
Summary of binary detection with vector ob

servation in iid Gaussian noise.: 

First remove center point from signal and its 

effect on observation. 

Then signal is ±�a. and �v = ±�a + Z� . 

Find 〈�v,�a〉 and compare with threshold (0 for 

ML case). 

This does not depend on the vector basis 


becomes trivial if �a normalized is a basis vector.


Received components orthogonal to signal are 

irrelevant. 
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We have seen how to design a MAP or ML 

detector from observing v. We generalize to 

an arbitrary complex signal set A 

We also question what the entire receiver should 

do from observation of y(t) or v(t). 
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The baseband waveform is u(t) = ap(t) where 
a = a1 + ia2 with a1 = �{a}, a2 = �{a}. 

The passband transmitted waveform is 

x(t) = a1Ψ1(t) + a2Ψ2(t). 

Ψ1(t) = �{2p(t) 2πifct}; Ψ2(t) = �{2p(t) 2πifct}e e 

These two waveforms are orthogonal (in real 
vector space), each with energy 2. For p(t) 
real, they are just p(t) modulated by cosine 
and sine. 

The received waveform is 

Y (t) = (a1+Z1)Ψ1(t) + (a2+Z2)Ψ2(t) + Z′(t) 

where Z′(t) is real passband WGN in other de
grees of freedom. 
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Y (t) = (a1+Z1)Ψ1(t) + (a2+Z2)Ψ2(t) + Z′(t) 

Since Ψ1 and Ψ2 are orthogonal and equal en

ergy, Z1 and Z2 are iid Gaussian. 

After translation of passband signal and noise 

to baseband, 

V (t) = [a1+Z1 + i(a2+Z2)]p(t) + Z”(t) 

Z”(t) is the noise orthogonal (in complex vec

tor space) to p(t). 

First consider detection in real vector space. 

Here (a1, a2) represents the hypothesis and Z1, Z2 

are iid Gaussian, N (0, N0/2). 
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∫ 
V (t) = [a1+Z1 + i(a2+Z2)]p(t) + Z”(t) 

Let Y1 = a1 + Z1, Y2 = a2 + Z2. 

Note that V (t)p∗(τ − t) dt is the output from a 

complex matched filter. Sampling this at τ = 0  

yields (Y1 + iY2). 

The components in an expansion Z3, Z4, . . .  ,  in 

an orthonormal expansion of Z”(t) are also ob

servable, although we will not need them. 
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∑ 
∑ 

∑ 

Z3, Z4, . . .  ,  are real Gaussian rv’s and can also 

be viewed as passband rv’s. Assume a finite 

number of these variables. For any two hy

potheses, a and a′, the likelihoods are 

2
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As usual, ML decoding is minimum distance 

decoding. 

6




�

We can rewrite the likelihood as 

f
Y |H(�y | a) = f(y1y2|a)f(z3, z4, . . .  , ) 

So long as Z3, Z4, . . .  are independent of Y1, Y2 

and H, they cancel out in the LLR. 

This is why it makes sense to use the WGN 

model - all we need in detection is the inde

pendence from the relevant rv’s. 

In other words, (Y1, Y2) is a sufficient statistic 

and Z3, Z4, . . .  ,  are irrelevant (so long as they 

are independent of Y1, Y2, H). 

This is true for all pairwise comparisons be

tween input signals. 
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Now view this detection problem in terms of 

complex rv’s. Let α = a − a′. 

2 2

LLR(�y) =  
∑ 2yj(aj−aj

′ )
= 

∑ 2yjαj 

j=1 N0 j=1 N0 

=
2�{y}�{α} + �{y}�{α}

N0 
2�{yα∗} 2�{〈y, α〉}

= = 
N0 N0 

In real vector space, we project �y onto α� . 

In complex space, 2-vectors become scalars, 

inner product needs real part to be taken. 

The real part is a “further projection” of a 

complex number to a real number. 
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∑ 

Now let’s look at the general case in WGN. 
Must consider problem of real signals and noise 
for arbitrary modulation. 

The signal set A = {�a1, . . .  ,�aM}, is a set of k-
tuples. 

�am = (am,1, . . .  , am,k)
T . 

�am is then modulated to 

k

bm(t) =  am,jφj(t) 
j=1 

where {φ1(t), . . .  , φk(t)} is a set of k orthonormal 
waveforms. 

Successive signals are independent and mapped 
arbitrarily, using orthogonal spaces. 
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∑ 

∑ ∑ ∑ 

Let X� (t) ∈ {�b1(t), . . .  ,  �bM(t)}. Then 

k

X(t) =  Xjφj(t) 
j=1 

where, under hypothesis m, 

Xj = am,j for 1 ≤ j ≤ k 

Let φk+1(t), φk+2(t) . . .  be an additional set of 

orthonormal functions such that the entire set 

{φj(t); j ≥ 1} spans the space of real L2 wave

forms. 

� k �

Y (t) =  Yjφj(t) =  (Xj+Zj)φj(t) +  Zjφj(t). 
j=1 j=1 j=k+1 
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∑ ∑ ∑ � k �

Y (t) =  Yjφj(t) =  (Xj+Zj)φj(t) +  Zjφj(t). 
j=1 j=1 j=k+1 

Assume Z� = {Z1, . . .  , Zk} are iid Gauss. Z� ′ = 

{Zk+1, . . .  , } is independent of Z� and of �a. 

f� ′|H(� z |m) =  f�(� am)f� ′ z
Y ,Z�

y, �′
Z

y − �
Z

(�′). 

f�(y� − �am)
Λ = Z .m,m′ 

f�(�y − �am′)
Z

The MAP detector depends only on Y� . The 

other signals and other noise variables are ir

relevant. 
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This says that detection problems reduce to 

finite dimensional vector problems; that is, sig

nal space and observation space are for all 

practical purposes finite dimensional. 

The assumption of independent noise and in

dependent other signals is essential here. 

With dependence, error probability is lowered; 

what you don’t know can’t hurt you. 
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∑ ∑ 



Detection for Orthogonal Signal Sets


We are looking at an alphabet of size m, map

ping letter j into 
√

Eφj(t) where {φj(t)} is an 

orthonormal set. 

WGN of spectral density N0/2 is added to the 

transmitted waveform. 

The receiver gets 

Y (t) =  Yjφj(t) =  (Xj + Zj)φj(t) 
j j 

Only {Y1, . . .  , Ym} is relevant. 

Under hypothesis k, Yk =
√

E + Zj and Yj = Zj 

for j = k. 
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√ √ 
√ 

Use ML detection. Choose k for which 〈� xk〉y, �
is smallest. 

m
2 2 2|〈�y, �xk〉| = 

∑ 
yj + (yk − nk)

2 = 
∑ 

y + E − 2
√

Eyky 
j=k j=1 

ML: choose k for which yk is largest. 

By symmetry, the probability of error is the 
same for all hypotheses so we look at hypoth
esis 1. 

First scale outputs by N0/2, i.e., Wj = Yj 2/N0. 

Under H1, W1 ∼ N  ( 2E/N0, 1) and Wj ∼ (0, 1) 
for j = 1.   ∫ m

Pr(e) =  
∞ 

fW1 H(w1 | 1)Pr  ⋃ 
(Wj ≥ w1 | 1) dw1 −∞ 

|
j=2 
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