Problem Set 4 Solutions

Problem 4.1

Show that if C is a binary linear block code, then in every coordinate position either all codeword components are 0 or half are 0 and half are 1.

 \mathcal{C} is linear if and only if \mathcal{C} is a group under vector addition. The subset $\mathcal{C}' \subseteq \mathcal{C}$ of codewords with 0 in a given coordinate position is then clearly a (sub)group, as it is closed under vector addition. If there exists any codeword $\mathbf{c} \in \mathcal{C}$ with a 1 in the given coordinate position, then the (co)set $\mathcal{C}' + \mathbf{c}$ is a subset of \mathcal{C} of size $|\mathcal{C}' + \mathbf{c}| = |\mathcal{C}|$ consisting of the codewords with a 1 in the given coordinate position (all are codewords by the group property, and every codeword \mathbf{c}' with a 1 in the given position is in $\mathcal{C}' + \mathbf{c}$, since $\mathbf{c}' + \mathbf{c}$ is in \mathcal{C}'). On the other hand, if there exists no codeword $\mathbf{c} \in \mathcal{C}$ with a 1 in the given position, then $\mathcal{C}' = \mathcal{C}$. We conclude that either half or none of the codewords in \mathcal{C} have a 1 in the given coordinate position.

Show that a coordinate in which all codeword components are 0 may be deleted ("punctured") without any loss in performance, but with savings in energy and in dimension.

If all codewords have a 0 in a given position, then this position does not contribute to distinguishing between any pair of codewords; *i.e.*, it can be ignored in decoding without loss of performance. On the other hand, this symbol costs energy α^2 to transmit, and sending this symbol reduces the code rate (nominal spectral efficiency). Thus for communications purposes, this symbol has a cost without any corresponding benefit, so it should be deleted.

Show that if C has no such all-zero coordinates, then s(C) has zero mean: $\mathbf{m}(s(C)) = \mathbf{0}$. By the first part, if C has no all-zero coordinates, then in each position C has half 0s and half 1s, so s(C) has zero mean in each coordinate position.

Problem 4.2 (RM code parameters)

Compute the parameters (k, d) of the RM codes of lengths n = 64 and n = 128. Using

$$k(r,m) = \sum_{0 \le j \le r} \binom{m}{j}$$

or

$$k(r,m) = k(r,m-1) + k(r-1,m-1),$$

the parameters for the n = 64 RM codes are

 $(64, 64, 1); (64, 63, 2); (64, 57, 4); (64, 42, 8); (64, 22, 16); (64, 7, 32), (64, 1, 64); (64, 0, \infty).$

Similarly, the parameters for the nontrivial n = 128 RM codes are

(128, 127, 2); (128, 120, 4); (128, 99, 8); (128, 64, 16); (128, 29, 32); (128, 8, 64); (128, 1, 128).

Problem 4.3 (optimizing SPC and EH codes)

(a) Using the rule of thumb that a factor of two increase in K_b costs 0.2 dB in effective coding gain, find the value of n for which an (n, n-1, 2) SPC code has maximum effective coding gain, and compute this maximum in dB.

The nominal coding gain of an (n, n-1, 2) SPC code is $\gamma_c = 2(n-1)/n$, and the number of nearest neighbors is $N_2 = n(n-1)/2$, so the number of nearest neighbors per bit is $K_b = n/2$. The effective coding gain in dB is therefore approximately

$$\begin{aligned} \gamma_{\text{eff}} &= 10 \log_{10} 2(n-1)/n - (0.2) \log_2 n/2 \\ &= 10 (\log_{10} e) \ln 2(n-1)/n - (0.2) (\log_2 e) \ln n/2. \end{aligned}$$

Differentiating with respect to n, we find that the maximum occurs when

$$10(\log_{10} e)\left(\frac{1}{n-1} - \frac{1}{n}\right) - (0.2)(\log_2 e)\frac{1}{n} = 0,$$

which yields

$$n - 1 = \frac{10\log_{10} e}{(0.2)\log_2 e} \approx 15.$$

Thus the maximum occurs for n = 16, where

$$\gamma_{\rm eff} \approx 2.73 - 0.6 = 2.13 \ \rm dB$$

(b) Similarly, find the m such that the $(2^m, 2^m - m - 1, 4)$ extended Hamming code has maximum effective coding gain, using

$$N_4 = \frac{2^m (2^m - 1)(2^m - 2)}{24},$$

and compute this maximum in dB.

