MEASURABLE FUNCTIONS

A function $\{u(t): \mathbb{R} \rightarrow \mathbb{R}\}$ is measurable if $\{t: u(t)<b\}$ is measurable for each $b \in \mathbb{R}$.

The Lebesgue integral exists if the function is measurable and if the limit in the figure exists.

Horizontal crosshatching is what is added when $\varepsilon \rightarrow \varepsilon / 2$. For $u(t) \geq 0$, the integral must exist (with perhaps an infinite value).

Theorem: Let $\{u(t):[-T / 2, T / 2] \rightarrow \mathbb{C}\}$ be an \mathcal{L}_{2} function. Then for each $k \in \mathbb{Z}$, the Lebesgue integral

$$
\widehat{u}_{k}=\frac{1}{T} \int_{-T / 2}^{T / 2} u(t) e^{-2 \pi i k t / T} d t
$$

exists and satisfies $\left|\hat{u}_{k}\right| \leq \frac{1}{T} \int|u(t)| d t<\infty$. Furthermore,

$$
\lim _{k_{0} \rightarrow \infty} \int_{-T / 2}^{T / 2}\left|u(t)-\sum_{k=-k_{0}}^{k_{0}} \widehat{u}_{k} e^{2 \pi i k t / T}\right|^{2} d t=0
$$

where the limit is monotonic in k_{0}.
Given $\left\{\hat{u}_{k} ; k \in \mathbb{Z}\right\}, \sum\left|\hat{u}_{k}\right|^{2}<\infty$, the \mathcal{L}_{2} function $u(t)$ exists

Functions not limited in time
We can segment an arbitrary \mathcal{L}_{2} function into segments of any width T. The m th segment is $u_{m}(t)=u(t) \operatorname{rect}(t / T-m)$. We then have

$$
u(t)=\text { I.i.m. } m_{0} \rightarrow \infty \sum_{m=-m_{0}}^{m_{0}} u_{m}(t)
$$

This works because $u(t)$ is \mathcal{L}_{2}. The energy in $u_{m}(t)$ must go to 0 as $m \rightarrow \infty$.

$$
\begin{aligned}
u_{m}(t) & =\text { I.i.m. } \sum_{k} \widehat{u}_{k, m} e^{2 \pi i k t / T} \operatorname{rect}\left(\frac{t}{T}-m\right), \quad \text { where } \\
\widehat{u}_{k, m} & =\frac{1}{T} \int_{-\infty}^{\infty} u(t) e^{-2 \pi i k t / T} \operatorname{rect}\left(\frac{t}{T}-m\right) d t \\
u(t) & =\text { I.i.m. } \sum_{k, m} \widehat{u}_{k, m} e^{2 \pi i k t / T} \operatorname{rect}\left(\frac{t}{T}-m\right)
\end{aligned}
$$

Plancherel 1: There is an \mathcal{L}_{2} function $\widehat{u}(f)$ (the Fourier transform of $u(t)$), which satisfies the energy equation and

$$
\begin{gathered}
\lim _{A \rightarrow \infty} \int_{-\infty}^{\infty}\left|\widehat{u}(f)-\widehat{v}_{A}(f)\right|^{2} d t=0 \quad \text { where } \\
\widehat{v}_{A}(f)=\int_{-A}^{A} u(t) e^{-2 \pi i f t} d t
\end{gathered}
$$

We denote this function $\widehat{u}(f)$ as

$$
\widehat{u}(f)=\text { I.i.m. } \int_{-\infty}^{\infty} u(t) e^{2 \pi i f t} d t .
$$

Although $\left\{\widehat{v}_{A}(f)\right\}$ is continuous for all $A \in \mathbb{R}$, $\widehat{u}(f)$ is not necessarily continuous.

