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6.451 Principles of Digital Communication II Wednesday, March 2, 2005 
MIT, Spring 2005 Handout #10 

Problem Set 4 Solutions 

Problem 4.1 

Show that if C is a binary linear block code, then in every coordinate position either all 
codeword components are 0 or half are 0 and half are 1. 

C is linear if and only if C is a group under vector addition. The subset C ′ ⊆ C  of 
codewords with 0 in a given coordinate position is then clearly a (sub)group, as it is 
closed under vector addition. If there exists any codeword c ∈ C  with a 1 in the given 
coordinate position, then the (co)set C ′ + c is a subset of C of size |C + c| = |C| consisting 
of the codewords with a 1 in the given coordinate position (all are codewords by the group 
property, and every codeword c′ with a 1 in the given position is in C + c, since c′ + c is in 
C ′). On the other hand, if there exists no codeword c ∈ C  with a 1 in the given position, 
then C ′ = C. We conclude that either half or none of the codewords in C have a 1 in the  
given coordinate position. 

Show that a coordinate in which all codeword components are 0 may be deleted (“punc-
tured”) without any loss in performance, but with savings in energy and in dimension. 

If all codewords have a 0 in a given position, then this position does not contribute 
to distinguishing between any pair of codewords; i.e., it can be ignored in decoding 
without loss of performance. On the other hand, this symbol costs energy α2 to transmit, 
and sending this symbol reduces the code rate (nominal spectral efficiency). Thus for 
communications purposes, this symbol has a cost without any corresponding benefit, so 
it should be deleted. 

Show that if C has no such all-zero coordinates, then s(C) has zero mean: m(s(C)) = 0. 

By the first part, if C has no all-zero coordinates, then in each position C haas half 0s and 
half 1s, so s(C) has zero mean in each coordinate position. 

Problem 4.2 (RM code parameters) 

Compute the parameters (k, d) of the RM codes of lengths n = 64  and n = 128. 

Using ∑ m 
k(r, m) =  

j
0≤j≤r 

or 
k(r, m) =  k(r, m − 1) + k(r − 1, m − 1), 

the parameters for the n =  64 RM codes  are  

(64, 64, 1); (64, 63, 2); (64, 57, 4); (64, 42, 8); (64, 22, 16); (64, 7, 32), (64, 1, 64); (64, 0,∞). 
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Similarly, the parameters for the nontrivial n = 128 RM codes are 

(128, 127, 2); (128, 120, 4); (128, 99, 8); (128, 64, 16); (128, 29, 32); (128, 8, 64); (128, 1, 128). 

Problem 4.3 (optimizing SPC and EH codes) 

(a) Using the rule of thumb that a factor of two increase in Kb costs 0.2 dB in effective 
coding gain, find the value of n for which an (n, n − 1, 2) SPC code has maximum effective 
coding gain, and compute this maximum in dB. 

K

The nominal coding gain of an (n, n − 1, 2)  SPC code is  γc = 2(n − 1)/n, and the number 
of nearest neighbors is N2 = n(n − 1)/2, so the number of nearest neighbors per bit is 

b = n/2. The effective coding gain in dB is therefore approximately 

γeff = 10  log10 2(n − 1)/n − (0.2) log2 n/2 

= 10(log10 e) ln 2(n − 1)/n − (0.2)(log2 e) ln  n/2. 

Differentiating with respect to n, we find that the maximum occurs when 

1 1 1 
10(log10 e) − − (0.2)(log2 e) = 0, 

n − 1 n n 

which yields 
10 log10 e 

n − 1 =  ≈ 15. 
(0.2) log2 e 

Thus the maximum occurs for n = 16, where 

γeff ≈ 2.73 − 0.6 = 2.13 dB. 

(b) Similarly, find the m such that the (2m , 2m − m − 1, 4) extended Hamming code has 
maximum effective coding gain, using 

2m(2m − 1)(2m − 2)
N4 = ,

24 

and compute this maximum in dB. 