Similarly, the nominal coding gain of a $(2^m, 2^m - m - 1, 4)$ extended Hamming code is $\gamma_c = 4(2^m - m - 1)/2^m$, and the number of nearest neighbors is $N_4 = 2^m(2^m - 1)(2^m - 2)/24$, so the number of nearest neighbors per bit is $K_b = 2^m(2^m - 1)(2^m - 2)/24(2^m - m - 1)$. Computing effective coding gains, we find

$$\begin{array}{rcl} \gamma_{\rm eff}(8,4,4) &=& 2.6 \ {\rm dB}; \\ \gamma_{\rm eff}(16,11,4) &=& 3.7 \ {\rm dB}; \\ \gamma_{\rm eff}(32,26,4) &=& 4.0 \ {\rm dB}; \\ \gamma_{\rm eff}(64,57,4) &=& 4.0 \ {\rm dB}; \\ \gamma_{\rm eff}(128,120,4) &=& 3.8 \ {\rm dB}, \end{array}$$

which shows that the maximum occurs for $2^m = 32$ or 64 and is about 4.0 dB.

Problem 4.4 (biorthogonal codes)

We have shown that the first-order Reed-Muller codes RM(1,m) have parameters $(2^m, m+1, 2^{m-1})$, and that the $(2^m, 1, 2^m)$ repetition code RM(0,m) is a subcode.

(a) Show that RM(1,m) has one word of weight 0, one word of weight 2^m , and $2^{m+1} - 2$ words of weight 2^{m-1} . [Hint: first show that the RM(1,m) code consists of 2^m complementary codeword pairs $\{\mathbf{x}, \mathbf{x} + \mathbf{1}\}$.]

Since the RM(1, m) code contains the all-one word **1**, by the group property it contains the complement of every codeword. The complement of the all-zero word **0**, which has weight 0, is the all-one word **1**, which has weight 2^m . In general, the complement of a weight-w word has weight $2^m - w$. Thus if the minimum weight of any nonzero word is 2^{m-1} , then all other codewords must have weight exactly 2^{m-1} .

(b) Show that the Euclidean image of an RM(1,m) code is an $M = 2^{m+1}$ biorthogonal signal set. [Hint: compute all inner products between code vectors.]

The inner product between the Euclidean images $s(\mathbf{x}), s(\mathbf{y})$ of two binary *n*-tuples \mathbf{x}, \mathbf{y} is

$$\langle s(\mathbf{x}), s(\mathbf{y}) \rangle = (n - 2d_H(\mathbf{x}, \mathbf{y}))\alpha^2.$$

Thus \mathbf{x} and \mathbf{y} are orthogonal when $d_H(\mathbf{x}, \mathbf{y}) = n/2 = 2^{m-1}$. It follows that every codeword \mathbf{x} in RM(1, m) is orthogonal to every other word, except $\mathbf{x} + \mathbf{1}$, to which it is antipodal. Thus the Euclidean image of RM(1, m) is a biorthogonal signal set.

(c) Show that the code C' consisting of all words in RM(1,m) with a 0 in any given coordinate position is a $(2^m, m, 2^{m-1})$ binary linear code, and that its Euclidean image is an $M = 2^m$ orthogonal signal set. [Same hint as in part (a).]

By the group property, exactly half the words have a 0 in any coordinate position. Moreover, this set of words \mathcal{C}' evidently has the group property, since the sum of any two codewords in $\mathrm{RM}(1,m)$ that have a 0 in a certain position is a codeword in $\mathrm{RM}(1,m)$ that has a 0 in that position. These words include the all-zero word but not the allone word. The nonzero words in \mathcal{C}' thus all have weight 2^{m-1} . Thus any two distinct Euclidean images $s(\mathbf{x})$ are orthogonal. Therefore $s(\mathcal{C}')$ is an orthogonal signal set with $M = 2^m$ signals.

(d) Show that the code C'' consisting of the code words of C' with the given coordinate deleted ("punctured") is a binary linear $(2^m - 1, m, 2^{m-1})$ code, and that its Euclidean image is an $M = 2^m$ simplex signal set. [Hint: use Exercise 7 of Chapter 5.]

 \mathcal{C}'' is the same code as \mathcal{C}' , except with one less bit. Since the deleted bit is always a zero, deleting this coordinate does not affect the weight of any word. Thus \mathcal{C}'' is a binary linear $(2^m - 1, m, 2^{m-1})$ code in which every nonzero word has Hamming weight 2^{m-1} . Consequently the inner product of the Euclidean images of any two distinct codewords is

$$\langle s(\mathbf{x}), s(\mathbf{y}) \rangle = (n - 2d_H(\mathbf{x}, \mathbf{y}))\alpha^2 = -\alpha^2 = -\frac{E(\mathcal{A})}{2^m - 1},$$

where $E(\mathcal{A}) = (2^m - 1)\alpha^2$ is the energy of each codeword. This is the set of inner products of an $M = 2^m$ simplex signal set of energy $E(\mathcal{A})$, so $s(\mathcal{C}'')$ is geometrically equivalent to a simplex signal set.