Similarly, for $B>0$, consider the finite bandwidth approximation $\widehat{u}(f) \operatorname{rect}\left(\frac{f}{2 B}\right)$. This is \mathcal{L}_{1} as well as \mathcal{L}_{2},

$$
\begin{equation*}
u_{B}(t)=\int_{-B}^{B} \widehat{u}(f) e^{2 \pi i f t} d f \tag{1}
\end{equation*}
$$

exists for all $t \in \mathbb{R}$ and is continuous.
Plancherel 2: For any \mathcal{L}_{2} function $u(t)$, let $\widehat{u}(f)$ be the FT of Plancherel 1. Then

$$
\begin{gather*}
\lim _{B \rightarrow \infty} \int_{-\infty}^{\infty}\left|u(t)-w_{B}(t)\right|^{2} d t=0 \tag{2}\\
u(t)=\text { ı.i.m. } \int_{-\infty}^{\infty} \widehat{u}(f) e^{2 \pi i f t} d f
\end{gather*}
$$

All \mathcal{L}_{2} functions have Fourier transforms in this sense.

The DTFT (Discrete-time Fourier transform) is the $t \leftrightarrow \mathbf{f}$ dual of the Fourier series.

Theorem (DTFT) Assume $\{\widehat{u}(f):[-W, W] \rightarrow \mathbb{C}\}$ is \mathcal{L}_{2} (and thus also \mathcal{L}_{1}). Then

$$
u_{k}=\frac{1}{2 W} \int_{-W}^{W} \widehat{u}(f) e^{2 \pi i k f /(2 W)} d f
$$

is a finite complex number for each $k \in \mathbb{Z}$. Also

$$
\begin{gathered}
\lim _{k_{0} \rightarrow \infty} \int_{-W}^{W}\left|\widehat{u}(f)-\sum_{k=-k_{0}}^{k_{0}} u_{k} e^{-2 \pi i k f /(2 W)}\right|^{2} d f=0 \\
\widehat{u}(f)=\text { I.i.m. } \sum_{k} u_{k} e^{-2 \pi i f t /(2 W)} \operatorname{rect}\left(\frac{f}{2 W}\right)
\end{gathered}
$$

Sampling Theorem: Let $\{\widehat{u}(f):[-W W] \rightarrow \mathbb{C}\}$ be \mathcal{L}_{2} (and thus also \mathcal{L}_{1}). For $u(t)$ in (??), let $T=1 /(2 W)$. Then the inverse transform $u(t)$ is continuous, \mathcal{L}_{2}, and bounded by $u(t) \leq$ $\int_{-W}^{W}|\widehat{u}(f)| d f$. For $T=1 /(2 W)$,

$$
u(t)=\sum_{k=-\infty}^{\infty} u(k T) \operatorname{sinc}\left(\frac{t-k T}{T}\right) .
$$

$$
\begin{aligned}
& \widehat{u}(f)=\sum_{k} u_{k} e^{-2 \pi i k \frac{f}{2 W}} \operatorname{rect}\left(\frac{f}{2 W}\right) \\
& u_{k}=\frac{1}{2 W} \int_{-W}^{W} \widehat{u}(f) e^{2 \pi i k \frac{f}{2 W}} d f
\end{aligned}
$$

Fourier series T/F dual
 DTFT

$$
\begin{aligned}
u(t) & =\sum_{k=-\infty}^{\infty} \widehat{u}_{k} e^{2 \pi i k t / T} \operatorname{rect}\left(\frac{t}{T}\right) \\
\widehat{u}_{k} & =\frac{1}{T} \int_{-T / 2}^{T / 2} u(t) e^{-2 \pi i k t / T} d t
\end{aligned}
$$

Fourier

 transform
Sampling

$$
\begin{aligned}
u(t) & =\sum_{k=-\infty}^{\infty} 2 W u_{k} \operatorname{sinc}(2 W t-k) \\
u_{k} & =\frac{1}{2 W} u\left(\frac{k}{2 W}\right)
\end{aligned}
$$

Segmenting an \mathcal{L}_{2} frequency function into segments $\hat{v}_{m}(f) \longleftrightarrow v_{m}(t)$ of width $1 / T$,

$$
u(t)=\text { I.i.m. } \sum_{m, k} v_{m}(k T) \operatorname{sinc}\left(\frac{t}{T}-k\right) e^{2 \pi i m t / T}
$$

Both this and the T -spaced truncated sinusoid expansion

$$
u(t)=\text { I.i.m. } \sum_{m, k} \widehat{u}_{k, m} e^{2 \pi i k t / T} \operatorname{rect}\left(\frac{t}{T}-m\right)
$$

break the function into increments of time duration T and frequency duration $1 / T$.

