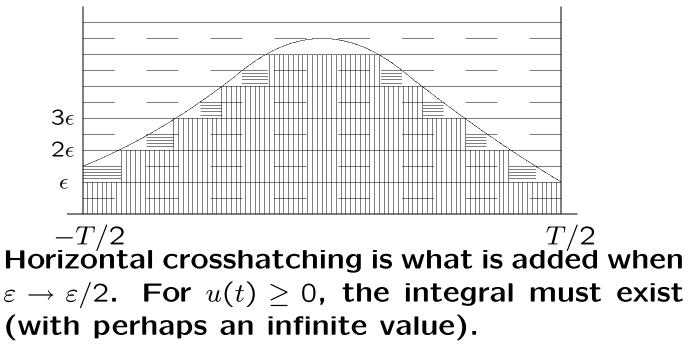
MEASURABLE FUNCTIONS

A function $\{u(t) : \mathbb{R} \to \mathbb{R}\}$ is measurable if $\{t : u(t) < b\}$ is measurable for each $b \in \mathbb{R}$.

The Lebesgue integral exists if the function is measurable and if the limit in the figure exists.



Theorem: Let $\{u(t) : [-T/2, T/2] \rightarrow \mathbb{C}\}$ be an \mathcal{L}_2 function. Then for each $k \in \mathbb{Z}$, the Lebesgue integral

$$\hat{u}_k = \frac{1}{T} \int_{-T/2}^{T/2} u(t) \, e^{-2\pi i k t/T} \, dt$$

exists and satisfies $|\hat{u}_k| \leq \frac{1}{T} \int |u(t)| dt < \infty$. Furthermore,

$$\lim_{k_0 \to \infty} \int_{-T/2}^{T/2} \left| u(t) - \sum_{k=-k_0}^{k_0} \widehat{u}_k e^{2\pi i k t/T} \right|^2 dt = 0,$$

where the limit is monotonic in k_0 .

Given $\{\hat{u}_k; k \in \mathbb{Z}\}$, $\sum |\hat{u}_k|^2 < \infty$, the \mathcal{L}_2 function u(t) exists

Functions not limited in time

We can segment an arbitrary \mathcal{L}_2 function into segments of any width *T*. The *m*th segment is $u_m(t) = u(t) \operatorname{rect}(t/T - m)$. We then have

$$u(t) = 1.i.m._{m_0 \to \infty} \sum_{m=-m_0}^{m_0} u_m(t)$$

This works because u(t) is \mathcal{L}_2 . The energy in $u_m(t)$ must go to 0 as $m \to \infty$.

$$u_m(t) = \text{I.i.m.} \sum_k \hat{u}_{k,m} e^{2\pi i k t/T} \operatorname{rect}(\frac{t}{T} - m), \text{ where}$$
$$\hat{u}_{k,m} = \frac{1}{T} \int_{-\infty}^{\infty} u(t) e^{-2\pi i k t/T} \operatorname{rect}(\frac{t}{T} - m) dt,$$
$$u(t) = \text{I.i.m.} \sum_{k,m} \hat{u}_{k,m} e^{2\pi i k t/T} \operatorname{rect}(\frac{t}{T} - m)$$

Plancherel 1: There is an \mathcal{L}_2 function $\hat{u}(f)$ (the Fourier transform of u(t)), which satisfies the energy equation and

$$\lim_{A \to \infty} \int_{-\infty}^{\infty} |\hat{u}(f) - \hat{v}_A(f)|^2 dt = 0 \quad \text{where}$$

$$\widehat{v}_A(f) = \int_{-A}^{A} u(t) e^{-2\pi i f t} dt.$$

We denote this function $\hat{u}(f)$ as

$$\hat{u}(f) = \text{I.i.m.} \int_{-\infty}^{\infty} u(t) e^{2\pi i f t} dt.$$

Although $\{\hat{v}_A(f)\}\$ is continuous for all $A \in \mathbb{R}$, $\hat{u}(f)$ is not necessarily continuous. Similarly, for B > 0, consider the finite bandwidth approximation $\hat{u}(f)\operatorname{rect}(\frac{f}{2B})$. This is \mathcal{L}_1 as well as \mathcal{L}_2 ,

$$u_B(t) = \int_{-B}^{B} \widehat{u}(f) e^{2\pi i f t} df \qquad (1)$$

exists for all $t \in \mathbb{R}$ and is continuous.

