Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

6.453 Quantum Optical Communication

Problem Set 1

Fall 2016
Issued: Thursday, September 8, 2016
Due: Thursday, September 15, 2016
Reading: For probability review: Chapter 3 of J. H. Shapiro, Optical Progagation, Detection, and Communication,
For linear algebra review: Section 2.1 of M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information.

Problem 1.1

Here we shall verify the elementary properties of the 1-D Gaussian probability density function (pdf)

$$
p_{x}(X)=\frac{e^{-(X-m)^{2} / 2 \sigma^{2}}}{\sqrt{2 \pi \sigma^{2}}}, \quad \text { for }-\infty<X<\infty .
$$

(a) By converting from rectangular to polar coordinates, using $X-m=R \cos (\Phi)$ and $Y-m=R \sin (\Phi)$, show that

$$
\left(\int_{-\infty}^{\infty} d X e^{-(X-m)^{2} / 2 \sigma^{2}}\right)^{2}=\int_{-\infty}^{\infty} d X \int_{-\infty}^{\infty} d Y e^{-(X-m)^{2} / 2 \sigma^{2}-(Y-m)^{2} / 2 \sigma^{2}}=2 \pi \sigma^{2}
$$

thus verifying the normalization constant for the Gaussian pdf.
(b) By completing the square in the exponent within the integrand,

$$
\int_{-\infty}^{\infty} d X \frac{e^{j v X-(X-m)^{2} / 2 \sigma^{2}}}{\sqrt{2 \pi \sigma^{2}}}
$$

verify that

$$
M_{x}(j v)=e^{j v m-v^{2} \sigma^{2} / 2}
$$

is the characteristic function associated with the Gaussian pdf.
(c) Differentiate $M_{x}(j v)$ to verify that $E(x)=m$; differentiate once more to verify that $\operatorname{var}(x)=\sigma^{2}$.

Problem 1.2

Here we shall verify the elementary properties of the Poisson probability mass function (pmf),

$$
P_{x}(n)=\frac{m^{n}}{n!} e^{-m}, \quad \text { for } n=0,1,2, \ldots, \text { and } m \geq 0
$$

(a) Use the power series

$$
e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}
$$

to verify that the Poisson pmf is properly normalized.
(b) Use the power series for e^{z} to verify that

$$
M_{x}(j v)=\exp \left[m\left(e^{j v}-1\right)\right] .
$$

is the characteristic function associated with the Poisson pmf.
(c) Differentiate $M_{x}(j v)$ to verify that $E(x)=m$; differentiate once more to verify that $\operatorname{var}(x)=m$.

Problem 1.3

Let x be a Rayleigh random variable, i.e., x has pdf

$$
p_{x}(X)= \begin{cases}\frac{X}{\sigma^{2}} e^{-X^{2} / 2 \sigma^{2}}, & \text { for } X \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

and let $y=x^{2}$.
(a) Find $p_{y}(Y)$, the pdf of y.
(b) Find m_{y} and σ_{y}^{2}, the mean and variance of the random variable y.

Problem 1.4

Let x and y be statistically independent, identically distributed, zero-mean, variance σ^{2}, Gaussian random variables, i.e., the joint pdf for x and y is,

$$
p_{x, y}(X, Y)=\frac{e^{-X^{2} / 2 \sigma^{2}-Y^{2} / 2 \sigma^{2}}}{2 \pi \sigma^{2}}
$$

Suppose we regard (x, y) as the Cartesian coordinates of a point in the plane, and let (r, ϕ) be the polar-coordinate representation of this point, viz., $x=r \cos (\phi)$ and $y=r \sin (\phi)$ for $r \geq 0$ and $0 \leq \phi<2 \pi$
(a) Find $p_{r, \phi}(R, \Phi)$, the joint pdf of r and ϕ.
(b) Find the marginal pdfs, $p_{r}(R)$ and $p_{\phi}(\Phi)$, of these random variables, and prove that r and ϕ are statistically independent random variables.

