Problem Set 4 Solutions

Problem 4.1

Show that if \mathcal{C} is a binary linear block code, then in every coordinate position either all codeword components are 0 or half are 0 and half are 1.
\mathcal{C} is linear if and only if \mathcal{C} is a group under vector addition. The subset $\mathcal{C}^{\prime} \subseteq \mathcal{C}$ of codewords with 0 in a given coordinate position is then clearly a (sub)group, as it is closed under vector addition. If there exists any codeword $\mathbf{c} \in \mathcal{C}$ with a 1 in the given coordinate position, then the (co)set $\mathcal{C}^{\prime}+\mathbf{c}$ is a subset of \mathcal{C} of size $\left|\mathcal{C}^{\prime}+\mathbf{c}\right|=|\mathcal{C}|$ consisting of the codewords with a 1 in the given coordinate position (all are codewords by the group property, and every codeword \mathbf{c}^{\prime} with a 1 in the given position is in $\mathcal{C}^{\prime}+\mathbf{c}$, since $\mathbf{c}^{\prime}+\mathbf{c}$ is in $\left.\mathcal{C}^{\prime}\right)$. On the other hand, if there exists no codeword $\mathbf{c} \in \mathcal{C}$ with a 1 in the given position, then $\mathcal{C}^{\prime}=\mathcal{C}$. We conclude that either half or none of the codewords in \mathcal{C} have a 1 in the given coordinate position.
Show that a coordinate in which all codeword components are 0 may be deleted ("punctured") without any loss in performance, but with savings in energy and in dimension.
If all codewords have a 0 in a given position, then this position does not contribute to distinguishing between any pair of codewords; i.e., it can be ignored in decoding without loss of performance. On the other hand, this symbol costs energy α^{2} to transmit, and sending this symbol reduces the code rate (nominal spectral efficiency). Thus for communications purposes, this symbol has a cost without any corresponding benefit, so it should be deleted.
Show that if \mathcal{C} has no such all-zero coordinates, then $s(\mathcal{C})$ has zero mean: $\mathbf{m}(s(\mathcal{C}))=\mathbf{0}$.
By the first part, if \mathcal{C} has no all-zero coordinates, then in each position \mathcal{C} haas half 0 s and half 1 s , so $s(\mathcal{C})$ has zero mean in each coordinate position.

Problem 4.2 (RM code parameters)
Compute the parameters (k, d) of the $R M$ codes of lengths $n=64$ and $n=128$.
Using

$$
k(r, m)=\sum_{0 \leq j \leq r}\binom{m}{j}
$$

or

$$
k(r, m)=k(r, m-1)+k(r-1, m-1),
$$

the parameters for the $n=64 \mathrm{RM}$ codes are

$$
(64,64,1) ;(64,63,2) ;(64,57,4) ;(64,42,8) ;(64,22,16) ;(64,7,32),(64,1,64) ;(64,0, \infty)
$$

Similarly, the parameters for the nontrivial $n=128$ RM codes are

$$
(128,127,2) ;(128,120,4) ;(128,99,8) ;(128,64,16) ;(128,29,32) ;(128,8,64) ;(128,1,128) .
$$

Problem 4.3 (optimizing SPC and EH codes)
(a) Using the rule of thumb that a factor of two increase in K_{b} costs $0.2 d B$ in effective coding gain, find the value of n for which an $(n, n-1,2)$ SPC code has maximum effective coding gain, and compute this maximum in $d B$.
The nominal coding gain of an $(n, n-1,2)$ SPC code is $\gamma_{c}=2(n-1) / n$, and the number of nearest neighbors is $N_{2}=n(n-1) / 2$, so the number of nearest neighbors per bit is $K_{b}=n / 2$. The effective coding gain in dB is therefore approximately

$$
\begin{aligned}
\gamma_{\mathrm{eff}} & =10 \log _{10} 2(n-1) / n-(0.2) \log _{2} n / 2 \\
& =10\left(\log _{10} e\right) \ln 2(n-1) / n-(0.2)\left(\log _{2} e\right) \ln n / 2
\end{aligned}
$$