ALIASING

Suppose we approximate a function $u(t)$ that is not quite baseband limited by the sampling expansion $s(t) \approx u(t)$.

$$
\begin{gathered}
s(t)=\sum_{k} u(k T) \operatorname{sinc}\left(\frac{t}{T}-k\right) \\
u(t)=\text { I.i.m. } \sum_{m, k} v_{m}(k T) \operatorname{sinc}\left(\frac{t}{T}-k\right) e^{2 \pi i m t / T} \\
s(k T)=u(k T)=\sum_{m} v_{m}(k T) \quad \text { (Aliasing) } \\
s(t)=\sum_{k} \sum_{m} v_{m}(k T) \operatorname{sinc}\left(\frac{t}{T}-k\right) .
\end{gathered}
$$

ALIASING

Suppose we approximate a function $u(t)$ that is not quite baseband limited by the sampling expansion $s(t) \approx u(t)$.

$$
\begin{gathered}
s(t)=\sum_{k} u(k T) \operatorname{sinc}\left(\frac{t}{T}-k\right) \\
u(t)=\text { I.i.m. } \sum_{m, k} v_{m}(k T) \operatorname{sinc}\left(\frac{t}{T}-k\right) e^{2 \pi i m t / T} \\
s(k T)=u(k T)=\sum_{m} v_{m}(k T) \quad \text { (Aliasing) } \\
s(t)=\sum_{k} \sum_{m} v_{m}(k T) \operatorname{sinc}\left(\frac{t}{T}-k\right) .
\end{gathered}
$$

Theorem: Let $\widehat{u}(f)$ be \mathcal{L}_{2}, and satisfy

$$
\lim _{|f| \rightarrow \infty} \widehat{u}(f)|f|^{1+\varepsilon}=0 \quad \text { for } \varepsilon>0
$$

Then $\widehat{u}(f)$ is \mathcal{L}_{1}, and the inverse transform $u(t)$ is continuous and bounded. For $T>0$, the sampling approx. $s(t)=\sum_{k} u(k T) \operatorname{sinc}\left(\frac{t}{T}+k\right)$ is bounded and continuous. $\hat{s}(f)$ satisfies

$$
\widehat{s}(f)=\text { I.i.m. } \sum_{m} \widehat{u}\left(f+\frac{m}{T}\right) \operatorname{rect}[f T] .
$$

\mathcal{L}_{2} AS A VECTOR SPACE

Orthonormal expansions represent each \mathcal{L}_{2} function as sequence of numbers.

View functions as vectors in inner product space, sequence as representation in a basis.

Same as \mathbb{R}^{k} or \mathbb{C}^{k} except for need of limiting operations.

The limits always exist for \mathcal{L}_{2} functions in the sense of \mathcal{L}_{2} convergence.

Any two functions that are equal except on a set of measure 0 are viewed as equal (same equivalence class).

Theorem: (1D Projection) Let v and $u \neq 0$ be arbitrary vectors in a real or complex inner product space. Then there is a unique scalar α for which $\langle\mathbf{v}-\alpha \mathbf{u}, \mathbf{u}\rangle=0$. That α is given by $\alpha=\langle\mathbf{v}, \mathbf{u}\rangle /\|\mathbf{u}\|^{2}$.

Proof: Calculate $\langle\mathbf{v}-\alpha \mathbf{u}, \mathbf{u}\rangle$ for an arbitrary scalar α and find the conditions under which it is zero:

$$
\langle\mathbf{v}-\alpha \mathbf{u}, \mathbf{u}\rangle=\langle\mathbf{v}, \mathbf{u}\rangle-\alpha\langle\mathbf{u}, \mathbf{u}\rangle=\langle\mathbf{v}, \mathbf{u}\rangle-\alpha\|\mathbf{u}\|^{2}
$$

which is equal to zero if and only if $\alpha=\langle\mathbf{v}, \mathbf{u}\rangle /\|\mathbf{u}\|^{2}$.

