Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

6.453 Quantum Optical Communication

Problem Set 2 Solutions

Fall 2016

Problem 2.1

Here we shall explore the use of wave plates to perform polarization transformations on a single photon.
(a) It is trivial to argue that the polarization state \mathbf{i}^{\prime} is identical to the polarization state i. We don't care about the time at which $\operatorname{Re}\left[\mathbf{i} e^{-j \omega t}\right]$ or $\operatorname{Re}\left[\mathbf{i}^{\prime} e^{-j \omega t}\right]$ pass particular points in the $x-y$ plane, but only about the full contours they trace out. Thus, because the $z=L$ time evolution is merely the $z=0$ time evolution delayed by $n L / c$ seconds, the two polarization states are identical. Comparing \mathbf{i} and \mathbf{i}^{\prime}, this implies that two complex-valued unit vectors represent the same state of polarization if one differs from the other by only a scalar phase factor, viz., $\mathbf{i}^{\prime}=\mathbf{i} e^{j \phi}$. Thus, although we need four real numbers to specify the polarization vector \mathbf{i}, we can assume $\alpha_{x}=\left|\alpha_{x}\right|$ without loss of generality, because the polarization state of the photon depends on the relative phase between α_{x} and α_{y}, but not on their absolute phases. Furthermore, because \mathbf{i} has unit length, we know that $\left|\alpha_{y}\right|=\sqrt{1-\left|\alpha_{x}\right|^{2}}$. Hence, only two real numbers are needed to specify the polarization state of our monochromatic photon.
(b) From Eq. (2) on the problem set, we have that when

$$
\mathbf{i}=\left[\begin{array}{l}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right]
$$

is the input to a QWP whose principal axes are aligned with x and y, respectively, the output polarization is

$$
\mathbf{i}^{\prime}=\left[\begin{array}{c}
e^{j \phi_{x}} / \sqrt{2} \\
e^{j \phi_{y}} / \sqrt{2}
\end{array}\right]=e^{j \phi_{x}}\left[\begin{array}{c}
1 / \sqrt{2} \\
e^{-j \pi / 2} / \sqrt{2}
\end{array}\right]=e^{j \phi_{x}}\left[\begin{array}{c}
1 / \sqrt{2} \\
-j / \sqrt{2}
\end{array}\right]
$$

The contour traced out by this photon,

$$
\operatorname{Re}\left[\mathbf{i}^{\prime} e^{-j \omega t}\right]=\left[\begin{array}{c}
\cos \left(\omega t-\phi_{x}\right) / \sqrt{2} \\
-\sin \left(\omega t-\phi_{x}\right) / \sqrt{2}
\end{array}\right],
$$

is a circle, so this is a circularly-polarized photon. Indeed it is a left-circularly polarized photon, because the circle that it traces progresses from $+x$ to $-y$. Now, when this circularly polarized output is the input to another QWP whose principal axes are aligned with x and y, respectively, the output polarizationfrom another application of Eq. (2) -will be

$$
\mathbf{i}^{\prime \prime}=e^{j \phi_{x}}\left[\begin{array}{c}
e^{j \phi_{x}} / \sqrt{2} \\
-j e^{j \phi_{y}} / \sqrt{2}
\end{array}\right]=e^{2 j \phi_{x}}\left[\begin{array}{c}
1 / \sqrt{2} \\
-j e^{-j \pi / 2} / \sqrt{2}
\end{array}\right]=e^{2 j \phi_{x}}\left[\begin{array}{c}
1 / \sqrt{2} \\
-1 / \sqrt{2}
\end{array}\right],
$$

which is -45° linear polarization, because the leading phase factor of $e^{2 j \phi_{x}}$ does not affect the polarization state.
Had we asked you to apply $\mathbf{i}^{\prime \prime}$ to yet another QWP with principal axes aligned with x and y, respectively, the resulting output polarization would have been right circular. In short, a QWP changes circular into diagonal $\left(\pm 45^{\circ}\right)$ polarization, and vice versa.
(c) To solve this HWP problem, we need to rewrite the input polarization state,

$$
\mathbf{i}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

in the rotated basis corresponding to the fast and slow axes of the HWP, viz.,

$$
\vec{i}_{\text {fast }}=\vec{i}_{x} \cos (\theta)+\vec{i}_{y} \sin (\theta),
$$

and

$$
\vec{i}_{\text {slow }}=-\vec{i}_{x} \sin (\theta)+\vec{i}_{y} \cos (\theta)
$$