Plancherel 2: For any \mathcal{L}_2 function u(t), let $\hat{u}(f)$ be the FT of Plancherel 1. Then

$$\lim_{B \to \infty} \int_{-\infty}^{\infty} |u(t) - w_B(t)|^2 dt = 0.$$
 (2)

$$u(t) = \text{I.i.m.} \int_{-\infty}^{\infty} \hat{u}(f) e^{2\pi i f t} df$$

<u>All</u> \mathcal{L}_2 functions have Fourier transforms in this sense.

The DTFT (Discrete-time Fourier transform) is the $t \leftrightarrow f$ dual of the Fourier series.

Theorem (DTFT) Assume $\{\hat{u}(f) : [-W, W] \rightarrow \mathbb{C}\}$ is \mathcal{L}_2 (and thus also \mathcal{L}_1). Then

$$u_k = \frac{1}{2W} \int_{-W}^{W} \hat{u}(f) e^{2\pi i k f/(2W)} df$$

is a finite complex number for each $k \in \mathbb{Z}$. Also

$$\lim_{k_0 \to \infty} \int_{-W}^{W} \left| \hat{u}(f) - \sum_{k=-k_0}^{k_0} u_k e^{-2\pi i k f/(2W)} \right|^2 df = 0,$$

$$\hat{u}(f) = \text{I.i.m.} \sum_{k} u_k e^{-2\pi i f t/(2W)} \text{rect}\left(\frac{f}{2W}\right)$$

Sampling Theorem: Let $\{\hat{u}(f) : [-WW] \to \mathbb{C}\}$ be \mathcal{L}_2 (and thus also \mathcal{L}_1). For u(t) in (??), let T = 1/(2W). Then the inverse transform u(t) is continuous, \mathcal{L}_2 , and bounded by $u(t) \leq \int_{-W}^{W} |\hat{u}(f)| df$. For T = 1/(2W),

$$u(t) = \sum_{k=-\infty}^{\infty} u(kT) \operatorname{sinc}\left(\frac{t-kT}{T}\right).$$

$$\begin{aligned} \hat{u}(f) &= \sum_{k} u_{k} e^{-2\pi i k} \frac{f}{2W} \operatorname{rect}\left(\frac{f}{2W}\right) \\ u_{k} &= \frac{1}{2W} \int_{-W}^{W} \hat{u}(f) e^{2\pi i k} \frac{f}{2W} \, df \\ \hline \mathbf{Fourier} \quad \mathbf{Fourier} \quad \mathbf{Fourier} \\ \mathbf{series} \quad \mathbf{T}/\mathbf{F} \, \mathbf{dual} \quad \mathbf{DTFT} \\ u(t) &= \sum_{k=-\infty}^{\infty} \hat{u}_{k} e^{2\pi i k t/T} \operatorname{rect}\left(\frac{t}{T}\right) \quad \mathbf{Fourier} \\ \mathbf{transform} \\ \hat{u}_{k} &= \frac{1}{T} \int_{-T/2}^{T/2} u(t) e^{-2\pi i k t/T} \, dt \quad \mathbf{Sampling} \\ u(t) &= \sum_{k=-\infty}^{\infty} 2W u_{k} \operatorname{sinc}(2Wt-k) \\ u_{k} &= \frac{1}{2W} u\left(\frac{k}{2W}\right) \end{aligned}$$

Segmenting an \mathcal{L}_2 frequency function into segments $\hat{v}_m(f) \longleftrightarrow v_m(t)$ of width 1/T,

$$u(t) = \text{I.i.m.} \sum_{m,k} v_m(kT) \operatorname{sinc} \left(\frac{t}{T} - k\right) e^{2\pi i m t/T}$$

Both this and the T-spaced truncated sinusoid expansion

$$u(t) = \text{I.i.m.} \sum_{m,k} \hat{u}_{k,m} e^{2\pi i k t/T} \text{rect} \left(\frac{t}{T} - m\right)$$

break the function into increments of time duration T and frequency duration 1/T.