Finite Projection: Assume that $\left\{\phi_{1}, \ldots, \phi_{n}\right\}$ is an orthonormal basis for an n-dimensional subspace $\mathcal{S} \subset \mathcal{V}$. For each $\mathbf{v} \in \mathcal{V}$, there is a unique $\mathbf{v}_{\mid \mathcal{S}} \in \mathcal{S}$ such that $\left\langle\mathbf{v}-\mathbf{v}_{\mid S}, \mathbf{s}\right\rangle=0$ for all $\mathbf{s} \in \mathcal{S}$. Furthermore,

$$
\begin{gathered}
\mathbf{v}_{\mid \mathcal{S}}=\sum_{j}\left\langle\mathbf{v}, \phi_{\mathbf{j}}\right\rangle \phi_{\mathbf{j}} . \\
\|\mathbf{v}\|^{2}=\left\|\mathbf{v}_{\mid \mathcal{S}}\right\|^{2}+\left\|\mathbf{v}_{\perp \mathcal{S}}\right\|^{2} \quad \text { (Pythagoras) } \\
0 \leq\left\|\mathbf{v}_{\mid \mathcal{S}}\right\|^{2} \leq\|\mathbf{v}\|^{2} \quad \text { (Norm bounds) } \\
0 \leq \sum_{j=1}^{n}\left|\left\langle\mathbf{v}, \phi_{j}\right\rangle\right|^{2} \leq\|\mathbf{v}\|^{2} \quad \text { (Bessel's inequality). }
\end{gathered}
$$

Gram-Schmidt: Given basis $\mathbf{s}_{1}, \ldots, \mathbf{s}_{n}$ for an inner product subspace, find an orthonormal basis. Let $\phi_{1}=\mathbf{s}_{1} /\left\|\mathbf{s}_{1}\right\|$. For each k,

$$
\phi_{k+1}=\frac{\left(\mathbf{s}_{k+1}\right) \perp \mathcal{S}_{k}}{\left\|\left(s_{k+1}\right) \perp \mathcal{S}_{k}\right\|}
$$

Infinite dimensional Projection theorem:
Let $\left\{\phi_{m}, 1 \leq m<\infty\right\}$ be a set of orthonormal functions, and let v be any \mathcal{L}_{2} vector. Then there is a unique \mathcal{L}_{2} vector \mathbf{u} such that $\mathbf{v}-\mathbf{u}$ is orthogonal to each ϕ_{n} and

$$
\lim _{n \rightarrow \infty}\left\|\mathbf{u}-\sum_{m=1}^{n}\left\langle\mathbf{v}, \phi_{m}\right\rangle \phi_{m}\right\|=0
$$

Nyquist: Convert $\left\{u_{k}\right\}$ into waveform $u(t)=$ $\sum_{k} u_{k} p(t-k T)$.

At receiver, filter by $q(t)$, with combined effect $g(t)=p(t) * q(t)$.

Want $g(t)$ to be ideal Nyquist, i.e., $g(k T)=\delta_{k}$. $g(t)$ is ideal Nyquist iff

$$
\sum_{m} \hat{g}(f+m / T) \operatorname{rect}(f T)=T \operatorname{rect}(f T)
$$

Choose $\hat{g}(f)$ so that it cuts off quickly at W, but $g(t)$ cuts off relatively quickly at $1 / T$.

Choose non-negative and symmetric (raised cosine for example)

Choose $q(t)=p^{*}(-t)$. Then $p(t)$ is orthogonal to its shifts.

A random process $\{Z(t)\}$ is a collection of rv's, one for each $t \in \mathbb{R}$.

For each epoch $t \in \mathbb{R}$, the $\mathrm{rv} Z(t)$ is a function $Z(t, \omega)$ mapping sample points $\omega \in \Omega$ to real numbers.

For each $\omega \in \Omega,\{\mathbb{Z}(t, \omega\}$ is sample function $\{z(t)\}$.
A random process is defined by a rule establishing a joint density $f_{Z\left(t_{1}\right), \ldots, Z\left(t_{k}\right)}\left(z_{1}, \ldots, z_{k}\right)$ for all k, t_{1}, \ldots, t_{k} and z_{1}, \ldots, z_{k}.

Our favorite way to do this is $\mathbf{Z}(t)=\sum Z_{i} \phi_{i}(t)$.
Joint densities on Z_{1}, Z_{2}, \ldots define $\{\mathbf{Z}(t)\}$.