Problem 4.5 (generator matrices for RM codes)

Let square $2^m \times 2^m$ matrices U_m , $m \ge 1$, be specified recursively as follows. The matrix U_1 is the 2×2 matrix

$$U_1 = \left[\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array} \right]$$

The matrix U_m is the $2^m \times 2^m$ matrix

$$U_m = \left[\begin{array}{cc} U_{m-1} & 0 \\ U_{m-1} & U_{m-1} \end{array} \right].$$

(In other words, U_m is the m-fold tensor product of U_1 with itself.)

(a) Show that RM(r,m) is generated by the rows of U_m of Hamming weight 2^{m-r} or greater. [Hint: observe that this holds for m = 1, and prove by recursion using the |u|u + v| construction.] For example, give a generator matrix for the (8,4,4) RM code.

We first observe that U_m is a lower triangular matrix with ones on the diagonal. Thus its 2^m rows are linearly independent, and generate the universe code $(2^m, 2^m, 1) = \text{RM}(m, m)$. The three RM codes with m = 1 are RM(1,1) = (2,2,1), RM(0,1) = (2,1,2), and $\text{RM}(-1,1) = (2,0,\infty)$. By inspection, RM(1,1) = (2,2,1) is generated by the two rows of U_1 of weight 1 or greater (*i.e.*, both rows), and RM(0,1) = (2,1,2) is generated by the row of U_1 of weight 2 or greater (*i.e.*, the single row (1,1)). (Moreover, $\text{RM}(-1,1) = (2,0,\infty)$ is generated by the rows of U_1 of weight 4 or greater (*i.e.*, no rows).)

Suppose now that $\operatorname{RM}(r, m-1)$ is generated by the rows of U_{m-1} of Hamming weight 2^{m-1-r} or greater. By the |u|u+v| construction,

$$\operatorname{RM}(r,m) = \{ (\mathbf{u}, \mathbf{u} + \mathbf{v}) \mid \mathbf{u} \in \operatorname{RM}(r, m-1), \mathbf{v} \in \operatorname{RM}(r-1, m-1) \}.$$

Equivalently, since RM(r-1, m-1) is a subcode of RM(r, m-1), we can write

$$\operatorname{RM}(r,m) = \{ (\mathbf{u}' + \mathbf{v}, \mathbf{u}') \mid \mathbf{u}' \in \operatorname{RM}(r, m-1), \mathbf{v} \in \operatorname{RM}(r-1, m-1) \},\$$

where $\mathbf{u}' = \mathbf{u} + \mathbf{v}$. Thus a set of generators for RM(r, m) is

$$\{(\mathbf{u}',\mathbf{u}'), | \mathbf{u}' \in RM(r,m-1)\}; \{(\mathbf{v},\mathbf{0}), | \mathbf{v} \in RM(r-1,m-1)\}.$$

Now from the construction of U_m from U_{m-1} , each of these generators is a row of U_m with weight 2^{m-r} or greater, so these rows certainly suffice to generate RM(r, m). Moreover, they are linearly independent, so their number is the dimension of RM(r, m):

$$k(r,m) = k(r,m-1) + k(r-1,m-1).$$

For example, the (8, 4, 4) code is generated by the four rows of U_8 of weight 4 or more:

$$U_8 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}; \qquad G_{(8,4,4)} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}.$$

(b) Show that the number of rows of U_m of weight 2^{m-r} is $\binom{m}{r}$. [Hint: use the fact that $\binom{m}{r}$ is the coefficient of z^{m-r} in the integer polynomial $(1+z)^m$.]

Following the hint, let N(r, m) denote the number of rows of U_m of weight precisely 2^{m-r} , and define the generator polynomial

$$g_m(z) = \sum_{r=0}^m N(r,m) z^r.$$

Then since N(0,1) = N(1,1) = 1, we have $g_1(z) = 1 + z$. Moreover, since the number of rows of U_m of weight precisely 2^{m-r} is equal to the number of rows of U_{m-1} of weight 2^{m-r} plus the number of rows of U_{m-1} of weight 2^{m-r-1} , we have

$$N(r,m) = N(r-1,m-1) + N(r,m-1).$$

This yields the recursion $g_m(z) = (1+z)g_{m-1}(z)$, from which we conclude that

$$g_m(z) = (1+z)^m = \sum_{r=0}^m \binom{m}{r} z^r.$$

Consequently N(r,m) is the coefficient of z^r , namely $N(r,m) = \binom{m}{r}$.

