Massachusetts Institute of Technology
 Department of Electrical Engineering and Computer Science

6.453 Quantum Optical Communication

Problem Set 2

Fall 2016
Issued: Thursday, September 15, 2016
Due: Thursday, September 22, 2016
Supplementary Reading: For basic Dirac notation quantum mechanics:

- Section 2.2 of M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information
- Sections 1.1-1.16 of W.H. Louisell, Quantum Statistical Properties of Radiation.

Problem 2.1

Here we shall explore the use of wave plates to perform polarization transformations on a single photon. The polarization state of a $+z$-propagating, frequency- ω photon at $z=0$ is characterized by a complex-valued unit vector,

$$
\mathbf{i} \equiv\left[\begin{array}{l}
\alpha_{x} \tag{1}\\
\alpha_{y}
\end{array}\right]
$$

such that $\operatorname{Re}\left[\mathbf{i} e^{-j \omega t}\right]$ describes the time evolution of the photon at $z=0$ where

$$
\mathbf{i}^{\dagger} \mathbf{i}=\left|\alpha_{x}\right|^{2}+\left|\alpha_{y}\right|^{2}=1
$$

with

$$
\mathbf{i}^{\dagger} \equiv\left[\begin{array}{ll}
\alpha_{x}^{*} & \alpha_{y}^{*}
\end{array}\right]
$$

being the unit-length condition for \mathbf{i}.
(a) For our monochromatic photon, propagation through $L \mathrm{~m}$ of material in which light of arbitrary polarization propagates at velocity c / n, where c is light speed in vacuum and n is the material's refractive index at frequency ω, leads to a phase delay $\phi=\omega n L / c$. Thus the time evolution of the photon at $z=L$ is given by $\operatorname{Re}\left[\mathbf{i} e^{-j \omega(t-n L / c)}\right]=\operatorname{Re}\left[\mathbf{i}^{\prime} e^{-j \omega t}\right]$, where $\mathbf{i}^{\prime} \equiv \mathbf{i} e^{j \phi}$.
Show that the polarization state \mathbf{i}^{\prime} is identical to the polarization state \mathbf{i}, i.e., the contour traced out by $\operatorname{Re}\left[\mathbf{i} e^{-j \omega t}\right]$ in the $x-y$ plane is identical to that traced out by $\operatorname{Re}\left[\mathbf{i}^{\prime} e^{-j \omega t}\right]$.
(b) Wave plates are made of birefringent materials, i.e., materials which have different velocities of propagation for light polarized along their principal axes. When these axes are aligned with x and y, respectively, propagation of a monochromatic photon-whose polarization at $z=0$ is given by Eq. (1)-results in a new polarization at $z=L$,

$$
\mathbf{i}^{\prime}=\left[\begin{array}{l}
\alpha_{x} e^{j \phi_{x}} \tag{2}\\
\alpha_{y} e^{j \phi_{y}}
\end{array}\right],
$$

where $\phi_{x} \equiv \omega n_{x} L / c$ and $\phi_{y} \equiv \omega n_{y} L / c$ give the respective phase shifts in terms of the propagation velocities c / n_{x} and c / n_{y} along the x and the y axes. A quarter-wave plate (QWP) is one for which $\phi_{x}-\phi_{y}=\pi / 2$. Suppose that a photon of $+45^{\circ}$ linear polarization,

$$
\mathbf{i}=\left[\begin{array}{l}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right]
$$

is the input to a QWP whose principal axes are aligned with x and y, respectively.
Show that the output of this QWP is circularly polarized.
Suppose that this circularly polarized output is the input to another QWP whose principal axes are aligned with x and y, respectively. What is the resulting polarization of the output from this QWP?
(c) A half-wave plate (HWP) is one for which the phase difference between propagation along its principal axes is $\pi \mathrm{rad}$. Suppose that a photon of polarization

$$
\mathbf{i}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

is the input to an HWP whose "fast" (low refractive index) axis is parallel to the unit vector

$$
\vec{i}_{\text {fast }}=\vec{i}_{x} \cos (\theta)+\vec{i}_{y} \sin (\theta)
$$

and whose "slow" (high refractive index) axis is parallel to the unit vector

$$
\vec{i}_{\text {slow }}=-\vec{i}_{x} \sin (\theta)+\vec{i}_{y} \cos (\theta)
$$

