Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

6.453 Quantum Optical Communication

Problem Set 1 Solutions

Fall 2016

Problem 1.1

Here we shall verify the elementary properties of the 1-D Gaussian probability density function (pdf),

$$
p_{x}(X)=\frac{e^{-(X-m)^{2} / 2 \sigma^{2}}}{\sqrt{2 \pi \sigma^{2}}}, \quad \text { for }-\infty<X<\infty .
$$

(a) For a 1-D deterministic function to be a pdf, it must be non-negative and integrate to one. It is clear that $e^{-(X-m)^{2} / 2 \sigma^{2}}$ is non-negative. To demonstrate that it integrates to one - without recourse to integral tables-we proceed as follows. We have that

$$
\left(\int_{-\infty}^{\infty} d X e^{-(X-m)^{2} / 2 \sigma^{2}}\right)^{2}=\int_{-\infty}^{\infty} d X \int_{-\infty}^{\infty} d Y e^{-(X-m)^{2} / 2 \sigma^{2}-(Y-m)^{2} / 2 \sigma^{2}}
$$

by writing out the square of the single integral as the product of single integrals with different dummy variables of integration, and then combining the product of these single integrals into a double integral. Converting the double integral to polar coordinates, via $X-m=R \cos (\Phi), Y-m=R \sin (\Phi)$ and $d X d Y=$ $R d R d \Phi$, yields,

$$
\begin{aligned}
\int_{-\infty}^{\infty} d X \int_{-\infty}^{\infty} d Y e^{-(X-m)^{2} / 2 \sigma^{2}-(Y-m)^{2} / 2 \sigma^{2}} & =\int_{0}^{2 \pi} d \Phi \int_{0}^{\infty} d R R e^{-R^{2} / 2 \sigma^{2}} \\
& =2 \pi \int_{0}^{\infty} d R R e^{-R^{2} / 2 \sigma^{2}}=2 \pi \sigma^{2}
\end{aligned}
$$

where we have first done the Φ integral and then the R integral. Taking the square root of this result then verifies the normalization constant for the 1-D Gaussian pdf.
(b) We have that

$$
\begin{aligned}
M_{x}(j v) & =E\left(e^{j v x}\right)=\int_{-\infty}^{\infty} d X \frac{e^{j v X-(X-m)^{2} / 2 \sigma^{2}}}{\sqrt{2 \pi \sigma^{2}}} \\
& =\int_{-\infty}^{\infty} d X \frac{e^{j v m-v^{2} \sigma^{2} / 2-\left[X-\left(m+j v \sigma^{2}\right)\right]^{2} / 2 \sigma^{2}}}{\sqrt{2 \pi \sigma^{2}}}=e^{j v m-v^{2} \sigma^{2} / 2}
\end{aligned}
$$

where we have used the fact that

$$
\int_{-\infty}^{\infty} d X \frac{e^{-(X-a)^{2} / 2 \sigma^{2}}}{\sqrt{2 \pi \sigma^{2}}}=1
$$

is valid when $\sigma^{2}>0$, even if a is complex valued.
(c) To get the mean value of x we differentiate $M_{x}(j v)$ once,

$$
E(x)=\left.\frac{d M_{x}(j v)}{d(j v)}\right|_{j v=j 0}=\left.\left[\left(m+j v \sigma^{2}\right) e^{j v m-v^{2} \sigma^{2} / 2}\right]\right|_{j v=j 0}=m
$$

To get the mean-square value of x, we differentiate once more,

$$
\begin{aligned}
E\left(x^{2}\right) & =\left.\frac{d^{2} M_{x}(j v)}{d(j v)^{2}}\right|_{j v=j 0} \\
& =\left.\left\{\left[\left(m+j v \sigma^{2}\right)^{2}+\sigma^{2}\right] e^{j v m-v^{2} \sigma^{2} / 2}\right\}\right|_{j v=j 0}=m^{2}+\sigma^{2}
\end{aligned}
$$

Now, using $\operatorname{var}(x)=E\left(x^{2}\right)-[E(x)]^{2}$, we find that $\operatorname{var}(x)=\sigma^{2}$.