γ
Similarly, the nominal coding gain of a (2m , 2m − m − 1, 4) extended Hamming code is 

c = 4(2m −m−1)/2m, and the number of nearest neighbors is N4 = 2m(2m −1)(2m −2)/24, 
so the number of nearest neighbors per bit is Kb = 2m(2m − 1)(2m − 2)/24(2m − m − 1). 
Computing effective coding gains, we find 

γeff (8, 4, 4) = 2.6 dB;  

γeff (16, 11, 4) = 3.7 dB;  

γeff (32, 26, 4) = 4.0 dB;  

γ

γeff (64, 57, 4) = 4.0 dB;  

eff (128, 120, 4) = 3.8 dB, 

which shows that the maximum occurs for 2m =  32 or 64 and  is  about 4.0 dB.  
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Problem 4.4 (biorthogonal codes)


We have shown that the first-order Reed-Muller codes RM(1, m) have parameters

(2m, m + 1, 2m−1), and that the (2m , 1, 2m) repetition code RM(0, m) is a subcode.


(a) Show that RM(1, m) has one word of weight 0, one word of weight 2m, and 2m+1 − 2 
words of weight 2m−1 . [Hint: first show that the RM(1, m) code consists of 2m comple-
mentary codeword pairs {x,x + 1}.] 
Since the RM(1, m) code contains the all-one word 1, by the group property it contains 
the complement of every codeword. The complement of the all-zero word 0, which has 
weight 0, is the all-one word 1, which has weight 2m . In general, the complement of a 
weight-w word has weight 2m − w. Thus if the minimum weight of any nonzero word is 
2m−1, then all other codewords must have weight exactly 2m−1 . 

(b) Show that the Euclidean image of an RM(1, m) code is an M = 2m+1 biorthogonal 
signal set. [Hint: compute all inner products between code vectors.] 

The inner product between the Euclidean images s(x), s(y) of two binary n-tuples x,y is 

〈s(x), s(y)〉 = (n − 2dH (x,y))α2 . 

Thus x and y are orthogonal when dH (x,y) =  n/2 = 2m−1 . It follows that every codeword 
x in RM(1, m) is orthogonal to every other word, except x + 1, to which it is antipodal. 
Thus the Euclidean image of RM(1, m) is a biorthogonal signal set. 

(c) Show that the code C ′ consisting of all words in RM(1, m) with a 0 in any given 
coordinate position is a (2m, m, 2m−1) binary linear code, and that its Euclidean image is 
an M = 2m orthogonal signal set. [Same hint as in part (a).] 

By the group property, exactly half the words have a 0 in any coordinate position. More-
over, this set of words C ′ evidently has the group property, since the sum of any two 
codewords in RM(1, m) that have a 0 in a certain position is a codeword in RM(1, m) 
that has a 0 in that position. These words include the all-zero word but not the all-
one word. The nonzero words in C ′ thus all have weight 2m−1 . Thus any two distinct 
Euclidean images s(x) are orthogonal. Therefore s(C ′) is an orthogonal signal set with 
M = 2m signals. 

(d) Show that the code C ′′ consisting of the code words of C ′ with the given coordinate 
deleted (“punctured”) is a binary linear (2m − 1, m, 2m−1) code, and that its Euclidean 
image is an M = 2m simplex signal set. [Hint: use Exercise 7 of Chapter 5.] 

C is the same code as C ′ , except with one less bit. Since the deleted bit is always a 
zero, deleting this coordinate does not affect the weight of any word. Thus C ′′ is a binary 
linear (2m − 1, m, 2m−1) code in which every nonzero word has Hamming weight 2m−1 . 
Consequently the inner product of the Euclidean images of any two distinct codewords is 

〈s(x), s(y)〉 = (n − 2dH (x,y))α2 = −α2 = − 
E(A) 

,
2m − 1 

where E(A) = (2m − 1)α2 is the energy of each codeword. This is the set of inner products 
of an M = 2m simplex signal set of energy E(A), so s(C ′′) is geometrically equivalent to 
a simplex signal set. 
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Problem 4.5 (generator matrices for RM codes) 

U
Let square 2m × 2m matrices Um, m ≥ 1, be specified recursively as follows. The matrix 
1 is the 2 × 2 matrix [ ] 

1 0 
U1 = . 