What is the polarization state at the output of the HWP?
(d) Suppose we wish to transform an x-polarized input photon,

$$
\mathbf{i}_{\mathrm{in}}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

into an output photon of polarization state,

$$
\mathbf{i}_{\mathrm{out}}=\left[\begin{array}{l}
\alpha_{x} \\
\alpha_{y}
\end{array}\right]
$$

Show that this can be done by first using a half-wave plate to transform $\mathbf{i}_{\text {in }}$ to

$$
\mathbf{i}_{\mathrm{HWP}}=\left[\begin{array}{l}
\left|\alpha_{x}\right| \\
\left|\alpha_{y}\right|
\end{array}\right]
$$

and then using another wave plate, whose principal axes are aligned with x and y respectively, and whose propagation phase difference $\phi_{x}-\phi_{y}$ is chosen appropriately, to transform $\mathbf{i}_{\text {HWP }}$ into $\mathbf{i}_{\text {out }}$.
(e) The polarization transformation scheme you verified in (d) is not a convenient experimental approach, because it requires a phase plate with a controllable propagation phase difference $\phi_{x}-\phi_{y}$. Here we consider an alternative approach that only needs a QWP and an HWP. Suppose that we wish to transform an arbitrary given input polarization

$$
\mathbf{i}_{\text {in }}=\left[\begin{array}{l}
\alpha_{x} \\
\alpha_{y}
\end{array}\right],
$$

which is not linear, into horizontal polarization

$$
\mathbf{i}_{\mathrm{out}}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] .
$$

Because $\mathbf{i}_{\text {in }}$ is, in general, an elliptical polarization, there must be a Cartesian coordinate system, $\left(x^{\prime}, y^{\prime}\right)$, in which this input polarization takes the form

$$
\mathbf{i}_{\text {in }}=\left[\begin{array}{l}
\alpha_{x}^{\prime} \\
\alpha_{y}^{\prime}
\end{array}\right]
$$

with $\alpha_{y}^{\prime}=j k \alpha_{x}^{\prime}$, for k a positive constant. Use this fact to argue that a QWP, with its fast axis aligned in the y^{\prime} direction, will convert $\mathbf{i}_{\text {in }}$ into linear polarization, after which an HWP can be used to obtain an $\mathbf{i}_{\text {out }}$ that is linearly polarized in the x direction. Using these results, explain how propagation through an HWP and a QWP can be used to transform an initially x-polarized photon into any desired polarization state.

Problem 2.2

Here we shall study the Poincaré sphere, viz., a 3-D real representation for the 2-D polarization state

$$
\mathbf{i}=\left[\begin{array}{l}
\alpha_{x} \\
\alpha_{y}
\end{array}\right]
$$

of a $+z$-propagating, frequency- ω photon. Define a real-valued 3 -vector, \mathbf{r} as follows,

$$
\mathbf{r} \equiv\left[\begin{array}{c}
r_{1} \\
r_{2} \\
r_{3}
\end{array}\right]=\left[\begin{array}{c}
2 \operatorname{Re}\left[\alpha_{x}^{*} \alpha_{y}\right] \\
2 \operatorname{Im}\left[\alpha_{x}^{*} \alpha_{y}\right] \\
\left|\alpha_{x}\right|^{2}-\left|\alpha_{y}\right|^{2}
\end{array}\right]
$$

(a) Show that knowledge of \mathbf{r} is equivalent to knowledge of \mathbf{i}, i.e., \mathbf{r} completely describes photon's polarization.
(b) Show that $\mathbf{i}^{\dagger} \mathbf{i}=1$ implies that $\mathbf{r}^{T} \mathbf{r} \equiv r_{1}^{2}+r_{2}^{2}+r_{3}^{2}=1$, i.e., the photon's polarization-state lies on the unit-sphere (called the Poincaré sphere) in \mathbf{r} space.
(c) Where do x and y polarizations appear on the Poincaré sphere? Where do left and right circular polarizations appear on this sphere?
(d) Let

$$
\mathbf{i} \equiv\left[\begin{array}{c}
\alpha_{x} \\
\alpha_{y}
\end{array}\right] \quad \text { and } \quad \mathbf{r} \equiv\left[\begin{array}{c}
r_{1} \\
r_{2} \\
r_{3}
\end{array}\right]=\left[\begin{array}{c}
2 \operatorname{Re}\left[\alpha_{x}^{*} \alpha_{y}\right] \\
2 \operatorname{Im}\left[\alpha_{x}^{*} \alpha_{y}\right] \\
\left|\alpha_{x}\right|^{2}-\left|\alpha_{y}\right|^{2}
\end{array}\right]
$$