ALIASING

Suppose we approximate a function u(t) that is not quite baseband limited by the sampling expansion $s(t) \approx u(t)$.

$$s(t) = \sum_{k} u(kT) \operatorname{sinc}\left(\frac{t}{T} - k\right).$$

$$u(t) = \text{I.i.m.} \sum_{m,k} v_m(kT) \operatorname{sinc} \left(\frac{t}{T} - k\right) e^{2\pi i m t/T}$$

$$s(kT) = u(kT) = \sum_{m} v_m(kT)$$
 (Aliasing)

$$s(t) = \sum_{k} \sum_{m} v_m(kT) \operatorname{sinc}\left(\frac{t}{T} - k\right).$$

ALIASING

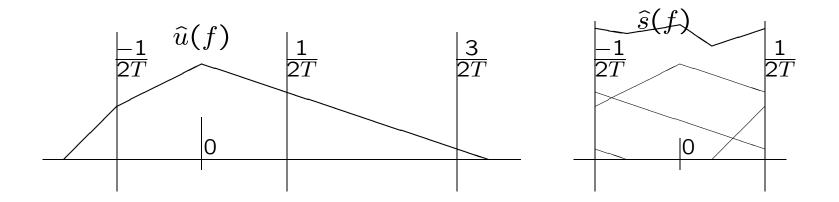
Suppose we approximate a function u(t) that is not quite baseband limited by the sampling expansion $s(t) \approx u(t)$.

$$s(t) = \sum_{k} u(kT) \operatorname{sinc}\left(\frac{t}{T} - k\right).$$

$$u(t) = \text{I.i.m.} \sum_{m,k} v_m(kT) \operatorname{sinc} \left(\frac{t}{T} - k\right) e^{2\pi i m t/T}$$

$$s(kT) = u(kT) = \sum_{m} v_m(kT)$$
 (Aliasing)

$$s(t) = \sum_{k} \sum_{m} v_m(kT) \operatorname{sinc}\left(\frac{t}{T} - k\right).$$



Theorem: Let $\hat{u}(f)$ be \mathcal{L}_2 , and satisfy

$$\lim_{|f|\to\infty} \hat{u}(f)|f|^{1+\varepsilon} = 0 \quad \text{for } \varepsilon > 0.$$

Then $\hat{u}(f)$ is \mathcal{L}_1 , and the inverse transform u(t) is continuous and bounded. For T > 0, the sampling approx. $s(t) = \sum_k u(kT) \operatorname{sinc}(\frac{t}{T} + k)$ is bounded and continuous. $\hat{s}(f)$ satisfies

$$\hat{s}(f) = \text{I.i.m.} \sum_{m} \hat{u}(f + \frac{m}{T}) \operatorname{rect}[fT].$$

\mathcal{L}_2 AS A VECTOR SPACE

Orthonormal expansions represent each \mathcal{L}_2 function as sequence of numbers.

View functions as vectors in inner product space, sequence as representation in a basis.

Same as \mathbb{R}^k or \mathbb{C}^k except for need of limiting operations.

The limits always exist for \mathcal{L}_2 functions in the sense of \mathcal{L}_2 convergence.

Any two functions that are equal except on a set of measure 0 are viewed as equal (same equivalence class).