Problem 1.2

Here we shall verify the elementary properties of the Poisson probability mass function (pmf),

$$
P_{x}(n)=\frac{m^{n}}{n!} e^{-m}, \quad \text { for } n=0,1,2, \ldots, \text { and } m \geq 0
$$

(a) A probability mass function must be non-negative and sum to one. The Poisson pmf is clearly non-negative. To prove that it is properly normalized we use the power series for e^{z} to verify that,

$$
\sum_{n=0}^{\infty} P_{x}(n)=e^{-m} \sum_{n=0}^{\infty} \frac{m^{n}}{n!}=e^{-m} e^{m}=1
$$

(b) The characteristic function associated with the Poisson pmf is found via a similar power series calculation:

$$
M_{x}(j v)=E\left(e^{j v x}\right)=e^{-m} \sum_{n=0}^{\infty} \frac{e^{j v n} m^{n}}{n!}=e^{-m} \exp \left(e^{j v} m\right)=\exp \left[m\left(e^{j v}-1\right)\right]
$$

(c) We differentiate $M_{x}(j v)$ once to get $E(x)$:

$$
E(x)=\left.\frac{d M_{x}(j v)}{d(j v)}\right|_{j v=j 0}=\left.\left(m e^{j v} \exp \left[m\left(e^{j v}-1\right)\right]\right)\right|_{j v=j 0}=m
$$

We differentiate a second time to obtain $E\left(x^{2}\right)$:

$$
E\left(x^{2}\right)=\left.\frac{d^{2} M_{x}(j v)}{d(j v)^{2}}\right|_{j v=j 0}=\left.\left[\left(m e^{j v}+m^{2} e^{2 j v}\right) \exp \left[m\left(e^{j v}-1\right)\right]\right]\right|_{j v=j 0}=m+m^{2}
$$

Now, using $\operatorname{var}(x)=E\left(x^{2}\right)-[E(x)]^{2}$, we find that $\operatorname{var}(x)=m$.

Problem 1.3

Here we perform a simple 1-D random-variable transformation, using the method of events.
(a) The probability distribution function of $y=x^{2}$ is,

$$
\begin{aligned}
F_{y}(Y) & \equiv \operatorname{Pr}(y \leq Y)=\operatorname{Pr}(|x| \leq \sqrt{Y})=\int_{0}^{\sqrt{Y}} d X \frac{X}{\sigma^{2}} e^{-X^{2} / 2 \sigma^{2}} \\
& =1-e^{-Y / 2 \sigma^{2}}, \quad \text { for } Y \geq 0
\end{aligned}
$$

The pdf of y is obtained by differentiating its probability distribution function,

$$
p_{y}(Y)=\frac{d F_{y}(Y)}{d Y}= \begin{cases}\frac{e^{-Y / 2 \sigma^{2}}}{2 \sigma^{2}}, & \text { for } Y \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

i.e., y is exponentially distributed.
(b) The moment integrals for the exponential distribution are straightforward. The factorial integral

$$
\int_{0}^{\infty} d Z Z^{n} e^{-Z}=n!, \quad \text { for } n=0,1,2, \ldots
$$

plus the change of variables $Z=Y / 2 \sigma^{2}$ yields:

$$
E\left(y^{n}\right)=\int_{0}^{\infty} d Y Y^{n} e^{-Y / 2 \sigma^{2}} / 2 \sigma^{2}=2^{n} \sigma^{2 n} n!
$$

Hence, we find $E(y)=2 \sigma^{2}, E\left(y^{2}\right)=8 \sigma^{4}$, and $\operatorname{var}(y)=E\left(y^{2}\right)-[E(y)]^{2}=4 \sigma^{4}$.