Differentiating with respect to n, we find that the maximum occurs when

$$
10\left(\log _{10} e\right)\left(\frac{1}{n-1}-\frac{1}{n}\right)-(0.2)\left(\log _{2} e\right) \frac{1}{n}=0
$$

which yields

$$
n-1=\frac{10 \log _{10} e}{(0.2) \log _{2} e} \approx 15 .
$$

Thus the maximum occurs for $n=16$, where

$$
\gamma_{\mathrm{eff}} \approx 2.73-0.6=2.13 \mathrm{~dB}
$$

(b) Similarly, find the m such that the $\left(2^{m}, 2^{m}-m-1,4\right)$ extended Hamming code has maximum effective coding gain, using

$$
N_{4}=\frac{2^{m}\left(2^{m}-1\right)\left(2^{m}-2\right)}{24}
$$

and compute this maximum in $d B$.
Similarly, the nominal coding gain of a $\left(2^{m}, 2^{m}-m-1,4\right)$ extended Hamming code is $\gamma_{c}=4\left(2^{m}-m-1\right) / 2^{m}$, and the number of nearest neighbors is $N_{4}=2^{m}\left(2^{m}-1\right)\left(2^{m}-2\right) / 24$, so the number of nearest neighbors per bit is $K_{b}=2^{m}\left(2^{m}-1\right)\left(2^{m}-2\right) / 24\left(2^{m}-m-1\right)$. Computing effective coding gains, we find

$$
\begin{aligned}
\gamma_{\mathrm{eff}}(8,4,4) & =2.6 \mathrm{~dB} \\
\gamma_{\mathrm{eff}}(16,11,4) & =3.7 \mathrm{~dB} ; \\
\gamma_{\mathrm{eff}}(32,26,4) & =4.0 \mathrm{~dB} \\
\gamma_{\mathrm{eff}}(64,57,4) & =4.0 \mathrm{~dB} \\
\gamma_{\mathrm{eff}}(128,120,4) & =3.8 \mathrm{~dB}
\end{aligned}
$$

which shows that the maximum occurs for $2^{m}=32$ or 64 and is about 4.0 dB .

Problem 4.4 (biorthogonal codes)
We have shown that the first-order Reed-Muller codes $\mathrm{RM}(1, m)$ have parameters $\left(2^{m}, m+1,2^{m-1}\right)$, and that the $\left(2^{m}, 1,2^{m}\right)$ repetition code $\mathrm{RM}(0, m)$ is a subcode.
(a) Show that $\mathrm{RM}(1, m)$ has one word of weight 0 , one word of weight 2^{m}, and $2^{m+1}-2$ words of weight 2^{m-1}. [Hint: first show that the $\mathrm{RM}(1, m)$ code consists of 2^{m} complementary codeword pairs $\{\mathbf{x}, \mathbf{x}+\mathbf{1}\}$.]
Since the $\operatorname{RM}(1, m)$ code contains the all-one word 1 , by the group property it contains the complement of every codeword. The complement of the all-zero word $\mathbf{0}$, which has weight 0 , is the all-one word 1 , which has weight 2^{m}. In general, the complement of a weight- w word has weight $2^{m}-w$. Thus if the minimum weight of any nonzero word is 2^{m-1}, then all other codewords must have weight exactly 2^{m-1}.
(b) Show that the Euclidean image of an $\operatorname{RM}(1, m)$ code is an $M=2^{m+1}$ biorthogonal signal set. [Hint: compute all inner products between code vectors.]
The inner product between the Euclidean images $s(\mathbf{x}), s(\mathbf{y})$ of two binary n-tuples \mathbf{x}, \mathbf{y} is

$$
\langle s(\mathbf{x}), s(\mathbf{y})\rangle=\left(n-2 d_{H}(\mathbf{x}, \mathbf{y})\right) \alpha^{2}
$$