A random vector $\mathbf{Z}=\left(Z_{1}, \ldots, z_{k}\right)^{\boldsymbol{\top}}$ of linearly independent rv's is jointly Gauss iff

1. $\mathrm{Z}=\mathrm{AN}$ for normal rv N ,
2. $\mathbf{f}_{\mathbf{Z}}(\mathbf{z})=\frac{1}{(2 \pi)^{k / 2} \sqrt{\operatorname{det}\left(\mathbf{K}_{\mathbf{Z}}\right)}} \exp \left[-\frac{1}{2} \mathbf{Z}^{\top} \mathbf{K}_{\mathbf{Z}}^{-1} \mathbf{z}\right]$.
3. $\mathbf{f}_{\mathbf{Z}}(\mathbf{z})=\Pi_{j=1}^{k} \frac{1}{\sqrt{2 \pi \lambda_{j}}} \exp \left[\frac{-\left|\left\langle\mathbf{z}, \mathbf{q}_{j}\right\rangle\right|^{2}}{2 \lambda_{j}}\right] \quad$ for $\left\{\mathbf{q}_{j}\right\}$ orthonormal, $\left\{\lambda_{j}\right\}$ positive.
4. All linear combinations of Z are Gaussian.

A linear functional of a rp is a rv given by

$$
V=\int Z(t) g(t) d t
$$

This means that for all $\omega \in \Omega$,

$$
V(\omega)=\langle Z(t, \omega), g(t)\rangle=\int_{-\infty}^{\infty} Z(t, \omega) g(t) d t .
$$

If $Z(t)=\sum_{j} Z_{j} \phi_{j}(t)$ is Gaussian process, then $V=\sum_{j} Z_{j}\left\langle\phi_{j}, g\right\rangle$ is Gaussian.

$$
\begin{gathered}
Z(t) \longrightarrow h(t) \longrightarrow V(\tau) \text { is Gaussian } \mathbf{p} \\
V(\tau, \omega)=\int_{-\infty}^{\infty} Z(t, \omega) h(\tau-t) d t \\
=\sum_{j} Z_{j}(\omega) \int_{-\infty}^{\infty} \phi_{j}(t) h(\tau-t) d t .
\end{gathered}
$$

$\{Z(t) ; t \in \mathbb{R}\}$ is stationary if $Z\left(t_{1}\right), \ldots, Z\left(t_{k}\right)$ and $Z\left(t_{1}+\tau\right), \ldots, Z\left(t_{k}+\tau\right)$ have same distribution for all τ, all k, and all t_{1}, \ldots, t_{k}.

Stationary implies that

$$
\mathbf{K}_{\mathbf{Z}}\left(t_{1}, t_{2}\right)=\mathbf{K}_{\mathbf{Z}}\left(t_{1}-t_{2}, 0\right)=\tilde{\mathbf{K}}_{\mathbf{Z}}\left(t_{1}-t_{2}\right) .
$$

Note that $\tilde{\mathbf{K}}_{\mathbf{Z}}(t)$ is real and symmetric.
A process is wide sense stationary (WSS) if $\mathbf{E}[Z(t)]=\mathbf{E}[Z(0)]$ and $\mathbf{K}_{\mathbf{Z}}\left(t_{1}, t_{2}\right)=\mathbf{K}_{\mathbf{Z}}\left(t_{1}-t_{2}, 0\right)$ for all t, t_{1}, t_{2}.

A Gaussian process is stationary if it is WSS.

An important example is $V(t)=\sum_{k} V_{k} \operatorname{sinc}\left(\frac{t-k T}{T}\right)$.
If $\mathbb{E}\left[V_{k} V_{i}\right]=\sigma^{2} \delta_{i, k}$, then

$$
\mathbf{K}_{\mathbf{V}}(t, \tau)=\sigma^{2} \sum_{k} \operatorname{sinc}\left(\frac{t-k T}{T}\right) \operatorname{sinc}\left(\frac{\tau-k T}{T}\right)
$$

Then $\{V(t) ; t \in \mathbb{R}\}$ is WSS with

$$
\tilde{\mathbf{K}}_{\mathbf{V}}(t-\tau)=\sigma^{2} \operatorname{sinc}\left(\frac{t-\tau}{T}\right) .
$$

The sample functions of a WSS non-zero process are not \mathcal{L}_{2}.