We have that the component of \mathbf{i} along $\vec{i}_{\text {fast }}$ is $\cos (\theta)$ and the component along $\vec{i}_{\text {slow }}$ is $-\sin (\theta)$. These components incur phase shifts $\phi_{\text {fast }}$ and $\phi_{\text {slow }}$, respectively, where $\phi_{\text {slow }}-\phi_{\text {fast }}=\pi$. Thus the output polarization is,

$$
\begin{aligned}
\mathbf{i}^{\prime} & =e^{j \phi_{\text {fast }}} \cos (\theta) \vec{i}_{\text {fast }}-e^{j \phi_{\text {slow }}} \sin (\theta) \vec{i}_{\text {slow }}=e^{j \phi_{\text {fast }}}\left[\cos (\theta) \vec{i}_{\text {fast }}-e^{j \pi} \sin (\theta) \vec{i}_{\text {slow }}\right] \\
& =e^{j \phi_{\text {fast }}}\left[\cos (\theta) \vec{i}_{\text {fast }}+\sin (\theta) \vec{i}_{\text {slow }}\right] .
\end{aligned}
$$

Converting back to the $x-y$ basis we then find that,

$$
\mathbf{i}^{\prime}=e^{j \phi_{\text {fast }}}\left[\begin{array}{c}
\cos ^{2}(\theta)-\sin ^{2}(\theta) \\
2 \sin (\theta) \cos (\theta)
\end{array}\right]=e^{j \phi_{\text {fast }}}\left[\begin{array}{c}
\cos (2 \theta) \\
\sin (2 \theta)
\end{array}\right],
$$

where the second equality follows from standard trig identities. We see from this result that the output is linearly polarized along the direction $\vec{i}_{x} \cos (2 \theta)+$ $\vec{i}_{y} \sin (2 \theta)$, i.e., at twice the angle that the HWP's principal axes made with respect to x and y. Thus, an HWP provides a means for rotating linear polarization.
(d) This polarization transformation process is easy to design. We know that an HWP rotates linearly polarized light, and we can see that

$$
\mathbf{i}_{\mathrm{HWP}}=\left[\begin{array}{l}
\left|\alpha_{x}\right| \\
\left|\alpha_{y}\right|
\end{array}\right]
$$

is linearly polarized. In particular, because our input is x-polarized, we can define $\cos (2 \theta)=\left|\alpha_{x}\right|, \sin (2 \theta)=\left|\alpha_{y}\right|$ and accomplish the desired $\mathbf{i}_{\text {in }}-$ to- $\mathbf{i}_{\text {HWP }}$
transformation by arranging the HWP to have its fast and slow axes aligned with the unit vectors

$$
\vec{i}_{\text {fast }}=\vec{i}_{x} \cos (\theta)+\vec{i}_{y} \sin (\theta)
$$

and

$$
\vec{i}_{\text {slow }}=-\vec{i}_{x} \sin (\theta)+\vec{i}_{y} \cos (\theta)
$$

Now to get from $\mathbf{i}_{\text {HWP }}$ to the desired output state $\mathbf{i}_{\text {out }}$ we need only to impose the necessary relative phase between the x and y components of $\mathbf{i}_{\text {HWP }}$. Clearly, this can be done by using another wave plate, whose principal axes are aligned with x and y respectively, and whose propagation phase difference $\phi_{x}-\phi_{y}$ satisfies

$$
e^{j\left(\phi_{x}-\phi_{y}\right)}=\frac{\alpha_{x} \alpha_{y}^{*}}{\left|\alpha_{x}\right|\left|\alpha_{y}\right|} .
$$

Note that we have converted an x-polarized photon into an arbitrary polarization by this procedure. With a little more work, we can show that we can use wave plates to convert an arbitrary input polarization into some other arbitrary output polarization. First use a wave plate with principal axes along x and y and an appropriate phase difference $\phi_{x}-\phi_{y}$ to convert the input polarization to linear. Then rotate that linear polarization to match the $\left|\alpha_{x}\right|$ and $\left|\alpha_{y}\right|$ of the desired output state. Finally, use another wave plate with principal axes aligned with x and y to impart the appropriate phase shift between these $\left|\alpha_{x}\right|$ and $\left|\alpha_{y}\right|$ components.
(e) An arbitrary input polarization