1 1 

The matrix U is the 2m × 2m matrixm 

Um−1 0 
U

Um = . 
m−1 Um−1 

(In other words, Um is the m-fold tensor product of U1 with itself.) 

(a) Show that RM(r, m) is generated by the rows of Um of Hamming weight 2m−r or 
greater. [Hint: observe that this holds for m = 1, and prove by recursion using the 
|u|u + v| construction.] For example, give a generator matrix for the (8, 4, 4) RM code. 

2
We first observe that Um is a lower triangular matrix with ones on the diagonal. Thus its 

m rows are linearly independent, and generate the universe code (2m , 2m , 1) = RM(m, m). 

U

The three RM codes with m = 1  are  RM(1, 1) = (2, 2, 1), RM(0, 1) = (2, 1, 2), and 
RM(−1, 1) = (2, 0,∞). By inspection, RM(1, 1) = (2, 2, 1) is generated by the two rows of 

1 of weight 1 or greater (i.e., both rows), and RM(0, 1) = (2, 1, 2) is generated by the row 
of U1 of weight 2 or greater (i.e., the single row (1, 1)). (Moreover, RM(−1, 1) = (2, 0,∞) 
is generated by the rows of U1 of weight 4 or greater (i.e., no rows).) 

2
Suppose now that RM(r, m − 1) is generated by the rows of Um−1 of Hamming weight 

m−1−r or greater. By the |u|u + v| construction, 

RM(r, m) =  {(u,u + v) | u ∈ RM(r, m − 1),v ∈ RM(r − 1, m − 1)}. 
Equivalently, since RM(r − 1, m − 1) is a subcode of RM(r, m − 1), we can  write  

RM(r, m) =  {(u ′ + v,u ) | u ′ ∈ RM(r, m − 1),v ∈ RM(r − 1, m − 1)}, 
where u′ = u + v. Thus a set of generators for RM(r, m) is  

{(u ,u ), | u ′ ∈ RM(r, m − 1)}; {(v,0), | v ∈ RM(r − 1, m − 1)}. 
Now from the construction of Um from Um−1, each of these generators is a row of Um with 
weight 2m−r or greater, so these rows certainly suffice to generate RM(r, m). Moreover, 
they are linearly independent, so their number is the dimension of RM(r, m): 

k(r, m) =  k(r, m − 1) + k(r − 1, m − 1). 

For example, the (8, 4, 4) code is generated by the four rows of U8 of weight 4 or more: ⎡	 ⎤ 
1 0 0 0 0 0 0 0  ⎥⎢	 1 1 0 0 0 0 0 0  ⎢	 ⎥ ⎡	 ⎤ ⎢	 1 0 1 0 0 0 0 0  ⎥ 1 1 1 1 0 0 0 0  ⎢	 ⎥ ⎥⎢ 1 1 1 1 0 0 0 0  ⎥	 ⎢ 1 1 0 0 1 1 0 0  ⎢	 ⎢ ⎥ . ⎢	 ⎥ ⎦ U8 = 
1 0 0 0 1 0 0 0  

⎥ ; G(8,4,4) = ⎣ 1 0 1 0 1 0 1 0  ⎢ ⎥ ⎢ 1 1 0 0 1 1 0 0  ⎥ 1 1 1 1 1 1 1 1  ⎢	 ⎥ ⎦⎣	 1 0 1 0 1 0 1 0 

1 1 1 1 1 1 1 1 
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m(b) Show that the number of rows of Um of weight 2m−r is 
r . [Hint: use the fact that 

m is the coefficient of zm−r in the integer polynomial (1 + z)m.]
r 

Following the hint, let N(r, m) denote the number of rows of Um of weight precisely 2m−r , 
and define the generator polynomial 

m 

gm(z) =  N(r, m)z r . 
r=0 

2

Then since N(0, 1) = N(1, 1) = 1, we have g1(z) = 1  +  z. Moreover, since the number 
of rows of Um of weight precisely 2m−r is equal to the number of rows of Um−1 of weight 

m−r plus the number of rows of Um−1 of weight 2m−r−1, we have  

N(r, m) =  N(r − 1, m − 1) + N(r, m − 1). 