Problem 1.5

Let N, x be joint random variables. Suppose that x is exponentially distributed with mean m, i.e.,

$$
p_{x}(X)= \begin{cases}\frac{e^{-X / m}}{m}, & \text { for } x \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

is the pdf of x. Also suppose that, given $x=X, N$ is Poisson distributed with mean value X, i.e., the conditional pmf of N is,

$$
P_{N \mid x}(n \mid x=X)=\frac{X^{n}}{n!} e^{-X}, \quad \text { for } n=0,1,2, \ldots
$$

(a) Use the integral formula,

$$
\int_{0}^{\infty} d Z Z^{n} e^{-Z}=n!, \quad \text { for } n=0,1,2, \ldots
$$

(where $0!=1$) to find $P_{N}(n)$, the unconditional pmf of N.
(b) Find $M_{N}(j v)$, the characteristic function associated with your unconditional pmf from (a).
(c) Find $E(N)$ and $\operatorname{var}(N)$, the unconditional mean and variance of N, by differentiating your characteristic function from (b).

Problem 1.6

Let x, y be jointly Gaussian random variables with zero-means $m_{x}=m_{y}=0$, identical variances $\sigma_{x}^{2}=\sigma_{y}^{2}=\sigma^{2}$, and nonzero correlation coefficient ρ. Let w, z be two new random variables obtained from x, y by the following transformation,

$$
\begin{aligned}
w & =x \cos (\theta)+y \sin (\theta) \\
z & =-x \sin (\theta)+y \cos (\theta)
\end{aligned}
$$

for θ a deterministic angle satisfying $0<\theta<\pi / 2$.
(a) Show that this transformation is a rotation in the plane, i.e., (w, z) are obtained from (x, y) by rotation through angle θ
(b) Find $p_{w, z}(W, Z)$ the joint pdf of w and z.
(c) Find a θ value such that w and z are statistically independent.

Problem 1.7

Here we shall examine some of the eigenvalue/eigenvector properties of an Hermitian matrix. Let \mathbf{x} be an $N-\mathrm{D}$ column vector of complex numbers whose nth element is x_{n}, let A be an $N \times N$ matrix of complex numbers whose $i j$ th element is $a_{i j}$, and let ${ }^{\dagger}$ denote conjugate transpose so that $\mathbf{x}^{\dagger}=\left[\begin{array}{llll}x_{1}^{*} & x_{2}^{*} & \cdots & x_{N}^{*}\end{array}\right]$ and A^{\dagger} is an $N \times N$ matrix whose $i j$ th element is $a_{j i}^{*}$.
(a) Find the adjoint of A, i.e., the matrix B which satisfies $(B \mathbf{y})^{\dagger} \mathbf{x}=\mathbf{y}^{\dagger}(A \mathbf{x})$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{C}^{N}$, where \mathcal{C}^{N} is the space of N-D vectors with complex-valued elements. If $B=A$, for a particular matrix A, we say that A is self-adjoint, or Hermitian. Assume that A is Hermitian for parts (b)-(d)
(b) Let A have eigenvalues $\left\{\mu_{n}: 1 \leq n \leq N\right\}$ and normalized eigenvectors $\left\{\boldsymbol{\phi}_{n}\right.$: $1 \leq n \leq N\}$ obeying

$$
\begin{aligned}
A \phi_{n} & =\mu_{n} \phi_{n}, \quad \text { for } 1 \leq n \leq N \\
\boldsymbol{\phi}_{n}^{\dagger} \phi_{n} & =1, \quad \text { for } 1 \leq n \leq N
\end{aligned}
$$

Show that μ_{n} is real valued for $1 \leq n \leq N$.
(c) Show that if $\mu_{n} \neq \mu_{m}$ then $\boldsymbol{\phi}_{n}^{\dagger} \boldsymbol{\phi}_{m}=0$, i.e., eigenvectors associated with distinct eigenvalues are orthogonal.
(d) Suppose there are two linearly independent eigenvectors, $\boldsymbol{\phi}$ and $\boldsymbol{\phi}^{\prime}$ which have the same eigenvalue, μ. Show that two orthogonal vectors, $\boldsymbol{\theta}$ and $\boldsymbol{\theta}^{\prime}$ can be constructed satisfying,

$$
\begin{aligned}
A \boldsymbol{\theta} & =\mu \boldsymbol{\theta} \\
A \boldsymbol{\theta}^{\prime} & =\mu \boldsymbol{\theta}^{\prime} \\
\boldsymbol{\theta}^{\dagger} \boldsymbol{\theta}^{\prime} & =0
\end{aligned}
$$