Theorem: (1D Projection) Let v and $u \neq 0$ be arbitrary vectors in a real or complex inner product space. Then there is a unique scalar α for which $\langle v - \alpha u, u \rangle = 0$. That α is given by $\alpha = \langle v, u \rangle / ||u||^2$.

Proof: Calculate $\langle v - \alpha u, u \rangle$ for an arbitrary scalar α and find the conditions under which it is zero:

$$\langle \mathbf{v} - \alpha \mathbf{u}, \mathbf{u} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle - \alpha \langle \mathbf{u}, \mathbf{u} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle - \alpha \|\mathbf{u}\|^2,$$

which is equal to zero if and only if $\alpha = \langle \mathbf{v}, \mathbf{u} \rangle / \|\mathbf{u}\|^2$.

Finite Projection: Assume that $\{\phi_1, \ldots, \phi_n\}$ is an orthonormal basis for an *n*-dimensional subspace $S \subset V$. For each $v \in V$, there is a unique $v_{|S} \in S$ such that $\langle v - v_{|S}, s \rangle = 0$ for all $s \in S$. Furthermore,

$$\mathbf{v}_{|\mathcal{S}} = \sum_{j} \langle \mathbf{v}, \phi_{\mathbf{j}} \rangle \phi_{\mathbf{j}}.$$

$$\|\mathbf{v}\|^{2} = \|\mathbf{v}_{|\mathcal{S}}\|^{2} + \|\mathbf{v}_{\perp\mathcal{S}}\|^{2} \quad \text{(Pythagoras)}$$
$$0 \le \|\mathbf{v}_{|\mathcal{S}}\|^{2} \le \|\mathbf{v}\|^{2} \quad \text{(Norm bounds)}$$
$$\frac{n}{2}$$

$$0 \leq \sum_{j=1}^{n} |\langle \mathbf{v}, \phi_j \rangle|^2 \leq \|\mathbf{v}\|^2$$
 (Bessel's inequality).

Gram-Schmidt: Given basis s_1, \ldots, s_n for an inner product subspace, find an orthonormal basis. Let $\phi_1 = s_1/||s_1||$. For each k,

$$\phi_{k+1} = \frac{(\mathbf{s}_{k+1})_{\perp \mathcal{S}_k}}{\|(\mathbf{s}_{k+1})_{\perp \mathcal{S}_k}\|}$$

Infinite dimensional Projection theorem:

Let $\{\phi_m, 1 \le m < \infty\}$ be a set of orthonormal functions, and let v be any \mathcal{L}_2 vector. Then there is a unique \mathcal{L}_2 vector u such that v - u is orthogonal to each ϕ_n and

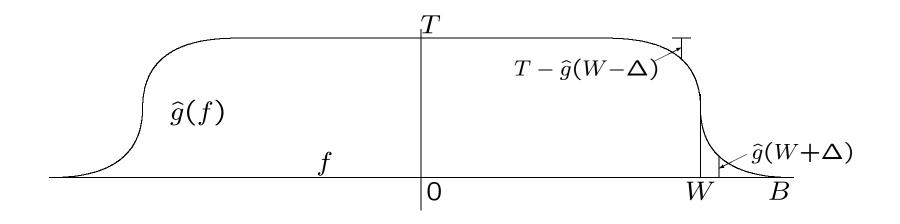
$$\lim_{n\to\infty} \|\mathbf{u} - \sum_{m=1}^n \langle \mathbf{v}, \phi_m \rangle \phi_m\| = 0.$$

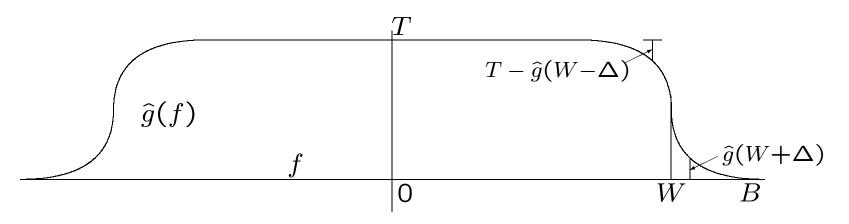
Nyquist: Convert $\{u_k\}$ into waveform $u(t) = \sum_k u_k p(t - kT)$.