$$
\mathbf{i}_{\text {in }}=\left[\begin{array}{l}
\alpha_{x} \\
\alpha_{y}
\end{array}\right]
$$

that is not linear is, in general, an elliptical polarization. Thus, there is a Cartesian coordinate system, $\left(x^{\prime}, y^{\prime}\right)$, in which this input polarization takes the form

$$
\mathbf{i}_{\text {in }}=\left[\begin{array}{l}
\alpha_{x}^{\prime} \\
\alpha_{y}^{\prime}
\end{array}\right],
$$

with $\alpha_{y}^{\prime}=j k \alpha_{x}^{\prime}$, for k a positive constant. If we send this photon through a QWP with its fast axis aligned in the y^{\prime} direction, we will obtain an output whose polarization vector, in the $\left(x^{\prime}, y^{\prime}\right)$ basis, is given by,

$$
\mathbf{i}_{\mathrm{QWP}}=\left[\begin{array}{c}
e^{j \phi_{x^{\prime}}} \alpha_{x}^{\prime} \\
e^{j \phi_{y^{\prime}}} \alpha_{y}^{\prime}
\end{array}\right]=\left[\begin{array}{c}
j e^{j \phi_{y^{\prime}}} \alpha_{x}^{\prime} \\
j e^{j \phi_{y^{\prime}}} k \alpha_{x}^{\prime}
\end{array}\right]
$$

which is easily seen to be linearly polarized. An HWP can then be used to rotate $\mathbf{i}_{\text {QWP }}$ so that the photon is linearly polarized in the x direction. Conversely, if
we start with x-polarization and want to transform to an arbitrary (x, y)-basis elliptical polarization,

$$
\mathbf{i}=\left[\begin{array}{l}
\alpha_{x} \\
\alpha_{y}
\end{array}\right]
$$

which is of the form

$$
\mathbf{i}=\left[\begin{array}{c}
\alpha_{x}^{\prime} \\
j k \alpha_{x}^{\prime}
\end{array}\right], \quad \text { where } k>0
$$

in some $\left(x^{\prime}, y^{\prime}\right)$ basis, we proceed as follows. First, we perform an HWP polarization rotation to obtain a linearly-polarized photon with

$$
\mathbf{i}_{\mathrm{HWP}}=\left[\begin{array}{l}
\left|\alpha_{x}\right| \\
\left|\alpha_{y}\right|
\end{array}\right]
$$

in the (x, y) basis. Then, we employ a QWP, whose fast axis is aligned with x^{\prime}, and we obtain the desired result.

Problem 2.2

Here we shall study the Poincaré sphere, viz., a 3-D real representation for the 2-D polarization state

$$
\mathbf{i}=\left[\begin{array}{l}
\alpha_{x} \\
\alpha_{y}
\end{array}\right]
$$

of a $+z$-propagating, frequency- ω photon, i.e., the real-valued 3 -vector \mathbf{r} given by,

$$
\mathbf{r} \equiv\left[\begin{array}{c}
r_{1} \\
r_{2} \\
r_{3}
\end{array}\right]=\left[\begin{array}{c}
2 \operatorname{Re}\left[\alpha_{x}^{*} \alpha_{y}\right] \\
2 \operatorname{Im}\left[\alpha_{x}^{*} \alpha_{y}\right] \\
\left|\alpha_{x}\right|^{2}-\left|\alpha_{y}\right|^{2}
\end{array}\right]
$$

(a) We have that $\left|\alpha_{x}\right|^{2}=1-\left|\alpha_{y}\right|^{2}$. Thus,

$$
r_{3}=2\left|\alpha_{x}\right|^{2}-1=1-2\left|\alpha_{y}\right|^{2},
$$

whence,

$$
\left|\alpha_{x}\right|=\sqrt{\left(1+r_{3}\right) / 2} \quad \text { and } \quad\left|\alpha_{y}\right|=\sqrt{\left(1-r_{3}\right) / 2}
$$

Now, from Problem 2.1(a), we know that we only need the phase difference between α_{x} and α_{y} to completely pin down the polarization state. Writing the polar forms,

$$
\alpha_{x}=\left|\alpha_{x}\right| e^{j \theta_{x}} \quad \text { and } \quad \alpha_{y}=\left|\alpha_{y}\right| e^{j \theta_{y}}
$$

we see that

$$
e^{-j\left(\theta_{x}-\theta_{y}\right)}=\frac{\alpha_{x}^{*} \alpha_{y}}{\left|\alpha_{x}\right|\left|\alpha_{y}\right|}=\frac{r_{1}+j r_{2}}{\sqrt{1-r_{3}^{2}}}
$$