Problem 1.4

Here we perform a simple 2-D random variable transformation, using the method of events.
(a) The joint pdf for r, ϕ can be found by differentiating the joint probability distribution function,

$$
F_{r, \phi}(R, \Phi) \equiv \operatorname{Pr}(r \leq R, \phi \leq \Phi)
$$

for these random variables. This joint distribution function can, in turn, be calculated from the joint pdf of x, y, as follows,

$$
\begin{aligned}
F_{r, \phi}(R, \Phi) & =\iint_{\{(X, Y): r \leq R, \phi \leq \Phi\}} d X d Y p_{x, y}(X, Y) \\
& =\int_{0}^{\Phi} d \theta \int_{0}^{R} \rho d \rho p_{x, y}(\rho \cos (\theta), \rho \sin (\theta)) \\
& =\int_{0}^{\Phi} d \theta \int_{0}^{R} \rho d \rho \frac{e^{-\rho^{2} / 2 \sigma^{2}}}{2 \pi \sigma^{2}}=\frac{\Phi}{2 \pi}\left(1-e^{-R^{2} / 2 \sigma^{2}}\right)
\end{aligned}
$$

where we have converted to polar coordinates in order to do the integrations. It is now easy to find the joint pdf of r, ϕ :

$$
p_{r, \phi}(R, \Phi)=\frac{\partial^{2} F_{r, \phi}(R, \Phi)}{\partial R \partial \Phi}= \begin{cases}\frac{R}{2 \pi \sigma^{2}} e^{-R^{2} / 2 \sigma^{2}}, & \text { for } 0 \leq R, 0 \leq \Phi<2 \pi \\ 0, & \text { otherwise }\end{cases}
$$

(b) To find the marginal distributions we can integrate out the unwanted variable from the joint distribution. This procedure yields,

$$
p_{r}(R)=\int_{0}^{2 \pi} d \Phi p_{r, \phi}(R, \Phi)= \begin{cases}\frac{R}{\sigma^{2}} e^{-R^{2} / 2 \sigma^{2}}, & \text { for } 0 \leq R \\ 0, & \text { otherwise }\end{cases}
$$

and

$$
p_{\phi}(\Phi)=\int_{0}^{\infty} d R p_{r, \phi}(R, \Phi)= \begin{cases}\frac{1}{2 \pi}, & \text { for } 0 \leq \Phi<2 \pi \\ 0, & \text { otherwise }\end{cases}
$$

Because $p_{r, \phi}(R, \Phi)=p_{r}(R) p_{\phi}(\Phi)$, for all R, Φ, we see that the random variables r and ϕ are statistically independent. Moreover, r is Rayleigh distributed and ϕ is uniformly distributed.

Problem 1.5

Here we will learn about a pmf that will show up in our quantum optics work.
(a) The unconditional pmf of N is found by averaging its conditional pmf over the statistics for x :

$$
\begin{aligned}
P_{N}(n) & =\int_{-\infty}^{\infty} d X P_{N \mid x}(n \mid x=X) p_{x}(X) \\
& =\int_{0}^{\infty} d X \frac{X^{n}}{n!} e^{-X} \frac{e^{-X / m}}{m} \\
& =\frac{1}{n!m} \int_{0}^{\infty} d X X^{n} e^{-X(m+1) / m} \\
& =\frac{m^{n}}{n!(m+1)^{n+1}} \int_{0}^{\infty} d Z Z^{n} e^{-Z}=\frac{m^{n}}{(m+1)^{n+1}}, \quad \text { for } n=0,1,2, \ldots
\end{aligned}
$$

where we have used the change of variable $Z=X(m+1) / m$ in the penultimate equality. This pmf is called the Bose-Einstein distribution.
(b) The characteristic function for the Bose-Einstein pmf is found as follows:

$$
\begin{aligned}
M_{N}(j v) & =\sum_{n=0}^{\infty} e^{j v n} \frac{m^{n}}{(m+1)^{n+1}} \\
& =\frac{1}{m+1} \sum_{n=0}^{\infty}\left(\frac{m e^{j v}}{m+1}\right)^{n}=\frac{1}{(m+1)\left[1-m e^{j v} /(m+1)\right]} \\
& =\frac{1}{1-m\left(e^{j v}-1\right)}
\end{aligned}
$$

where the penultimate equality is due to the geometric series formula,

$$
\sum_{n=0}^{\infty} Z^{n}=\frac{1}{1-Z}, \quad \text { for }|Z|<1
$$

(c) Differentiating $M_{N}(j v)$ once yields,

$$
E(N)=\left.\frac{d M_{N}(j v)}{d(j v)}\right|_{j v=j 0}=\left.\left(\frac{m e^{j v}}{\left[1-m\left(e^{j v}-1\right)\right]^{2}}\right)\right|_{j v=j 0}=m
$$

Differentiating a second time we obtain:

$$
\begin{aligned}
E\left(N^{2}\right) & =\left.\frac{d^{2} M_{N}(j v)}{d(j v)^{2}}\right|_{j v=j 0}=\left.\left(\frac{m e^{j v}}{\left[1-m\left(e^{j v}-1\right)\right]^{2}}+\frac{2 m^{2} e^{2 j v}}{\left[1-m\left(e^{j v}-1\right)\right]^{3}}\right)\right|_{j v=j 0} \\
& =m+2 m^{2}
\end{aligned}
$$

Now, using $\operatorname{var}(N)=E\left(N^{2}\right)-[E(N)]^{2}$, we find that $\operatorname{var}(x)=m+m^{2}$.

Problem 1.6

Here we will take a first step toward understanding jointly Gaussian random variables.
(a) The transformation

$$
\begin{aligned}
w & =x \cos (\theta)+y \sin (\theta) \\
z & =-x \sin (\theta)+y \cos (\theta),
\end{aligned}
$$

is equivalent to the picture shown in Fig. 1. Clearly this is rotation by θ.
(b) Because the transformation is linear and x, y are jointly Gaussian, we know that w, z are also going to be jointly Gaussian. Hence all we need to do is to find the

Figure 1: Transformation from (X, Y) to (W, Z)
first and second moments of the new variables and substitute into the standard 2-D Gaussian pdf. We have that,

$$
\begin{aligned}
E(w) & =E(x) \cos (\theta)+E(y) \sin (\theta)=0 \\
E(z) & =-E(x) \sin (\theta)+E(y) \cos (\theta)=0
\end{aligned}
$$

because of the linearity of expectation - the average of the sum is the sum of the averages, the average of a constant times a random variable is the constant times the average of the random variable - plus the fact that x and y are both zero mean. So, because w and z are zero mean, their variances-like those for the zero-mean random variables x and y-equal their respective mean-square values. To find these mean-square values we square out the transformation that defines w and z and average:

$$
\begin{aligned}
\sigma_{w}^{2} & =E\left(w^{2}\right)=E\left(x^{2}\right) \cos ^{2}(\theta)+2 E(x y) \cos (\theta) \sin (\theta)+E\left(y^{2}\right) \sin ^{2}(\theta) \\
& =\sigma^{2} \cos ^{2}(\theta)+2 \rho \sigma^{2} \cos (\theta) \sin (\theta)+\sigma^{2} \sin ^{2}(\theta) \\
\sigma_{z}^{2} & =E\left(z^{2}\right)=E\left(x^{2}\right) \sin ^{2}(\theta)-2 E(x y) \sin (\theta) \cos (\theta)+E\left(y^{2}\right) \cos ^{2}(\theta) \\
& =\sigma^{2} \sin ^{2}(\theta)-2 \rho \sigma^{2} \sin (\theta) \cos (\theta)+\sigma^{2} \cos ^{2}(\theta)
\end{aligned}
$$

where we have used the zero-mean property to obtain $E(x y)=\operatorname{cov}(x, y)$. Now, with standard trig identities, we can reduce these expressions to,

$$
\begin{aligned}
\sigma_{w}^{2} & =\sigma^{2}[1+\rho \sin (2 \theta)], \\
\sigma_{z}^{2} & =\sigma^{2}[1-\rho \sin (2 \theta)] .
\end{aligned}
$$