At receiver, filter by q(t), with combined effect g(t) = p(t) * q(t).

Want g(t) to be ideal Nyquist, i.e., $g(kT) = \delta_k$. g(t) is ideal Nyquist iff

$$\sum_{m} \hat{g}(f + m/T) \operatorname{rect}(fT) = T \operatorname{rect}(fT)$$





Choose $\hat{g}(f)$ so that it cuts off quickly at W, but g(t) cuts off relatively quickly at 1/T.

Choose non-negative and symmetric (raised cosine for example)

Choose $q(t) = p^*(-t)$. Then p(t) is orthogonal to its shifts.

A random process $\{Z(t)\}$ is a collection of rv's, one for each $t \in \mathbb{R}$.

For each epoch $t \in \mathbb{R}$, the rv Z(t) is a function $Z(t, \omega)$ mapping sample points $\omega \in \Omega$ to real numbers.

For each $\omega \in \Omega$, $\{\mathbb{Z}(t, \omega\}$ is sample function $\{z(t)\}$.

A random process is defined by a rule establishing a joint density $f_{Z(t_1),...,Z(t_k)}(z_1,...,z_k)$ for all k, $t_1,...,t_k$ and $z_1,...,z_k$.

Our favorite way to do this is $Z(t) = \sum Z_i \phi_i(t)$.

Joint densities on Z_1, Z_2, \ldots define $\{Z(t)\}$.

A random vector $Z = (Z_1, \ldots, z_k)^T$ of linearly independent rv's is jointly Gauss iff

1. Z = AN for normal rv N,

2.
$$\mathbf{f}_{\mathbf{Z}}(\mathbf{z}) = \frac{1}{(2\pi)^{k/2}\sqrt{\det(\mathbf{K}_{\mathbf{Z}})|}} \exp\left[-\frac{1}{2}\mathbf{z}^{\mathsf{T}}\mathbf{K}_{\mathbf{Z}}^{-1}\mathbf{z}\right].$$

3.
$$f_{Z}(z) = \prod_{j=1}^{k} \frac{1}{\sqrt{2\pi\lambda_{j}}} \exp\left[\frac{-|\langle z, \mathbf{q}_{j} \rangle|^{2}}{2\lambda_{j}}\right]$$
 for $\{\mathbf{q}_{j}\}$ orthonormal, $\{\lambda_{j}\}$ positive.

4. All linear combinations of Z are Gaussian.

A linear functional of a rp is a rv given by

$$V = \int Z(t)g(t) \, dt.$$

This means that for all $\omega \in \Omega$,

$$V(\omega) = \langle Z(t,\omega), g(t) \rangle = \int_{-\infty}^{\infty} Z(t,\omega)g(t) dt.$$

If $Z(t) = \sum_j Z_j \phi_j(t)$ is Gaussian process, then $V = \sum_j Z_j \langle \phi_j, g \rangle$ is Gaussian.

$$Z(t) \longrightarrow h(t) \longrightarrow V(\tau)$$
 is Gaussian p

$$V(\tau,\omega) = \int_{-\infty}^{\infty} Z(t,\omega)h(\tau-t) dt$$
$$= \sum_{j} Z_{j}(\omega) \int_{-\infty}^{\infty} \phi_{j}(t)h(\tau-t) dt$$

 $\{Z(t); t \in \mathbb{R}\}$ is stationary if $Z(t_1), \ldots, Z(t_k)$ and $Z(t_1+\tau), \ldots, Z(t_k+\tau)$ have same distribution for all τ , all k, and all t_1, \ldots, t_k .