(b) We have that

$$
\begin{aligned}
r_{1}^{2}+r_{2}^{2}+r_{3}^{2} & =4\left[\operatorname{Re}\left(\alpha_{x}^{*} \alpha_{y}\right)\right]^{2}+4\left[\operatorname{Im}\left(\alpha_{x}^{*} \alpha_{y}\right)\right]^{2}+\left(\left|\alpha_{x}\right|^{2}-\left|\alpha_{y}\right|^{2}\right)^{2} \\
& =4\left|\alpha_{x}^{*} \alpha_{y}\right|^{2}+\left|\alpha_{x}\right|^{4}-2\left|\alpha_{x}\right|^{2}\left|\alpha_{y}\right|^{2}+\left|\alpha_{y}\right|^{4} \\
& =\left(\left|\alpha_{x}\right|^{2}+\left|\alpha_{y}\right|^{2}\right)^{2}=1^{2}=1 .
\end{aligned}
$$

Thus a complex-valued unit vector i maps to a unit-length \mathbf{r} vector. In general, it takes three real numbers to describe a 3-D real-valued vector, but, because \mathbf{r} has unit length, only two real numbers are needed to characterize the polarization of our monochromatic photon in the Poincaré-sphere representation, in agreement with what we found in Problem 2.1(a) for the \mathbf{i} representation.
(c) Here we shall identify the locations of some interesting polarization states on the Poincaré sphere. Linear polarization along the x axis,

$$
\mathbf{i}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

becomes

$$
\mathbf{r}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

i.e., the "north pole," if we tranlate $\left(r_{1}, r_{2}, r_{3}\right)$ into (x, y, z) the coordinates of \mathcal{R}^{3}. Likewise, linear polarization along the y axis,

$$
\mathbf{i}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

becomes

$$
\mathbf{r}=\left[\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right]
$$

viz., the "south pole." Right and left circular polarization are then,

$$
\mathbf{i}=\left[\begin{array}{c}
1 / \sqrt{2} \\
\pm j / \sqrt{2}
\end{array}\right]
$$

and they become,

$$
\mathbf{r}=\left[\begin{array}{c}
0 \\
\pm 1 \\
0
\end{array}\right]
$$

i.e., they lie on the "equator."

Note that x and y polarizations - which are orthogonal, i.e., their complex-unit vectors satisfy $\mathbf{i}_{x}^{\dagger} \mathbf{i}_{y}=0$-map onto vectors on the Poincaré sphere that are at
opposite poles, viz., $\mathbf{r}_{x}=-\mathbf{r}_{y}$. Left-circular and right-circular polarizations are also orthogonal, and they two map into vectors on the Poincare sphere that satisfy $\mathbf{r}_{\text {left }}=-\mathbf{r}_{\text {right }}$. These occurrences are not accidental: any two orthogonal polarizations- \mathbf{i} and \mathbf{i}^{\prime} satisfying $\mathbf{i}^{\dagger} \mathbf{i}^{\prime}=0-$ map into vectors on the Poincaré sphere that satisfy $\mathbf{r}=-\mathbf{r}^{\prime}$.
(d) Let

$$
\mathbf{i} \equiv\left[\begin{array}{c}
\alpha_{x} \\
\alpha_{y}
\end{array}\right] \quad \text { and } \quad \mathbf{r} \equiv\left[\begin{array}{c}
r_{1} \\
r_{2} \\
r_{3}
\end{array}\right]=\left[\begin{array}{c}
2 \operatorname{Re}\left[\alpha_{x}^{*} \alpha_{y}\right] \\
2 \operatorname{Im}\left[\alpha_{x}^{*} \alpha_{y}\right] \\
\left|\alpha_{x}\right|^{2}-\left|\alpha_{y}\right|^{2}
\end{array}\right]
$$

be equivalent representations of the polarization state of a monochromatic photon, and let