(c) Conclude that the dimension of RM(r,m) is $k(r,m) = \sum_{0 \le j \le r} {m \choose j}$.

Since k(r,m) is the number of rows of U_m of weight 2^{m-r} or greater, we have

$$k(r,m) = \sum_{0 \le j \le r} N(r,m) = \sum_{0 \le j \le r} \binom{m}{j}.$$

Problem 4.6 ("Wagner decoding")

Let C be an (n, n - 1, 2) SPC code. The Wagner decoding rule is as follows. Make hard decisions on every symbol r_k , and check whether the resulting binary word is in C. If so, accept it. If not, change the hard decision in the symbol r_k for which the reliability metric $|r_k|$ is minimum. Show that the Wagner decoding rule is an optimum decoding rule for SPC codes. [Hint: show that the Wagner rule finds the codeword $\mathbf{x} \in C$ that maximizes $r(\mathbf{x} | \mathbf{r})$.] The maximum-reliability (MR) detection rule is to find the codeword that maximizes

 $r(\mathbf{x} | \mathbf{r}) = \sum_{k} |r_k| (-1)^{e(x_k, r_k)}$, where $e(x_k, r_k) = 0$ if the signs of $s(x_k)$ and r_k agree, and 1 otherwise. MR detection is optimum for binary codes on a Gaussian channel.

If there is a codeword such that $e(x_k, r_k) = 0$ for all k, then $r(\mathbf{x} | \mathbf{r})$ clearly reaches its maximum possible value, namely $\sum_k |r_k|$, so this codeword should be chosen.

A property of a SPC code is that any word not in the code (*i.e.*, an odd-weight word) may be changed to a codeword (*i.e.*, an even-weight word) by changing any single coordinate value. The resulting value of $r(\mathbf{x} | \mathbf{r})$ will then be $(\sum_k |r_k|) - 2|r_{k'}|$, where k' is the index of the changed coordinate. To maximize $r(\mathbf{x} | \mathbf{r})$, we should therefore choose the k' for which $|r_{k'}|$ is minimum. This is the Wagner decoding rule.

It is clear that any further changes can only further lower $r(\mathbf{x} \mid \mathbf{r})$, so Wagner decoding succeeds in finding the codeword that maximizes $r(\mathbf{x} \mid \mathbf{r})$, and is thus optimum.

Problem 4.7 (small cyclic groups).

Write down the addition tables for $\mathbb{Z}_2, \mathbb{Z}_3$ and \mathbb{Z}_4 . Verify that each group element appears precisely once in each row and column of each table.

The addition tables for $\mathbb{Z}_2, \mathbb{Z}_3$ and \mathbb{Z}_4 are as follows:

	$+ \begin{vmatrix} 0 & 1 & 2 \end{vmatrix}$	+	0	1	2	3
$+ \mid 0 \mid 1$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	1	2	3
0 0 1		1	1	2	3	0
1 1 0	$1 \ 1 \ 2 \ 0$	2	2	3	0	1
-	2 2 0 1				1	

In each table, we verify that every row and column is a permutation of \mathbb{Z}_n .

Problem 4.8 (subgroups of cyclic groups are cyclic).

Show that every subgroup of \mathbb{Z}_n is cyclic. [Hint: Let s be the smallest nonzero element in a subgroup $S \subseteq \mathbb{Z}_n$, and compare S to the subgroup generated by s.]

Following the hint, let S be a subgroup of $\mathbb{Z}_n = \{0, 1, \ldots, n-1\}$, let s be the smallest nonzero element of S, and let $S(s) = \{s, 2s, \ldots, ms = 0\}$ be the (cyclic) subgroup of S generated by s. Suppose that $S \neq S(s)$; *i.e.*, there is some element $t \in S$ that is not in S(s). Then by the Euclidean division algorithm t = qs + r for some r < s, and moreover $r \neq 0$ because t = qs implies $t \in S(s)$. But $t \in S$ and $qs \in S(s) \subseteq S$ imply $r = t - qs \in S$; but $r \neq 0$ is smaller than the smallest nonzero element $s \in S$, contradiction. Thus S = S(s); *i.e.*, S is the cyclic subgroup that is generated by its smallest nonzero element.