Stationary implies that

$$\mathbf{K}_{\mathbf{Z}}(t_1, t_2) = \mathbf{K}_{\mathbf{Z}}(t_1 - t_2, 0) = \tilde{\mathbf{K}}_{\mathbf{Z}}(t_1 - t_2).$$

Note that $\tilde{K}_{Z}(t)$ is real and symmetric.

A process is wide sense stationary (WSS) if E[Z(t)] = E[Z(0)] and $K_Z(t_1, t_2) = K_Z(t_1 - t_2, 0)$ for all t, t_1, t_2 .

A Gaussian process is stationary if it is WSS.

An important example is $V(t) = \sum_k V_k \operatorname{sinc}(\frac{t-kT}{T})$.

If $E[V_k V_i] = \sigma^2 \delta_{i,k}$, then

$$\mathbf{K}_{\mathbf{V}}(t,\tau) = \sigma^2 \sum_k \operatorname{sinc}\left(\frac{t-kT}{T}\right) \operatorname{sinc}\left(\frac{\tau-kT}{T}\right)$$

Then $\{V(t); t \in \mathbb{R}\}$ is WSS with

$$\tilde{\mathbf{K}}_{\mathbf{V}}(t-\tau) = \sigma^2 \operatorname{sinc}\left(\frac{t-\tau}{T}\right)$$

The sample functions of a WSS non-zero process are not \mathcal{L}_2 .

The covariance $\tilde{K}_{V}(t)$ is \mathcal{L}_{2} in cases of physical relevance. It has a Fourier transform called the spectral density.

$$S_{\mathbf{V}}(f) = \int \tilde{\mathbf{K}}_{\mathbf{V}}(t) e^{-2\pi i f t} dt$$

The spectral density is real and symmetric.

Let $V_j = \int Z(t)g_j(t) dt$. Then $E[V_i V_j] = \int_{t-\infty}^{\infty} g_i(t) \tilde{\mathbf{K}}_{\mathbf{Z}}(t-\tau)g_j(\tau) dt d\tau$ $= \int \hat{g}_i(f) S_{\mathbf{Z}}(f) \hat{g}_j^*(f) df$

If $\hat{g}_i(f)$ and $\hat{g}_j(f)$ do not overlap in frequency, then $E[V_iV_j] = 0$.

This means that for a WSS process, no linear functional in one frequency band is correlated with any linear functional in another band.

For a Gaussian stationary process, all linear functionals in one band are independent of all linear functionals in any other band; different frequency bands contain independent noise. Summary of binary detection with vector observation in iid Gaussian noise.:

First remove center point from signal and its effect on observation.

Then signal is $\pm a$. and $v = \pm a + Z$.

Find $\langle v, a \rangle$ and compare with threshold (0 for ML case).

This does not depend on the vector basis - becomes trivial if a normalized is a basis vector.

Received components orthogonal to signal are irrelevant.

Review: Theorem of irrelevance

Given the signal set $\{a_1, \ldots, a_M\}$, we transmit $X(t) = \sum_{j=1}^k a_{m,j}\phi_j(t)$ and receive $Y(t) = \sum_{j=1}^{\infty} Y_j\phi_j(t)$ where $Y_j = X_j + Z_j$ for $1 \le j \le k$ and $Y_j = Z_j$ for j > k.

Assume $\{Z_j; j \le k\}$ are iid and $\mathcal{N}(0, N_0/2)$. Assume $\{Z_j : j > k\}$ are arbitrary rv's that are independent of $\{X_j, Z_j; j \le k\}$.

Then the MAP detector depends only on Y_1, \ldots, Y_j . The error probability depends only on $\{a_1, \ldots, a_M\}$, and in fact, only on $\langle a_j, a_k \rangle$ for each $1 \le j, k \le M$.

All orthonormal expansions are the same; noise and signal outside of signal subspace can be ignored. Orthogonal and simplex codes have the same error probability. The energy difference is $1-\frac{1}{m}$.

Orthogonal and biorthogonal codes have the same energy but differ by about 2 in error probability.