The covariance $\tilde{\mathbf{K}}_{\mathbf{V}}(t)$ is \mathcal{L}_{2} in cases of physical relevance. It has a Fourier transform called the spectral density.

$$
S_{\mathbf{V}}(f)=\int \tilde{\mathbf{K}}_{\mathbf{V}}(t) e^{-2 \pi i f t} d t
$$

The spectral density is real and symmetric.

Let $V_{j}=\int Z(t) g_{j}(t) d t$. Then

$$
\begin{aligned}
\mathbf{E}\left[V_{i} V_{j}\right] & =\int_{t-\infty}^{\infty} g_{i}(t) \tilde{\mathbf{K}}_{\mathbf{Z}}(t-\tau) g_{j}(\tau) d t d \tau \\
& =\int \widehat{g}_{i}(f) S_{\mathbf{Z}}(f) \hat{g}_{j}^{*}(f) d f
\end{aligned}
$$

If $\widehat{g}_{i}(f)$ and $\widehat{g}_{j}(f)$ do not overlap in frequency, then $\mathrm{E}\left[V_{i} V_{j}\right]=0$.

This means that for a WSS process, no linear functional in one frequency band is correlated with any linear functional in another band.

For a Gaussian stationary process, all linear functionals in one band are independent of all linear functionals in any other band; different frequency bands contain independent noise.

Summary of binary detection with vector observation in iid Gaussian noise.:

First remove center point from signal and its effect on observation.

Then signal is $\pm \mathbf{a}$. and $\mathbf{v}= \pm \mathbf{a}+\mathbf{Z}$.
Find $\langle\mathbf{v}, \mathbf{a}\rangle$ and compare with threshold (0 for ML case).

This does not depend on the vector basis - becomes trivial if a normalized is a basis vector.

Received components orthogonal to signal are irrelevant.

Review: Theorem of irrelevance

Given the signal set $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{M}\right\}$, we transmit $X(t)=\sum_{j=1}^{k} a_{m, j} \phi_{j}(t)$ and receive $Y(t)=$ $\sum_{j=1}^{\infty} Y_{j} \phi_{j}(t)$ where $Y_{j}=X_{j}+Z_{j}$ for $1 \leq j \leq k$ and $Y_{j}=Z_{j}$ for $j>k$.

Assume $\left\{Z_{j} ; j \leq k\right\}$ are iid and $\mathcal{N}\left(0, N_{0} / 2\right)$. Assume $\left\{Z_{j}: j>k\right\}$ are arbitrary rv's that are independent of $\left\{X_{j}, Z_{j} ; j \leq k\right\}$.

Then the MAP detector depends only on Y_{1}, \ldots, Y_{j}. The error probability depends only on $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{M}\right\}$, and in fact, only on $\left\langle\mathbf{a}_{j}, \mathbf{a}_{k}\right\rangle$ for each $1 \leq j, k \leq M$.

Alll orthonormal expansions are the same; noise and signal outside of signal subspace can be ignored.

Orthogonal and simplex codes have the same error probability. The energy difference is $1-\frac{1}{m}$.

Orthogonal and biorthogonal codes have the same energy but differ by about 2 in error probability.

For orthogonal codes, take codewords as basis and normalize by $W_{j}=Y_{j} \sqrt{2 / N_{0}}$. Thus the input for the first codeword is $(\alpha, 0, \ldots, 0)$ where $\alpha=\sqrt{2 E / N_{0}}$. Then $W_{j}=\mathcal{N}(0,1)$ for $j \neq 0$ and $W_{1}=a+\mathcal{N}(0,1)$.

$$
\operatorname{Pr}(e)=\int_{-\infty}^{\infty} f_{W_{1}}\left(w_{1}\right) \operatorname{Pr}\left(\bigcup_{j=2}^{M}\left\{W_{j} \geq w_{1}\right\}\right) d w_{1}
$$

