Problem Set 8

Problem 8.1 (Realizations of repetition and SPC codes)
Show that a reduced Hadamard transform realization of a repetition code $\operatorname{RM}(0, m)$ or a single-parity-check code $\mathrm{RM}(m-1, m)$ is a cycle-free tree-structured realization with a minimum number of $(3,1,3)$ repetition constraints or $(3,2,2)$ parity-check constraints, respectively, and furthermore with minimum diameter (distance between any two code symbols in the tree). Show that these two realizations are duals; i.e., one is obtained from the other via interchange of $(3,2,2)$ constraints and $(3,1,3)$ constraints.

Problem 8.2 (Dual realizations of RM codes)
Show that in general a Hadamard transform (HT) realization of any Reed-Muller code $\mathrm{RM}(r, m)$ is the dual of the HT realization of the dual code $\mathrm{RM}(m-r-1, m)$; i.e., one is obtained from the other via interchange of $(3,2,2)$ constraints and $(3,1,3)$ constraints.

Problem 8.3 (BCJR (sum-product) decoding of SPC codes)
As shown in Problem 6.4, any $(\mu+1, \mu, 2)$ binary linear SPC block code may be represented by a two-state trellis diagram. Let $\mu=7$, and let the received sequence from a discretetime AWGN channel be given by $\mathbf{r}=(0.1,-1.0,-0.7,0.8,1.1,0.3,-0.9,0.5)$. Perform BCJR (sum-product) decoding of this sequence, using the two-state trellis diagram of the $(8,7,2)$ SPC code.
Compare the performance and complexity of BCJR decoding to that of the Viterbi algorithm and Wagner decoding (Problem 6.6).