To complete the information needed to pin down the joint pdf of w and z, we must find their covariance. Because they are zero mean, this is found via,

$$
\begin{aligned}
\lambda_{w z} & =E(w z) \\
& =-E\left(x^{2}\right) \cos (\theta) \sin (\theta)+E(x y)\left[\cos ^{2}(\theta)-\sin ^{2}(\theta)\right]+E\left(y^{2}\right) \sin (\theta) \cos (\theta) \\
& =\rho \sigma^{2} \cos (2 \theta)
\end{aligned}
$$

The joint pdf for w and z can now be written down:

$$
p_{w, z}(W, Z)=\frac{\exp \left[-\frac{\sigma_{z}^{2} W^{2}-2 \lambda_{w z} W Z+\sigma_{w}^{2} Z^{2}}{2\left(\sigma_{w}^{2} \sigma_{z}^{2}-\lambda_{w z}^{2}\right)}\right]}{2 \pi \sqrt{\sigma_{w}^{2} \sigma_{z}^{2}-\lambda_{w z}^{2}}}
$$

where we have used the fact that w and z are zero mean, and the variances and covariance are as derived above.
(c) To make w and z statistically independent, it is sufficent to make them uncorrelated, because they are jointly Gaussian. To be uncorrelated, in turn, means we need to choose θ to make $\lambda_{w z}=\rho \sigma^{2} \cos (2 \theta)=0$. We have restricted θ to lie between 0 and $\pi / 2$, hence the value we need is $\theta=\pi / 4$. With this choice, we find that w and z are statistically independent, zero-mean Gaussian random variables, with $\sigma_{w}^{2}=\sigma^{2}(1+\rho)$ and $\sigma_{z}^{2}=\sigma^{2}(1-\rho)$. Because $|\rho| \leq 1$, both of these variances will be non-negative.

Problem 1.7

Here we shall examine some of the eigenvalue/eigenvector properties of an Hermitian matrix.
(a) We know that vector-matrix multiplication is associative, so $\mathbf{y}^{\dagger}(A \mathbf{x})=\left(\mathbf{y}^{\dagger} A\right) \mathbf{x}$. We also know that the $\left(A^{\dagger} \mathbf{y}\right)^{\dagger}=\mathbf{y}^{\dagger} A$, and hence we see that $B=A^{\dagger}$ is the matrix that satisfies $(B \mathbf{y})^{\dagger} \mathbf{x}=\mathbf{y}^{\dagger}(A \mathbf{x})$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{C}^{N}$.
(b) From the eigenvalue/eigenvector property we have that

$$
\boldsymbol{\phi}_{n}^{\dagger} A \boldsymbol{\phi}_{n}=\boldsymbol{\phi}_{n}^{\dagger}\left(A \boldsymbol{\phi}_{n}\right)=\mu_{n} \boldsymbol{\phi}_{n}^{\dagger} \boldsymbol{\phi}_{n}=\mu_{n},
$$

and, because $A^{\dagger}=A$, we also have that

$$
\boldsymbol{\phi}_{n}^{\dagger} A \boldsymbol{\phi}_{n}=\left(\boldsymbol{\phi}_{n}^{\dagger} A\right) \boldsymbol{\phi}_{n}=\mu_{n}^{*} \boldsymbol{\phi}_{n}^{\dagger} \boldsymbol{\phi}_{n}=\mu_{n}^{*} .
$$