Bottom line: Let $\log M=b$ and $E_{b}=E / b$. Then
$\operatorname{Pr}(e) \leq\left\{\begin{array}{lll}\exp \left[-b\left(\sqrt{\mathbf{E}_{b} / N_{0}}-\sqrt{\ln 2}\right)^{2}\right] & \text { for } & \frac{E_{b}}{4 N_{0}} \leq \ln 2<\frac{E_{b}}{N_{0}} \\ \exp \left[-b\left(\frac{\mathbf{E}_{b}}{2 N_{0}}-\ln 2\right)\right] & \text { for } & \ln 2<\frac{E_{b}}{4 N_{0}}\end{array}\right.$
This says we can get arbitrarily small error probability so long as $E_{b} / N_{0}>\ln 2$.

This is Shannon's capacity formula for unlimited bandwidth WGN transmission.

Review of multipath model

The response to $\exp [2 \pi i f t]$ over J propagation paths with attenuation β_{j} and delay $\tau_{j}(t)$ is

$$
\begin{aligned}
y_{f}(t) & =\sum_{j=1}^{J} \beta_{j} \exp \left[2 \pi i f t-\tau_{j}(t)\right] \\
& =\widehat{h}(f, t) \exp [2 \pi i f t]
\end{aligned}
$$

The response to $x(t)=\int_{-\infty}^{\infty} \hat{x}(f) \exp [2 \pi i f t]$ is then

$$
\begin{aligned}
& y(t)=\int_{-\infty}^{\infty} \hat{x}(f) \hat{h}(f, t) \exp (2 \pi i f t) d f \\
&=\int x(t-\tau) h(\tau, t) d \tau \quad \text { where } \\
& h(\tau, t) \longleftrightarrow \widehat{h}(f, t) ; \quad h(\tau, t)=\sum_{j} \beta_{j} \delta\left\{\tau-\tau_{j}(t)\right\}
\end{aligned}
$$

How do we define fading for a single frequency input?

$$
\begin{aligned}
y_{f}(t) & =\widehat{h}(f, t) \exp [2 \pi i f t] \\
& =|\widehat{h}(f, t)| \exp [2 \pi i f t+i \angle \widehat{h}(f, t)] \\
\Re\left[y_{f}(t)\right] & =|\widehat{h}(f, t)| \cos [2 \pi f t+\angle \widehat{h}(f, t)]
\end{aligned}
$$

The envelope of this is $|\hat{h}(f, t)|$, and this is defined as the fading.
$\hat{h}(f, t)=\sum_{j} \beta_{j} \exp \left[-2 \pi i f \tau_{j}(t)\right]=\sum_{j} \exp \left[2 \pi i \mathcal{D}_{j} t-2 \pi i f \tau_{j}^{o}\right]$
This contains frequencies ranging from $\min \mathcal{D}_{j}$ to $\max \mathcal{D}_{j}$. Define the Doppler spread of the channel as

$$
\mathcal{D}=\max \mathcal{D}_{j}-\min \mathcal{D}_{j}
$$

For any frequency $\Delta,|\widehat{h}(f, t)|=\left|e^{-2 \pi i \Delta t} \hat{h}(f, t)\right|$

$$
\widehat{h}(f, t)=\sum_{j} \exp \left\{2 \pi i \mathcal{D}_{j} t-2 \pi i f \tau_{j}^{o}\right\}
$$

Choose $\Delta=\left[\max \mathcal{D}_{j}+\min \mathcal{D}\right] / 2$. Then
$\exp (-2 \pi i t \Delta) \widehat{h}(f, t)=\sum_{j=1}^{J} \beta_{j} \exp \left\{2 \pi i t\left(\mathcal{D}_{j}-\Delta\right)-2 \pi i f \tau_{j}^{o}\right\}$
This waveform is baseband limited to $\mathcal{D} / 2$. Its magnitude is the fading. The fading process is the magnitude of a waveform baseband limited to $\mathcal{D} / 2$. The coherence time of the channel is defined as

$$
\mathcal{T}_{\mathrm{coh}}=\frac{1}{2 \mathcal{D}}
$$

\mathcal{D} is linear in $f ; \mathcal{T}_{\text {coh }}$ goes as $1 / f$.

