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Problem Set 2 Solutions 

Problem 2.1 (Cartesian-product constellations) 

(a) Show that if A′ = AK , then the parameters N, log2 M, E(A′) and Kmin(A′) of A′ are K 
times as large as the corresponding parameters of A, whereas the normalized parameters 
ρ, Es, Eb and d2 

min(A) are the same as those of A. Verify that these relations hold for 
(M × M)-QAM constellations.


There are M possibilities for each of the n components of A′ , so the total number of

possibilities is |A′| = MK . The number of bits supported by A′ is therefore log2 |A′| =

K log2 M , K times the number for A. The number of dimensions in A′ is KN , so  its 

nominal spectral efficiency is ρ = (log2 M)/N , the same as that of A.


The average energy of A′ is 

EA� = ||a1||2 + ||a2||2 + · · ·  + ||aK ||2 = KEA. 

The average energy per bit is Eb = EA� / log2 |A′| = EA/(log2 M), and the average energy 
per two dimensions is Es = 2EA� /KN = 2EA/N , which for both are the same as for A. 

Two distinct points in A′ must differ in at least one component. The minimum squared 
distance is therefore the minimum squared distance in any component, which is d2 

min(A). 

The number of nearest neighbors to any point (a1, a2, . . .  , aK ) ∈ A′ is the sum of the num-
bers of nearest neighbors to a1, a2, . . .  , aK , respectively, since there is a nearest neighbor 
for each such nearest neighbor to each component. The average number Kmin(A′) of near-
est neighbors to A′ is therefore the sum of the average number of nearest neighbors in 
each component, which is Kmin(A′) =  KKmin(A). 

An (M × M)-QAM constellation A′ is equal to the 2-fold Cartesian product A2, where  
A is an M -PAM constellation. Therefore all the above results hold with K = 2.  In  
particular, the QAM constellation has the same d2 

min as the PAM constellation, but twice 
the number Kmin of nearest neighbors. 

(b) Show that if the signal constellation is a Cartesian product AK , then MD detection can 
be performed by performing independent MD detection on each of the K components of 
the received KN-tuple y = (y1, y2, . . .  , yK ). Using this result, sketch the decision regions 
of a (4 × 4)-QAM signal set. 

Given a received signal (y1,y2, . . .  ,yK ), to minimize the squared distance ||y1 − a1||2 + 
||y2 − a2||2 + · · ·  + ||yK − aK ||2 over A′, we may minimize each component ||yj − aj ||2 

separately, since choice of one component aj imposes no restrictions on the choices of 
other components. 

The MD decision regions of a (4 × 4)-QAM signal set A′ = A2 are thus simply those 
of a 4-PAM signal set A, independently for each coordinate. Such decision regions are 
sketched in the Problem Set 1 solutions, Problem 1.3(b). 
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(c) Show that if Pr(E) is the probability of error for MD detection of A, then the probability 
of error for MD detection of A′ is 

Pr(E)′ = 1  − (1 − Pr(E))K , 

Show that Pr(E)′ ≈ K Pr(E) if Pr(E) is small. 

A signal in A′ is received correctly if and only if each component is received correctly. 
The probability of correct decision is therefore the product of the probabilities of correct 
decision for each of the components separately, which is (1 − Pr(E))K . The probability of 
error for A′ is therefore Pr(E ′) = 1  − (1 − Pr(E))K . When  Pr(E) is small, (1 − Pr(E))K ≈ 
1 − K Pr(E), so Pr(E ′) ≈ K Pr(E). 

Problem 2.2 (Pr(E) invariance to translation, orthogonal transformations, or scaling) 

Let Pr(E | aj ) be the probability of error when a signal aj is selected equiprobably from an 
N-dimensional signal set A and transmitted over a discrete-time AWGN channel, and the 
channel output Y = aj + N is mapped to a signal âj ∈ A  by a minimum-distance decision 
rule. An error event E occurs if âj =� aj . Pr(E) denotes the average error probability. 

(a) Show that the probabilities of error Pr(E | aj ) are unchanged if A is translated by any 
vector v; i.e., the constellation A′ = A + v has the same Pr(E) as A.


If all signals are equiprobable and the noise is iid Gaussian, then the optimum detector

is a minimum-distance detector.


A
a
In this case the received sequence Y′ = aj +N may be mapped reversibly to Y = Y′ −v = 

j + N, and then an MD detector for A based on Y is equivalent to an MD detector for 
′ based on Y′ . In particular, it has the same probabilities of error Pr(E | aj ). 

(b) Show that Pr(E) is invariant under orthogonal transformations; i.e., A′ = UA has 
the same Pr(E) as A when U is any orthogonal N × N matrix (i.e., U−1 = UT ). 

a
In this case the received sequence Y′ = aj +N may be mapped reversibly to Y = U−1Y′ = 

j + U−1N. Since the noise distribution depends only on the squared norm ||n||2, which is 
not affected by orthogonal transformations, the noise sequence N′ = U−1N has the same 
distribution as N, so again the probability of error Pr(E) is unaffected. 

(c) Show that Pr(E) is unchanged if both A and N are scaled by α > 0. 

α
In this case the received sequence Y′ = aj + αN may be mapped reversibly to Y = 
−1Y′ = aj + N, which again reduces the model to the original scenario. 

Problem 2.3 (optimality of zero-mean constellations) 

Consider an arbitrary signal set A = {aj , 1 ≤ j ≤ M}. Assume that all signals are 
1equiprobable. Let m(A) =  
M j aj be the average signal, and let A′ be A translated by 

m(A) so that the mean of A′ is zero: A′ = A −  m(A) =  {aj − m(A), 1 ≤ j ≤ M}. Let 
E(A) and E(A′) denote the average energies of A and A′, respectively. 