(e) Because of the results of parts (c) and (d), we can assume that $\left\{\boldsymbol{\phi}_{n}: 1 \leq n \leq\right.$ $N\}$ is a complete orthornormal (CON) set of vectors on \mathcal{C}^{N}, i.e.,

$$
\boldsymbol{\phi}_{n}^{\dagger} \boldsymbol{\phi}_{m}= \begin{cases}1, & \text { for } n=m \\ 0, & \text { for } n \neq m\end{cases}
$$

Let I_{N} be the identity matrix on this space. Show that

$$
I_{N}=\sum_{n=1}^{N} \boldsymbol{\phi}_{n} \boldsymbol{\phi}_{n}^{\dagger} .
$$

Show that

$$
A=\sum_{n=1}^{N} \mu_{n} \boldsymbol{\phi}_{n} \boldsymbol{\phi}_{n}^{\dagger} .
$$

Problem 1.8

Here we introduce the notion of overcompleteness. Consider 2-D real Euclidean space, \mathcal{R}^{2}, i.e., the space of 2-D column vectors \mathbf{x} where $\mathbf{x}^{T}=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]$, with x_{1} and x_{2} being real numbers. Define three vectors as follows:

$$
\mathbf{x}_{1}=\left[\begin{array}{c}
\sqrt{3} / 2 \\
-1 / 2
\end{array}\right], \quad \mathbf{x}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad \mathbf{x}_{3}=\left[\begin{array}{c}
-\sqrt{3} / 2 \\
-1 / 2
\end{array}\right]
$$

(a) Make a labeled sketch of these three vectors on an (x_{1}, x_{2}) plane, and find $\mathbf{x}_{n}^{T} \mathbf{x}_{m}$ for $1 \leq n, m \leq 3$. Are these three vectors normalized (unit length)? Are they orthogonal?
(b) Show that any two of $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$ form a basis for the space \mathcal{R}^{2}, i.e., any $\mathbf{y} \in \mathcal{R}^{2}$ can be expressed as

$$
\mathbf{y}=a \mathbf{x}_{1}+a^{\prime} \mathbf{x}_{2}=b \mathbf{x}_{1}+b^{\prime} \mathbf{x}_{3}=c \mathbf{x}_{2}+c^{\prime} \mathbf{x}_{3}
$$

for appropriate choices of the (real-valued) coefficients $\left\{a, a^{\prime}, b, b^{\prime}, c, c^{\prime}\right\}$.
(c) Show that the 2×2 identity matrix, I_{2}, can be expressed as

$$
I_{2}=\frac{2}{3} \sum_{n=1}^{3} \mathbf{x}_{n} \mathbf{x}_{n}^{T}
$$

Use this result to prove that for any $\mathbf{x} \in \mathcal{R}^{2}$ that

$$
\mathbf{x}=\frac{2}{3} \sum_{n=1}^{3}\left(\mathbf{x}_{n}^{T} \mathbf{x}\right) \mathbf{x}_{n}
$$

Comment: Let $\mathbf{e}_{1}^{T}=\left[\begin{array}{ll}1 & 0\end{array}\right]$ and $\mathbf{e}_{2}^{T}=\left[\begin{array}{ll}0 & 1\end{array}\right]$ be the standard basis of \mathcal{R}^{2}. They are a complete orthornormal set of vectors on \mathcal{R}^{2}, hence

$$
I_{2}=\sum_{n=1}^{2} \mathbf{e}_{n} \mathbf{e}_{n}^{T},
$$

and the standard representation for $\mathbf{x} \in \mathcal{R}^{2}$ can be expressed as

$$
\mathbf{x}=\sum_{n=1}^{2}\left(\mathbf{e}_{n}^{T} \mathbf{x}\right) \mathbf{e}_{n}
$$

We say that $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$ form an overcomplete basis for \mathcal{R}^{2} because any two of them is enough to represent an arbitrary vector in this space, but all three taken together resolve the identity [their outer-product-sum times a scale factor equals the identity matrix, as shown in part (c)] hence the expansion coefficients needed to represent an arbitrary vector in this overcomplete basis can be found via projection [as shown in part(c)].

MIT OpenCourseWare
https://ocw.mit.edu

6.453 Quantum Optical Communication

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