Equating these two results makes it clear that μ_{n} is real, for $1 \leq n \leq N$.
(c) Using the eigenvalue/eigenvector property we have that,

$$
\boldsymbol{\phi}_{m}^{\dagger} A \boldsymbol{\phi}_{n}=\boldsymbol{\phi}_{m}^{\dagger}\left(A \boldsymbol{\phi}_{n}\right)=\mu_{n} \boldsymbol{\phi}_{m}^{\dagger} \boldsymbol{\phi}_{n} .
$$

Again using the fact that A is Hermitian-plus the result from (b), that the $\left\{\mu_{n}\right\}$ are real-we have that,

$$
\boldsymbol{\phi}_{m}^{\dagger} A \boldsymbol{\phi}_{n}=\left(\boldsymbol{\phi}_{m}^{\dagger} A\right) \boldsymbol{\phi}_{n}=\mu_{m} \boldsymbol{\phi}_{m}^{\dagger} \boldsymbol{\phi}_{n} .
$$

Equating these two results makes it clear that if $\mu_{m} \neq \mu_{n}$, then $\boldsymbol{\phi}_{m}^{\dagger} \boldsymbol{\phi}_{n}=0$ must prevail, i.e., the eigenvectors associated with distinct eigenvalues are orthogonal.
(d) If ϕ and ϕ^{\prime} are two linearly independent N-D vectors, then, via the GramSchmidt process, we can find constants $\{a, b, c, d\}$ such that

$$
\begin{aligned}
\boldsymbol{\theta} & \equiv a \boldsymbol{\phi}+b \boldsymbol{\phi}^{\prime} \\
\boldsymbol{\theta}^{\prime} & \equiv c \boldsymbol{\phi}+d \boldsymbol{\phi}^{\prime},
\end{aligned}
$$

are non-zero, orthogonal vectors. It now follows that

$$
\begin{aligned}
A \boldsymbol{\theta} & =a A \boldsymbol{\phi}+b A \boldsymbol{\phi}^{\prime}=\mu\left(a \boldsymbol{\phi}+b \boldsymbol{\phi}^{\prime}\right)=\mu \boldsymbol{\theta} \\
A \boldsymbol{\theta}^{\prime} & =c A \boldsymbol{\phi}+d A \boldsymbol{\phi}^{\prime}=\mu\left(c \boldsymbol{\phi}+d \boldsymbol{\phi}^{\prime}\right)=\mu \boldsymbol{\theta}^{\prime}
\end{aligned}
$$

proving that these orthogonal vectors are also eigenvectors of A with the common eigenvalue μ.
(e) Assume that we have orthonormalized our eigenvectors, $\left\{\phi_{n}: 1 \leq n \leq N\right\}$. These eigenvectors form an orthonormal basis for \mathcal{C}^{N}. Any vector $\mathbf{c} \in \mathcal{C}^{N}$ can then be written in the form,

$$
\mathbf{c}=\sum_{n=1}^{N} \boldsymbol{\phi}_{n} c_{n}, \quad \text { where } c_{n} \equiv \boldsymbol{\phi}_{n}^{\dagger} \mathbf{c}
$$

If I_{N} is the $N \times N$ identity matrix, then can also be written as,

$$
\mathbf{c}=I_{N} \mathbf{c}
$$

Subtracting the former equation from the latter we get,

$$
\left(I_{N}-\sum_{n=1}^{N} \boldsymbol{\phi}_{n} \boldsymbol{\phi}_{n}^{\dagger}\right) \mathbf{c}=0, \quad \text { for all } \mathbf{c} \in \mathcal{C}^{N}
$$

For this to be true it must be that,

$$
I_{N}=\sum_{n=1}^{N} \boldsymbol{\phi}_{n} \boldsymbol{\phi}_{n}^{\dagger}
$$

Figure 2: Labeled sketch of $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$.
as advertised. Because I_{N} is the identity matrix, we now have that

$$
A=I_{N} A=\sum_{n=1}^{N} \boldsymbol{\phi}_{n} \boldsymbol{\phi}_{n}^{\dagger} A=\sum_{n=1}^{N} \mu_{n} \boldsymbol{\phi}_{n} \boldsymbol{\phi}_{n}^{\dagger},
$$

where the last equality uses the facts that A is Hermitian and the $\left\{\mu_{n}\right\}$ are real.