Thus \mathbf{x} and \mathbf{y} are orthogonal when $d_{H}(\mathbf{x}, \mathbf{y})=n / 2=2^{m-1}$. It follows that every codeword \mathbf{x} in $\operatorname{RM}(1, m)$ is orthogonal to every other word, except $\mathbf{x}+\mathbf{1}$, to which it is antipodal. Thus the Euclidean image of $\operatorname{RM}(1, m)$ is a biorthogonal signal set.
(c) Show that the code \mathcal{C}^{\prime} consisting of all words in $\mathrm{RM}(1, m)$ with a 0 in any given coordinate position is a $\left(2^{m}, m, 2^{m-1}\right)$ binary linear code, and that its Euclidean image is an $M=2^{m}$ orthogonal signal set. [Same hint as in part (a).]
By the group property, exactly half the words have a 0 in any coordinate position. Moreover, this set of words \mathcal{C}^{\prime} evidently has the group property, since the sum of any two codewords in $\mathrm{RM}(1, m)$ that have a 0 in a certain position is a codeword in $\mathrm{RM}(1, m)$ that has a 0 in that position. These words include the all-zero word but not the allone word. The nonzero words in \mathcal{C}^{\prime} thus all have weight 2^{m-1}. Thus any two distinct Euclidean images $s(\mathbf{x})$ are orthogonal. Therefore $s\left(\mathcal{C}^{\prime}\right)$ is an orthogonal signal set with $M=2^{m}$ signals.
(d) Show that the code $\mathcal{C}^{\prime \prime}$ consisting of the code words of \mathcal{C}^{\prime} with the given coordinate deleted ("punctured") is a binary linear $\left(2^{m}-1, m, 2^{m-1}\right)$ code, and that its Euclidean image is an $M=2^{m}$ simplex signal set. [Hint: use Exercise 7 of Chapter 5.]
$\mathcal{C}^{\prime \prime}$ is the same code as \mathcal{C}^{\prime}, except with one less bit. Since the deleted bit is always a zero, deleting this coordinate does not affect the weight of any word. Thus $\mathcal{C}^{\prime \prime}$ is a binary linear $\left(2^{m}-1, m, 2^{m-1}\right)$ code in which every nonzero word has Hamming weight 2^{m-1}. Consequently the inner product of the Euclidean images of any two distinct codewords is

$$
\langle s(\mathbf{x}), s(\mathbf{y})\rangle=\left(n-2 d_{H}(\mathbf{x}, \mathbf{y})\right) \alpha^{2}=-\alpha^{2}=-\frac{E(\mathcal{A})}{2^{m}-1}
$$

where $E(\mathcal{A})=\left(2^{m}-1\right) \alpha^{2}$ is the energy of each codeword. This is the set of inner products of an $M=2^{m}$ simplex signal set of energy $E(\mathcal{A})$, so $s\left(\mathcal{C}^{\prime \prime}\right)$ is geometrically equivalent to a simplex signal set.

Problem 4.5 (generator matrices for RM codes)
Let square $2^{m} \times 2^{m}$ matrices $U_{m}, m \geq 1$, be specified recursively as follows. The matrix U_{1} is the 2×2 matrix

$$
U_{1}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] .
$$

The matrix U_{m} is the $2^{m} \times 2^{m}$ matrix

$$
U_{m}=\left[\begin{array}{ll}
U_{m-1} & 0 \\
U_{m-1} & U_{m-1}
\end{array}\right]
$$

(In other words, U_{m} is the m-fold tensor product of U_{1} with itself.)
(a) Show that $\mathrm{RM}(r, m)$ is generated by the rows of U_{m} of Hamming weight 2^{m-r} or greater. [Hint: observe that this holds for $m=1$, and prove by recursion using the $|u| u+v \mid$ construction.] For example, give a generator matrix for the $(8,4,4) R M$ code.
We first observe that U_{m} is a lower triangular matrix with ones on the diagonal. Thus its 2^{m} rows are linearly independent, and generate the universe code $\left(2^{m}, 2^{m}, 1\right)=\mathrm{RM}(m, m)$. The three RM codes with $m=1$ are $\operatorname{RM}(1,1)=(2,2,1), \operatorname{RM}(0,1)=(2,1,2)$, and $\operatorname{RM}(-1,1)=(2,0, \infty)$. By inspection, $\operatorname{RM}(1,1)=(2,2,1)$ is generated by the two rows of U_{1} of weight 1 or greater (i.e., both rows), and $\operatorname{RM}(0,1)=(2,1,2)$ is generated by the row of U_{1} of weight 2 or greater (i.e., the single row (1,1)). (Moreover, $\operatorname{RM}(-1,1)=(2,0, \infty)$ is generated by the rows of U_{1} of weight 4 or greater (i.e., no rows).)
Suppose now that $\mathrm{RM}(r, m-1)$ is generated by the rows of U_{m-1} of Hamming weight 2^{m-1-r} or greater. By the $|u| u+v \mid$ construction,

$$
\operatorname{RM}(r, m)=\{(\mathbf{u}, \mathbf{u}+\mathbf{v}) \mid \mathbf{u} \in \operatorname{RM}(r, m-1), \mathbf{v} \in \operatorname{RM}(r-1, m-1)\} .
$$