$$
\mathbf{i}^{\prime} \equiv\left[\begin{array}{c}
\alpha_{x}^{\prime} \\
\alpha_{y}^{\prime}
\end{array}\right] \quad \text { and } \quad \mathbf{r}^{\prime} \equiv\left[\begin{array}{c}
r_{1}^{\prime} \\
r_{2}^{\prime} \\
r_{3}^{\prime}
\end{array}\right]=\left[\begin{array}{c}
2 \operatorname{Re}\left[\alpha_{x}^{\prime *} \alpha_{y}^{\prime}\right] \\
2 \operatorname{Im}\left[\alpha_{x}^{\prime \prime} \alpha_{y}^{\prime}\right] \\
\left|\alpha_{x}^{\prime}\right|^{2}-\left|\alpha_{y}^{\prime}\right|^{2}
\end{array}\right]
$$

be another pair of equivalent polarizations. We then have that

$$
\left|\mathbf{i}^{\prime \dagger} \mathbf{i}\right|^{2}=\left|\alpha_{x}^{\prime *} \alpha_{x}+\alpha_{y}^{\prime *} \alpha_{y}\right|^{2}=\left|\alpha_{x}^{\prime}\right|^{2}\left|\alpha_{x}\right|^{2}+\left|\alpha_{y}^{\prime}\right|^{2}\left|\alpha_{y}\right|^{2}+2 \operatorname{Re}\left[\alpha_{x}^{\prime *} \alpha_{y}^{\prime} \alpha_{x} \alpha_{y}^{*}\right],
$$

and

$$
\begin{aligned}
\mathbf{r}^{\prime T} \mathbf{r} & =4 \operatorname{Re}\left[\alpha_{x}^{\prime *} \alpha_{y}^{\prime}\right] \operatorname{Re}\left[\alpha_{x}^{*} \alpha_{y}\right]+4 \operatorname{Im}\left[\alpha_{x}^{\prime *} \alpha_{y}^{\prime}\right] \operatorname{Im}\left[\alpha_{x}^{*} \alpha_{y}\right] \\
& +\left(\left|\alpha_{x}^{\prime}\right|^{2}-\left|\alpha_{y}^{\prime}\right|^{2}\right)\left(\left|\alpha_{x}\right|^{2}-\left|\alpha_{y}\right|^{2}\right) \\
& =4 \operatorname{Re}\left[\alpha_{x}^{\prime *} \alpha_{y}^{\prime} \alpha_{x} \alpha_{y}^{*}\right]+\left(\left|\alpha_{x}^{\prime}\right|^{2}-\left|\alpha_{y}^{\prime}\right|^{2}\right)\left(\left|\alpha_{x}\right|^{2}-\left|\alpha_{y}\right|^{2}\right) \\
& +\left(\left|\alpha_{x}^{\prime}\right|^{2}+\left|\alpha_{y}^{\prime}\right|^{2}\right)\left(\left|\alpha_{x}\right|^{2}+\left|\alpha_{y}\right|^{2}\right)-1 \\
& =4 \operatorname{Re}\left[\alpha_{x}^{\prime *} \alpha_{y}^{\prime} \alpha_{x} \alpha_{y}^{*}\right]+2\left(\left|\alpha_{x}^{\prime}\right|^{2}\left|\alpha_{x}\right|^{2}+\left|\alpha_{y}^{\prime}\right|^{2}\left|\alpha_{y}\right|^{2}\right)-1
\end{aligned}
$$

from which it is trivial to verify that

$$
\left|\mathbf{i}^{\prime \dagger} \mathbf{i}\right|^{2}=\frac{1+\mathbf{r}^{\prime T} \mathbf{r}}{2}
$$

The equivalence we have just proven will be of use later, when we study polarization entanglement. Also note that $\mathbf{i}^{\prime \dagger} \mathbf{i}=0$ implies that $\mathbf{r}^{T T} \mathbf{r}=-1$, and vice versa, as seen for specific examples in part (c). In other words, orthogonal polarizations have antipodal Poincaré-sphere vectors, viz., $\mathbf{r}^{\prime}=-\mathbf{r}$ when \mathbf{r}^{\prime} and \mathbf{r} correspond to \mathbf{i}^{\prime} and \mathbf{i} satisfying $\mathbf{i}^{\dagger} \mathbf{i}=0$.