be equivalent representations of the polarization state of a monochromatic photon, and let

$$
\mathbf{i}^{\prime} \equiv\left[\begin{array}{c}
\alpha_{x}^{\prime} \\
\alpha_{y}^{\prime}
\end{array}\right] \quad \text { and } \quad \mathbf{r}^{\prime} \equiv\left[\begin{array}{c}
r_{1}^{\prime} \\
r_{2}^{\prime} \\
r_{3}^{\prime}
\end{array}\right]=\left[\begin{array}{c}
2 \operatorname{Re}\left[\alpha_{x}^{\prime *} \alpha_{y}^{\prime}\right] \\
2 \operatorname{Im}\left[\alpha_{x}^{\prime \prime} \alpha_{y}^{\prime}\right] \\
\left|\alpha_{x}^{\prime}\right|^{2}-\left|\alpha_{y}^{\prime}\right|^{2}
\end{array}\right]
$$

be another pair of equivalent polarizations. Show that

$$
\left|\mathbf{i}^{\prime} \mathbf{i}^{2}\right|^{2}=\frac{1+\mathbf{r}^{\prime T} \mathbf{r}}{2}
$$

Problem 2.3

Let \hat{A} be a linear operator that maps kets in the Hilbert space \mathcal{H} into other kets in this space, i.e., for every $|x\rangle \in \mathcal{H}$, there is a $|y\rangle \in \mathcal{H}$ that satisfies $|y\rangle=\hat{A}|x\rangle$. Let $\left\{\left|\phi_{n}\right\rangle: n=1,2, \ldots,\right\}$ be an arbitrary complete orthonormal (CON) set of kets in \mathcal{H}, i.e.,

$$
\begin{aligned}
\left\langle\phi_{n} \mid \phi_{m}\right\rangle & =\delta_{n m} \equiv \begin{cases}1, & \text { for } n=m \\
0, & \text { for } n \neq m .\end{cases} \\
\hat{I} & =\sum_{n=1}^{\infty}\left|\phi_{n}\right\rangle\left\langle\phi_{n}\right|,
\end{aligned}
$$

where \hat{I} is the identity operator on \mathcal{H}.
(a) Show that the operator \hat{A} is completely characterized by its $\left\{\phi_{n}\right\}$ matrix elements, viz., $\left\{\left\langle\phi_{m}\right| \hat{A}\left|\phi_{n}\right\rangle: 1 \leq n, m \leq \infty\right\}$, by proving that

$$
\hat{A}=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left\langle\phi_{m}\right| \hat{A}\left|\phi_{n}\right\rangle\left|\phi_{m}\right\rangle\left\langle\phi_{n}\right|
$$

(b) Let $|x\rangle=\sum_{n=1}^{\infty} x_{n}\left|\phi_{n}\right\rangle$ be an arbitrary ket in \mathcal{H} and let $|y\rangle=\hat{A}|x\rangle$. Show that

$$
|y\rangle=\sum_{m=1}^{\infty} y_{m}\left|\phi_{m}\right\rangle \quad \text { with } \quad y_{m}=\sum_{n=1}^{\infty}\left\langle\phi_{m}\right| \hat{A}\left|\phi_{n}\right\rangle x_{n}, \quad \text { for } 1 \leq n, m<\infty
$$

(c) Specialize your results from (a) and (b) to the case in which \hat{A} is an observable, and the $\left\{\phi_{n}\right\}$ are its CON eigenkets.

Problem 2.4

Consider a quantum system, \mathcal{S}, in the Schrödinger picture, with Hamiltonian \hat{H}. Suppose that \hat{H} has distinct, real-valued, non-negative, discrete eigenvalues $\left\{h_{n}\right.$: $n=0,1,2, \ldots$,$\} and associated orthonormal eigenkets, \left\{\left|h_{n}\right\rangle: n=0,1,2, \ldots,\right\}$.
(a) Show that the time-evolution operator obeys

$$
\hat{U}\left(t, t_{0}\right)=\sum_{n=0}^{\infty} \exp \left[-j h_{n}\left(t-t_{0}\right) / \hbar\right]\left|h_{n}\right\rangle\left\langle h_{n}\right|, \quad \text { for } t \geq t_{0}
$$