Equivalently, since $\operatorname{RM}(r-1, m-1)$ is a subcode of $\operatorname{RM}(r, m-1)$, we can write

$$
\operatorname{RM}(r, m)=\left\{\left(\mathbf{u}^{\prime}+\mathbf{v}, \mathbf{u}^{\prime}\right) \mid \mathbf{u}^{\prime} \in \operatorname{RM}(r, m-1), \mathbf{v} \in \operatorname{RM}(r-1, m-1)\right\}
$$

where $\mathbf{u}^{\prime}=\mathbf{u}+\mathbf{v}$. Thus a set of generators for $\operatorname{RM}(r, m)$ is

$$
\left\{\left(\mathbf{u}^{\prime}, \mathbf{u}^{\prime}\right), \mid \mathbf{u}^{\prime} \in \operatorname{RM}(r, m-1)\right\} ;\{(\mathbf{v}, \mathbf{0}), \mid \mathbf{v} \in \operatorname{RM}(r-1, m-1)\}
$$

Now from the construction of U_{m} from U_{m-1}, each of these generators is a row of U_{m} with weight 2^{m-r} or greater, so these rows certainly suffice to generate $\mathrm{RM}(r, m)$. Moreover, they are linearly independent, so their number is the dimension of $\operatorname{RM}(r, m)$:

$$
k(r, m)=k(r, m-1)+k(r-1, m-1) .
$$

For example, the $(8,4,4)$ code is generated by the four rows of U_{8} of weight 4 or more:

$$
U_{8}=\left[\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right] ; \quad G_{(8,4,4)}=\left[\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right] .
$$

(b) Show that the number of rows of U_{m} of weight 2^{m-r} is $\binom{m}{r}$. [Hint: use the fact that $\binom{m}{r}$ is the coefficient of z^{m-r} in the integer polynomial $(1+z)^{m}$.]
Following the hint, let $N(r, m)$ denote the number of rows of U_{m} of weight precisely 2^{m-r}, and define the generator polynomial

$$
g_{m}(z)=\sum_{r=0}^{m} N(r, m) z^{r} .
$$

Then since $N(0,1)=N(1,1)=1$, we have $g_{1}(z)=1+z$. Moreover, since the number of rows of U_{m} of weight precisely 2^{m-r} is equal to the number of rows of U_{m-1} of weight 2^{m-r} plus the number of rows of U_{m-1} of weight 2^{m-r-1}, we have

$$
N(r, m)=N(r-1, m-1)+N(r, m-1) .
$$

This yields the recursion $g_{m}(z)=(1+z) g_{m-1}(z)$, from which we conclude that

$$
g_{m}(z)=(1+z)^{m}=\sum_{r=0}^{m}\binom{m}{r} z^{r} .
$$

Consequently $N(r, m)$ is the coefficient of z^{r}, namely $N(r, m)=\binom{m}{r}$.
(c) Conclude that the dimension of $\operatorname{RM}(r, m)$ is $k(r, m)=\sum_{0 \leq j \leq r}\binom{m}{j}$.