(a) Show that the error probability of an MD detector is the same for A′ as it is for A. 

This follows from Problem 2.2(a) 
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(b) Show that E(A′) =  E(A) − ||m(A)||2 . Conclude that removing the mean m(A) is 
always a good idea. 

Let A be the random variable with alphabet A that is equal to aj with probability 1/M 
for all j, and let A′ = A − m(A) be the  fluctuation of A. Then  E(A) =  ||A||2 , m(A) =  A, 
and 

E(A′) =  ||A − A||2 = ||A||2 − 2〈A, A〉 + ||A||2 = ||A||2 − ||A||2 = E(A) − ||m(A)||2 . 

In other words, the second moment of A is greater than or equal to the variance of A,

with equality if and only if the mean of A is zero.


This result and that of part (a) imply that if m(A) �

A

= 0, then by replacing A with

′ = A−  m(A), the average energy can be reduced without changing the probability of


error. Therefore A′ is always preferable to A; i.e., an optimum constellation must have

zero mean.


(c) Show that a binary antipodal signal set A = {±a} is always optimal for M = 2. 

A two-point constellation with zero mean must have a1 + a2 = 0, which implies a2 = −a1. 

Problem 2.4 (Non-equiprobable signals). 

Let aj and aj� be two signals that are not equiprobable. Find the optimum (MPE) pairwise

decision rule and pairwise error probability Pr{aj → aj� }.

The MPE rule is equivalent to the maximum-a-posteriori-probability (MAP) rule: choose


a ∈ A  such that p(ˆthe ˆ a | y) is maximum among all p(aj | y), aj ∈ A. By Bayes’ law, 

p(aj | y) =  
p(y | aj )p(aj ) 

. 
p(y) 

The pairwise decision rule is thus to choose aj over aj� if p(y | aj )p(aj ) > p(y | aj� )p(aj� ), 
or vice versa. Using the logarithm of the noise pdf, we can write this as 

−||y − aj ||2 

+ log  p(aj ) > 
−||y − aj� ||2 

+ log  p(aj� ),
2σ2 2σ2 

or equivalently 
||y − aj ||2 < ||y − aj� ||2 + K, 

where K = 2σ2 log p(aj )/p(aj� ). Therefore the pairwise MAP rule is equivalent to a

minimum-squared-distance rule with a bias K.


Following the development shown in (5.2), we have


||y − aj ||2 − ||y − aj� ||2 = 

−2〈y, aj 〉 + ||aj ||2 − (−2〈y, aj� 〉 + ||aj� ||2) =  

2〈y, aj� − aj 〉 −  2〈m, aj� − aj 〉, 

where m denotes the midvector m = (aj + aj� )/2. 
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Therefore ||y − aj ||2 − ||y − aj� ||2 < K  if and only if 2〈y, aj� − aj 〉 −  2〈m, aj� − aj 〉 < K. 
Since the magnitudes of the projections y|aj� −aj and m|aj� −aj of y and m onto the difference 
vector aj� − aj are 

|y|aj� −aj | = 
〈y, aj� − aj 〉 

; |m|aj� −aj | = 
〈m, aj� − aj 〉 

,||aj� − aj || ||aj� − aj || 
we have ||y − aj ||2 − ||y − aj� ||2 < K  if and only if 

K σ2λ(aj , aj� )|y|aj� −aj | < |m|aj� −aj | + 2||aj� − aj || = |m|aj� −aj | + ,
d(aj , aj� ) 

where λ(aj , aj� ) is the log likelihood ratio log p(aj )/p(aj� ). 

The conclusion is that the decision boundary is still a hyperplane perpendicular to the 
difference vector aj� − aj , but shifted by σ2λ(aj , aj� )/d(aj , aj� ). 

The probability of error is thus the probability that a one-dimensional Gaussian variable 
of zero mean and variance σ2 will exceed d(aj , aj� )/2+σ2λ(aj , aj� )/d(aj , aj� ). This is given 
as always by the Q function 

� 
σ2λ(aj , aj� ) 

� 

Pr{aj → aj� } = Q
d(aj , aj� )

+ . 
2σ d(aj , aj� ) 

Problem 2.5 (UBE for M -PAM constellations). 

For an M -PAM constellation A, show that Kmin(A) = 2(M − 1)/M . Conclude that the 
union bound estimate of Pr(E) is 

M − 1 d 
Pr(E) ≈ 2 Q . 

M 2σ 

Observe that in this case the union bound estimate is exact. Explain why. 

The M − 2 interior points have 2 nearest neighbors, while the 2 boundary points have 1 
nearest neighbor, so the average number of nearest neighbors is 

1 2M − 2 
Kmin(A) =  ((M − 2)(2) + (2)(1)) = . 

M M 

d
In general the union bound estimate is Pr(E) ≈ Kmin(A)Q(dmin(A)/2σ). Plugging in 

min(A) =  d and the above expression for Kmin(A), we get the desired expression. 

For the M − 2 interior points, the exact error probability is 2Q(d/2σ). For the 2 boundary 
points, the exact error probability is Q(d/2σ). If all points are equiprobable, then the 
average Pr(E) is exactly the UBE given above. 

In general, we can see that the union bound is exact for one-dimensional constellations, 
and only for one-dimensional constellations. The union bound estimate is therefore exact 
only for equi-spaced one-dimensional constellations; i.e., essentially only for M -PAM. 
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