(b) Show that

$$
\left[\hat{U}\left(t, t_{0}\right), \hat{H}\right]=\left[\hat{U}^{\dagger}\left(t, t_{0}\right), \hat{H}\right]=0
$$

i.e., the time-evolution operator and its adjoint both commute with the Hamiltonian.
(c) Suppose that the system is in the state $\left|\psi\left(t_{0}\right)\right\rangle=\left|h_{1}\right\rangle$ at time $t=t_{0}$. Find the state of the system $|\psi(t)\rangle$ at an arbitrary later time t.
(d) Suppose that $|\psi(t)\rangle$ is as found in (c), and that we measure the observable

$$
\hat{O}=\sum_{k=1}^{\infty} o_{k}\left|o_{k}\right\rangle\left\langle o_{k}\right|
$$

at time t. Find $\operatorname{Pr}\left(\hat{O}\right.$-measurement outcome $\left.=o_{k}\right)$ for $k=1,2,3, \ldots$ Use this result to explain why the eigenkets of \hat{H} are called stationary states.

Problem 2.5

Here we shall derive the time-frequency uncertainty principle of classical signal analysis. Essentially the same derivation can lead to the Heisenberg uncertainty principle for position and momentum by means of wave function (rather than Dirac-notation) quantum mechanics. Let $x(t)$ be a complex-valued, square-integrable time function whose Fourier transform is

$$
X(f) \equiv \int_{-\infty}^{\infty} d t x(t) e^{-j 2 \pi f t}
$$

Define a normalized intensity for $x(t)$ via,

$$
p(t) \equiv \frac{|x(t)|^{2}}{\int_{-\infty}^{\infty} d t|x(t)|^{2}}
$$

and a normalized intensity for $X(f)$ via,

$$
P(f) \equiv \frac{|X(f)|^{2}}{\int_{-\infty}^{\infty} d f|X(f)|^{2}}
$$

(a) Show that $p(t)$ and $P(f)$ can be thought of as probability density functions, i.e., they are non-negative functions that integrate to one.
(b) Define the root-mean-square time duration for $x(t)$ to be,

$$
T \equiv \sqrt{\int_{-\infty}^{\infty} d t t^{2} p(t)}
$$

and the root-mean-square bandwidth of $X(f)$ to be,

$$
W \equiv \sqrt{\int_{-\infty}^{\infty} d f f^{2} P(f)}
$$

Show that

$$
\frac{d x(t)}{d t}=\int_{-\infty}^{\infty} d f j 2 \pi f X(f) e^{j 2 \pi f t}
$$

i.e., $j 2 \pi f X(f)$ is the Fourier transform of $\frac{d x(t)}{d t}$. Then, use Parseval's theorem and the Schwarz inequality and to prove that

$$
T W \geq \frac{1}{2 \pi} \frac{\left|\int_{-\infty}^{\infty} d t t x^{*}(t) \frac{d x(t)}{d t}\right|}{\int_{-\infty}^{\infty} d t|x(t)|^{2}}
$$

(c) Use the result from (b) and the fact that $|z| \geq|\operatorname{Re}(z)|$, for any complex number z, to show that,

$$
\begin{aligned}
T W & \geq \frac{1}{2 \pi} \frac{\left|\operatorname{Re}\left(\int_{-\infty}^{\infty} d t t x^{*}(t) \frac{d x(t)}{d t}\right)\right|}{\int_{-\infty}^{\infty} d t|x(t)|^{2}} \\
& =\frac{1}{4 \pi} \frac{\left|\int_{-\infty}^{\infty} d t t \frac{d\left(|x(t)|^{2}\right)}{d t}\right|}{\int_{-\infty}^{\infty} d t|x(t)|^{2}}=\frac{1}{4 \pi}
\end{aligned}
$$

(d) Show that equality occurs in (b) if and only if $x(t)=K \exp \left(a t^{2}\right)$, where K and a are complex-valued constants with $\operatorname{Re}(a)<0$. Assume that $x(t)$ is of this form and then show that equality occurs in (c) if and only if a is real. Verify that

$$
x(t)=\frac{\exp \left(-t^{2} / 4 t_{0}^{2}\right)}{\left(2 \pi t_{0}^{2}\right)^{1 / 4}}
$$

has Fourier transform

$$
X(f)=\left(8 \pi t_{0}^{2}\right)^{1 / 4} \exp \left(-4 \pi^{2} f^{2} t_{0}^{2}\right)
$$

and that this $x(t)$ has $T=t_{0}$ and this $X(f)$ has $W=1 / 4 \pi t_{0}$, thus giving $T W=1 / 4 \pi$.

MIT OpenCourseWare
https://ocw.mit.edu

6.453 Quantum Optical Communication

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