Since $k(r, m)$ is the number of rows of U_{m} of weight 2^{m-r} or greater, we have

$$
k(r, m)=\sum_{0 \leq j \leq r} N(r, m)=\sum_{0 \leq j \leq r}\binom{m}{j} .
$$

Problem 4.6 ("Wagner decoding")

Let \mathcal{C} be an $(n, n-1,2)$ SPC code. The Wagner decoding rule is as follows. Make hard decisions on every symbol r_{k}, and check whether the resulting binary word is in \mathcal{C}. If so, accept it. If not, change the hard decision in the symbol r_{k} for which the reliability metric $\left|r_{k}\right|$ is minimum. Show that the Wagner decoding rule is an optimum decoding rule for SPC codes. [Hint: show that the Wagner rule finds the codeword $\mathbf{x} \in \mathcal{C}$ that maximizes $r(\mathbf{x} \mid \mathbf{r})$.] The maximum-reliability (MR) detection rule is to find the codeword that maximizes $r(\mathbf{x} \mid \mathbf{r})=\sum_{k}\left|r_{k}\right|(-1)^{e\left(x_{k}, r_{k}\right)}$, where $e\left(x_{k}, r_{k}\right)=0$ if the signs of $s\left(x_{k}\right)$ and r_{k} agree, and 1 otherwise. MR detection is optimum for binary codes on a Gaussian channel.
If there is a codeword such that $e\left(x_{k}, r_{k}\right)=0$ for all k, then $r(\mathbf{x} \mid \mathbf{r})$ clearly reaches its maximum possible value, namely $\sum_{k}\left|r_{k}\right|$, so this codeword should be chosen.
A property of a SPC code is that any word not in the code (i.e., an odd-weight word) may be changed to a codeword (i.e., an even-weight word) by changing any single coordinate value. The resulting value of $r(\mathbf{x} \mid \mathbf{r})$ will then be $\left(\sum_{k}\left|r_{k}\right|\right)-2\left|r_{k^{\prime}}\right|$, where k^{\prime} is the index of the changed coordinate. To maximize $r(\mathbf{x} \mid \mathbf{r})$, we should therefore choose the k^{\prime} for which $\left|r_{k^{\prime}}\right|$ is minimum. This is the Wagner decoding rule.
It is clear that any further changes can only further lower $r(\mathbf{x} \mid \mathbf{r})$, so Wagner decoding succeeds in finding the codeword that maximizes $r(\mathbf{x} \mid \mathbf{r})$, and is thus optimum.

Problem 4.7 (small cyclic groups).
Write down the addition tables for $\mathbb{Z}_{2}, \mathbb{Z}_{3}$ and \mathbb{Z}_{4}. Verify that each group element appears precisely once in each row and column of each table.
The addition tables for $\mathbb{Z}_{2}, \mathbb{Z}_{3}$ and \mathbb{Z}_{4} are as follows:

$$
\begin{array}{c|lll|llll|llll}
+ & 0 & 1 \\
\hline 0 & 0 & 1 \\
1 & 1 & 0
\end{array} \quad \begin{array}{ll|lll}
+ & + & 1 & 2 \\
\hline 0 & 0 & 1 & 2 \\
1 & 1 & 2 & 0 \\
2 & 2 & 0 & 1
\end{array} \quad \begin{array}{llllll}
& + & 0 & 1 & 1 & 1 \\
0 & 2 & 3 & 0 \\
2 & 3 & 3 & 0 & 1 \\
\hline
\end{array}
$$

In each table, we verify that every row and column is a permutation of \mathbb{Z}_{n}.

Problem 4.8 (subgroups of cyclic groups are cyclic).
Show that every subgroup of \mathbb{Z}_{n} is cyclic. [Hint: Let s be the smallest nonzero element in a subgroup $S \subseteq \mathbb{Z}_{n}$, and compare S to the subgroup generated by s.]
Following the hint, let S be a subgroup of $\mathbb{Z}_{n}=\{0,1, \ldots, n-1\}$, let s be the smallest nonzero element of S, and let $S(s)=\{s, 2 s, \ldots, m s=0\}$ be the (cyclic) subgroup of S generated by s. Suppose that $S \neq S(s)$; i.e., there is some element $t \in S$ that is not in $S(s)$. Then by the Euclidean division algorithm $t=q s+r$ for some $r<s$, and moreover $r \neq 0$ because $t=q s$ implies $t \in S(s)$. But $t \in S$ and $q s \in S(s) \subseteq S$ imply $r=t-q s \in S$; but $r \neq 0$ is smaller than the smallest nonzero element $s \in S$, contradiction. Thus $S=S(s) ;$ i.e., S is the cyclic subgroup that is generated by its smallest nonzero element.

