields the energy equation,

$$\int_{-\infty}^{\infty} |u(t)|^2 dt = \int_{-\infty}^{\infty} |\hat{u}(f)|^2 df.$$

MIT OpenCourseWare http://ocw.mit.edu

6.450 Principles of Digital Communication I Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.