This yields the recursion gm(z) = (1  +  z)gm−1(z), from which we conclude that 
m ( ) 

gm(z) = (1  +  z)m = 
∑ m 

z r . 
r 

r=0 ( ) 
mConsequently N(r, m) is the coefficient of zr , namely N(r, m) =  . 
r 

m(c) Conclude that the dimension of RM(r, m) is k(r, m) =  0≤j≤r j . 

Since k(r, m) is the number of rows of Um of weight 2m−r or greater, we have 

∑ ∑ m 
k(r, m) =  N(r, m) =  . 

j
0≤j≤r 0≤j≤r 

Problem 4.6 (“Wagner decoding”) 

Let C be an (n, n − 1, 2) SPC code. The Wagner decoding rule is as follows. Make hard 
decisions on every symbol rk, and check whether the resulting binary word is in C. If so, 
accept it. If not, change the hard decision in the symbol rk for which the reliability metric 
|rk | is minimum. Show that the Wagner decoding rule is an optimum decoding rule for SPC 
codes. [Hint: show that the Wagner rule finds the codeword x ∈ C that maximizes r(x | r).] 
The maximum-reliability (MR) detection rule is to find the codeword that maximizes 
r(x | r) =  |rk |(−1)e(xk ,rk ), where  e(xk , rk ) = 0  if  the  signs  of  s(xk ) and  rk agree, and k 
1 otherwise. MR detection is optimum for binary codes on a Gaussian channel. 

If there is a codeword such that e(xk , rk ) = 0 for all k, then  r(x | r) clearly reaches its 
maximum possible value, namely |rk |, so this codeword should be chosen. k 

A property of a SPC code is that any word not in the code (i.e., an odd-weight word) may 
be changed to a codeword (i.e., an even-weight word) by changing any single coordinate 
value. The resulting value of r(x | r) will then be ( |rk |) − 2|rk� |, where  k′ is the index k 
of the changed coordinate. To maximize r(x | r), we should therefore choose the k′ for 
which |rk� | is minimum. This is the Wagner decoding rule. 

It is clear that any further changes can only further lower r(x | r), so Wagner decoding 
succeeds in finding the codeword that maximizes r(x | r), and is thus optimum. 
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Problem 4.7 (small cyclic groups). 

Write down the addition tables for Z2, Z3 and Z4. Verify that each group element appears 
precisely once in each row and column of each table. 

The addition tables for Z2, Z3 and Z4 are as follows: 

+ 0 1  
+ 

0 
1 

0 1  
1 0  

0 
1 
2 

0 1 2  
0 1 2 

1 2 0 

2 0 1 


+

0 0 1 2 3  
1 1 2 3 0  
2 2 3 0 1  
3 3 0 1 2  

0 1 2 3  

In each table, we verify that every row and column is a permutation of Zn. 

Problem 4.8 (subgroups of cyclic groups are cyclic). 

Show that every subgroup of Zn is cyclic. [Hint: Let s be the smallest nonzero element in 
a subgroup S ⊆ Zn, and compare S to the subgroup generated by s.] 

Following the hint, let S be a subgroup of Zn = {0, 1, . . .  , n − 1}, let  s be the smallest 
nonzero element of S, and let S(s) =  {s, 2s, . . . , ms = 0} be the (cyclic) subgroup of S 
generated by s. Suppose that S �= S(s); i.e., there is some element t ∈ S that is not in 
S(s). Then by the Euclidean division algorithm t = qs + r for some r <  s, and moreover 
r �= 0 because t = qs implies t ∈ S(s). But t ∈ S and qs ∈ S(s) ⊆ S imply r = t− qs ∈ S; 
but r �= 0 is smaller than the smallest nonzero element s ∈ S, contradiction. Thus 
S = S(s); i.e., S is the cyclic subgroup that is generated by its smallest nonzero element. 
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