For orthogonal codes, take codewords as basis and normalize by $W_j = Y_j \sqrt{2/N_0}$. Thus the input for the first codeword is $(\alpha, 0, ..., 0)$ where $\alpha = \sqrt{2E/N_0}$. Then $W_j = \mathcal{N}(0, 1)$ for $j \neq 0$ and $W_1 = a + \mathcal{N}(0, 1)$.

$$\Pr(e) = \int_{-\infty}^{\infty} f_{W_1}(w_1) \Pr\left(\bigcup_{j=2}^{M} \{W_j \ge w_1\}\right) dw_1$$

Bottom line: Let $\log M = b$ and $E_b = E/b$. Then

$$\Pr(e) \leq \begin{cases} \exp\left[-b\left(\sqrt{\mathbf{E}_b/N_0} - \sqrt{\ln 2}\right)^2\right] & \text{for} \quad \frac{E_b}{4N_0} \leq \ln 2 < \frac{E_b}{N_0} \\ \exp\left[-b\left(\frac{\mathbf{E}_b}{2N_0} - \ln 2\right)\right] & \text{for} \quad \ln 2 < \frac{E_b}{4N_0} \end{cases}$$

This says we can get arbitrarily small error probability so long as $E_b/N_0 > \ln 2$.

This is Shannon's capacity formula for unlimited bandwidth WGN transmission.

Review of multipath model

The response to $\exp[2\pi i f t]$ over J propagation paths with attenuation β_j and delay $\tau_j(t)$ is

$$y_f(t) = \sum_{j=1}^{J} \beta_j \exp[2\pi i ft - \tau_j(t)]$$

= $\hat{h}(f, t) \exp[2\pi i ft]$

The response to $x(t) = \int_{-\infty}^{\infty} \hat{x}(f) \exp[2\pi i f t]$ is then

$$y(t) = \int_{-\infty}^{\infty} \hat{x}(f) \hat{h}(f,t) \exp(2\pi i f t) df$$
$$= \int x(t-\tau) h(\tau,t) d\tau \quad \text{where}$$

$$h(\tau, t) \longleftrightarrow \hat{h}(f, t); \quad h(\tau, t) = \sum_{j} \beta_{j} \delta\{\tau - \tau_{j}(t)\}$$

How do we define fading for a single frequency input?

$$y_f(t) = \hat{h}(f,t) \exp[2\pi i f t]$$

= $|\hat{h}(f,t)| \exp[2\pi i f t + i \angle \hat{h}(f,t)]$
 $\Re[y_f(t)] = |\hat{h}(f,t)| \cos[2\pi f t + \angle \hat{h}(f,t)]$

The envelope of this is $|\hat{h}(f,t)|$, and this is defined as the fading.

$$\hat{h}(f,t) = \sum_{j} \beta_{j} \exp[-2\pi i f \tau_{j}(t)] = \sum_{j} \exp[2\pi i \mathcal{D}_{j} t - 2\pi i f \tau_{j}^{o}]$$
This contains frequencies ranging from min \mathcal{D}

This contains frequencies ranging from $\min D_j$ to $\max D_j$. Define the Doppler spread of the channel as

$$\mathcal{D} = \max \mathcal{D}_j - \min \mathcal{D}_j$$

For any frequency Δ , $|\hat{h}(f,t)| = |e^{-2\pi i \Delta t} \hat{h}(f,t)|$

$$\hat{h}(f,t) = \sum_{j} \exp\{2\pi i \mathcal{D}_{j} t - 2\pi i f \tau_{j}^{o}\}$$

Choose $\Delta = [\max D_j + \min D]/2$. Then

$$\exp(-2\pi it\Delta)\,\hat{h}(f,t) = \sum_{j=1}^{J}\beta_j \exp\{2\pi it(\mathcal{D}_j - \Delta) - 2\pi if\tau_j^o\}$$

This waveform is baseband limited to D/2. Its magnitude is the fading. The fading process is the magnitude of a waveform baseband limited to D/2. The coherence time of the channel is defined as

$$T_{\rm coh} = \frac{1}{2D}$$

 \mathcal{D} is linear in f; \mathcal{T}_{coh} goes as 1/f.