Review of time Spread

$$
\widehat{h}(f, t)=\sum_{j} \beta_{j} \exp \left[-2 \pi i f \tau_{j}(t)\right]
$$

For any given t, define

$$
\mathcal{L}=\max \tau_{j}(t)-\min \tau_{j}(t) ; \quad \mathcal{F}_{\mathrm{coh}}=\frac{1}{2 \mathcal{L}}
$$

The fading at f is
$|\widehat{h}(f, t)|=\left|\sum_{j} \exp \left[2 \pi i\left(\tau_{j}(t)-\tau^{\prime}\right) f\right]\right| \quad$ (ind. of τ^{\prime})
Let $\tau^{\prime}=\tau_{\text {mid }}=\left(\max \tau_{j}(t)+\min \tau_{j}(t)\right) / 2$. The fading is the magnitude of a function of f with transform limited to $\mathcal{L} / 2 . \mathcal{T}_{\text {coh }}$ is a gross estimate of the frequency over which the fading changes significantly.

Baseband system functions

The baseband response to a complex baseband input $u(t)$ is

$$
\begin{aligned}
v(t) & =\int_{-W / 2}^{W / 2} \widehat{u}(f) \widehat{h}\left(f+f_{c}, t\right) e^{2 \pi i(f-\Delta) t} d f \\
& =\int_{-W / 2}^{W / 2} \widehat{u}(f) \hat{g}(f, t) e^{2 \pi i f t} d f
\end{aligned}
$$

where $\hat{g}(f, t)=\widehat{h}\left(f+f_{c}, t\right) e^{-2 \pi i \Delta t}$ is the baseband system function and $\Delta=\tilde{f}_{c}-f_{c}$ is the frequency offset in demodulation.

By the same relationship between frequency and time we used for bandpass,

$$
v(t)=\int_{-\infty}^{\infty} u(t-\tau) g(\tau, t) d \tau
$$

$$
\begin{aligned}
\hat{h}(f, t) & =\sum_{j} \beta_{j} \exp \left\{-2 \pi i f \tau_{j}(t)\right\} \\
\widehat{g}(f, t) & =\sum_{j} \beta_{j} \exp \left\{-2 \pi i\left(f+f_{c}\right) \tau_{j}(t)-2 \pi i \Delta t\right\} \\
\widehat{g}(f, t) & =\sum_{j} \gamma_{j}(t) \exp \left\{-2 \pi i f \tau_{j}(t)\right\} \quad \text { where } \\
\gamma_{j}(t) & =\beta_{j} \exp \left\{-2 \pi i f_{c} \tau_{j}(t)-2 \pi i \Delta t\right\} \\
& =\beta_{j} \exp \left\{2 \pi i\left[\mathcal{D}_{j}-\Delta\right] t-2 \pi i f_{c} \tau_{j}^{o}\right. \\
g(\tau, t) & =\sum_{j} \gamma_{j}(t) \delta\left(\tau-\tau_{j}(t)\right) \\
v(t) & =\sum_{j} \gamma_{j}(t) u\left(t-\tau_{j}(t)\right)
\end{aligned}
$$

Flat fading

Flat fading is defined as fading where the bandwidth $W / 2$ of $u(t)$ is much smaller than $\mathcal{F}_{\text {coh }}$.

$$
\begin{aligned}
& \text { For }|f|<W / 2 \ll \mathcal{F}_{\text {coh }}, \\
& \begin{array}{l}
\widehat{g}(f, t)=\sum_{j} \gamma_{j}(t) \exp \left\{-2 \pi i f \tau_{j}(t)\right\} \approx \widehat{g}(0, t)=\sum_{j} \gamma_{j}(t) \\
\qquad v(t)=\int_{-W / 2}^{W / 2} \widehat{u}(f) \widehat{g}(f, t) e^{2 \pi i f t} d f \approx u(t) \sum_{j} \gamma_{j}(t)
\end{array}
\end{aligned}
$$

Equivalently, $u(t)$ is approximately constant over intervals much less than \mathcal{L}.

$$
v(t)=\sum_{j} \gamma_{j}(t) u\left(t-\tau_{j}(t)\right)=u(t) \sum_{j} \gamma_{j}(t)
$$

MIT OpenCourseWare
http://ocw.mit.edu
6.450 Principles of Digital Communication I

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