Problem 1.8

Here we shall introduce the idea of overcompleteness, something that will be of great importance in the quantum optics work to come.
(a) The vectors $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$ are sketched in Fig. 3.1. We see that they are unitlength vectors, $\left\{\mathbf{x}_{i}^{T} \mathbf{x}_{i}=1: i=1,2,3\right\}$, that are not orthogonal.
(b) With $\mathbf{e}_{1}^{T} \equiv\left[\begin{array}{ll}1 & 0\end{array}\right]$ and $\mathbf{e}_{2}^{T} \equiv\left[\begin{array}{ll}0 & 1\end{array}\right]$ being the standard orthonormal basis for \mathcal{R}^{2}, we know that any $\mathbf{y} \in \mathcal{R}^{2}$ can be written as

$$
\mathbf{y}=y_{1} \mathbf{e}_{1}+y_{2} \mathbf{e}_{2}=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right] .
$$

Thus to prove that any $\mathbf{y} \in \mathcal{R}^{2}$ can be expressed as a weighted sum of any two of the $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$, it is sufficient to show that \mathbf{e}_{1} and \mathbf{e}_{2} can be written as weighted sums of any two of the $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$. Figure 3.1 makes it clear that this
is so, but let's write out the formulas anyway:

$$
\begin{aligned}
& \mathbf{e}_{1}=\frac{2}{\sqrt{3}}\left[\mathbf{x}_{1}+\mathbf{x}_{2} / 2\right]=\frac{1}{\sqrt{3}}\left[\mathbf{x}_{1}-\mathbf{x}_{3}\right]=-\frac{2}{\sqrt{3}}\left[\mathbf{x}_{2} / 2+\mathbf{x}_{3}\right] . \\
& \mathbf{e}_{2}=\mathbf{x}_{2}=-\left(\mathbf{x}_{1}+\mathbf{x}_{3}\right)=\mathbf{x}_{2} .
\end{aligned}
$$

(c) This part is straight plug-and-chug. We have that,

$$
\begin{aligned}
& \mathbf{x}_{1} \mathbf{x}_{1}^{T}=\left[\begin{array}{cc}
3 / 4 & -\sqrt{3} / 4 \\
-\sqrt{3} / 4 & 1 / 4
\end{array}\right] \\
& \mathbf{x}_{2} \mathbf{x}_{2}^{T}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \\
& \mathbf{x}_{3} \mathbf{x}_{3}^{T}=\left[\begin{array}{cc}
3 / 4 & \sqrt{3} / 4 \\
\sqrt{3} / 4 & 1 / 4
\end{array}\right] .
\end{aligned}
$$

Summing these terms up yields,

$$
\sum_{n=1}^{3} \mathbf{x}_{n} \mathbf{x}_{n}^{T}=\left[\begin{array}{cc}
3 / 2 & 0 \\
0 & 3 / 2
\end{array}\right]
$$

Multiplying by $2 / 3$ now yields the 2×2 identity matrix, I_{2}, as desired. Finally, for any $\mathrm{x} \in \mathcal{R}^{2}$ we have that

$$
\mathbf{x}=I_{2} \mathbf{x}=\frac{2}{3}\left(\sum_{n=1}^{3} \mathbf{x}_{n} \mathbf{x}_{n}^{T}\right) \mathbf{x}=\frac{2}{3} \sum_{n=1}^{3} \mathbf{x}_{n}\left(\mathbf{x}_{n}^{T} \mathbf{x}\right)
$$

MIT OpenCourseWare
https://ocw.mit.edu

6.453 Quantum Optical Communication

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