Review of time Spread

$$\hat{h}(f,t) = \sum_{j} \beta_{j} \exp[-2\pi i f \tau_{j}(t)]$$

For any given t, define

$$\mathcal{L} = \max \tau_j(t) - \min \tau_j(t); \qquad \mathcal{F}_{coh} = \frac{1}{2\mathcal{L}}$$

The fading at f is

$$|\hat{h}(f,t)| = \left|\sum_{j} \exp[2\pi i(\tau_j(t) - \tau')f]\right|$$
 (ind. of τ')

Let $\tau' = \tau_{\text{mid}} = (\max \tau_j(t) + \min \tau_j(t))/2$. The fading is the magnitude of a function of f with transform limited to $\mathcal{L}/2$. \mathcal{T}_{coh} is a gross estimate of the frequency over which the fading changes significantly.

Baseband system functions

The baseband response to a complex baseband input u(t) is

$$v(t) = \int_{-W/2}^{W/2} \hat{u}(f) \hat{h}(f+f_c,t) e^{2\pi i (f-\Delta)t} df$$

= $\int_{-W/2}^{W/2} \hat{u}(f) \hat{g}(f,t) e^{2\pi i f t} df$

where $\hat{g}(f,t) = \hat{h}(f+f_c,t)e^{-2\pi i\Delta t}$ is the baseband system function and $\Delta = \tilde{f}_c - f_c$ is the frequency offset in demodulation.

By the same relationship between frequency and time we used for bandpass,

$$v(t) = \int_{-\infty}^{\infty} u(t-\tau)g(\tau,t) d\tau$$

$$\begin{split} \hat{h}(f,t) &= \sum_{j} \beta_{j} \exp\{-2\pi i f \tau_{j}(t)\} \\ \hat{g}(f,t) &= \sum_{j} \beta_{j} \exp\{-2\pi i (f+f_{c})\tau_{j}(t) - 2\pi i \Delta t\} \\ \hat{g}(f,t) &= \sum_{j} \gamma_{j}(t) \exp\{-2\pi i f \tau_{j}(t)\} \quad \text{where} \\ \gamma_{j}(t) &= \beta_{j} \exp\{-2\pi i f_{c}\tau_{j}(t) - 2\pi i \Delta t\} \\ &= \beta_{j} \exp\{2\pi i [\mathcal{D}_{j} - \Delta] t - 2\pi i f_{c}\tau_{j}^{o} \\ g(\tau,t) &= \sum_{j} \gamma_{j}(t) \delta(\tau - \tau_{j}(t)) \\ v(t) &= \sum_{j} \gamma_{j}(t) u(t - \tau_{j}(t)) \end{split}$$

Flat fading

Flat fading is defined as fading where the bandwidth W/2 of u(t) is much smaller than \mathcal{F}_{coh} .

For
$$|f| < W/2 << \mathcal{F}_{coh}$$
,
 $\hat{g}(f,t) = \sum_{j} \gamma_j(t) \exp\{-2\pi i f \tau_j(t)\} \approx \hat{g}(0,t) = \sum_{j} \gamma_j(t)$
 $v(t) = \int_{-W/2}^{W/2} \hat{u}(f) \, \hat{g}(f,t) \, e^{2\pi i f t} \, df \approx u(t) \sum_{j} \gamma_j(t)$

Equivalently, u(t) is approximately constant over intervals much less than \mathcal{L} .

$$v(t) = \sum_{j} \gamma_j(t) u(t - \tau_j(t)) = u(t) \sum_{j} \gamma_j(t)$$

MIT OpenCourseWare http://ocw.mit.edu

6.450 Principles of Digital Communication I Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.