Problem 2.3

Here we shall introduce the notion of matrix elements for a linear operator on the Hilbert space \mathcal{H}.
(a) Using the completeness relation for the $\left\{\left|\phi_{n}\right\rangle\right\}$, we have that

$$
\begin{aligned}
\hat{A} & =\hat{I} \hat{A} \hat{I}=\left(\sum_{m=1}^{\infty}\left|\phi_{m}\right\rangle\left\langle\phi_{m}\right|\right) \hat{A}\left(\sum_{n=1}^{\infty}\left|\phi_{n}\right\rangle\left\langle\phi_{n}\right|\right) \\
& =\sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left|\phi_{m}\right\rangle\left(\left\langle\phi_{m}\right| \hat{A}\left|\phi_{n}\right\rangle\right)\left\langle\phi_{n}\right|=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left(\left\langle\phi_{m}\right| \hat{A}\left|\phi_{n}\right\rangle\right)\left|\phi_{m}\right\rangle\left\langle\phi_{n}\right|,
\end{aligned}
$$

where the last equality uses the fact that the matrix elements are numbers.
(b) Using the result from (a) we have that

$$
|y\rangle=\hat{A}|x\rangle=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left(\left\langle\phi_{m}\right| \hat{A}\left|\phi_{n}\right\rangle\right)\left|\phi_{m}\right\rangle\left\langle\phi_{n} \mid x\right\rangle=\sum_{m=1}^{\infty} y_{m}\left|\phi_{m}\right\rangle
$$

where

$$
y_{m} \equiv \sum_{m=1}^{\infty}\left(\left\langle\phi_{m}\right| \hat{A}\left|\phi_{n}\right\rangle\right) x_{n}, \quad \text { with } x_{n} \equiv\left\langle\phi_{n} \mid x\right\rangle
$$

(c) If \hat{A} is an observable and the $\left\{\left|\phi_{n}\right\rangle\right\}$ are its CON eigenkets, then the matrix elements of \hat{A} satisfy,

$$
\left\langle\phi_{m}\right| \hat{A}\left|\phi_{n}\right\rangle=\mu_{n} \delta_{n m},
$$

where the $\left\{\mu_{n}\right\}$ are the eigenvalues associated with the $\left\{\left|\phi_{n}\right\rangle\right\}$ eigenkets. To prove that this is so, we merely introduce the eigenvalue/eigenket relation,

$$
\hat{A}\left|\phi_{n}\right\rangle=\mu_{n}\left|\phi_{n}\right\rangle, \quad \text { for } 1 \leq n<\infty
$$

and employ the orthonormality of the eigenkets to obtain,

$$
\left\langle\phi_{m}\right| \hat{A}\left|\phi_{n}\right\rangle=\mu_{n}\left\langle\phi_{m} \mid \phi_{n}\right\rangle=\mu_{n} \delta_{n m}
$$

It then follows from (a) that,

$$
\hat{A}=\sum_{n=1}^{\infty} \mu_{n}\left|\phi_{n}\right\rangle\left\langle\phi_{n}\right|
$$

and from (b) that,

$$
|y\rangle=\sum_{n=1}^{\infty} \mu_{n} x_{n}\left|\phi_{n}\right\rangle
$$

Problem 2.4

Here we derive the stationary-state property of the Hamiltonian's eigenkets.
(a) The time-evolution operator obeys the Schrödinger equation

$$
j \hbar \frac{\partial}{\partial t} \hat{U}\left(t, t_{0}\right)=\hat{H} \hat{U}\left(t, t_{0}\right), \quad \text { for } t \geq t_{0}
$$

with the initial condition $\hat{U}\left(t_{0}, t_{0}\right)=\hat{I}$. This operator-valued differential equation can be converted into an infinite set of coupled classical differential equations, by taking the $\left\{\left|h_{n}\right\rangle\right\}$ matrix elements of both sides. The result is,

$$
j \hbar \frac{\partial}{\partial t}\left\langle h_{m}\right| \hat{U}\left(t, t_{0}\right)\left|h_{n}\right\rangle=\left\langle h_{m}\right| \hat{H} \hat{U}\left(t, t_{0}\right)\left|h_{n}\right\rangle, \quad \text { for } t \geq t_{0}, 0 \leq n, m<\infty
$$

with the initial conditions

$$
\left\langle h_{m}\right| \hat{U}\left(t_{0}, t_{0}\right)\left|h_{n}\right\rangle=\left\langle h_{m}\right| \hat{I}\left|h_{n}\right\rangle=\delta_{n m} .
$$

Now, using the fact that the $\left\{\left|h_{n}\right\rangle\right\}$ are the eigenkets of \hat{H} with associated eigenvalues $\left\{h_{n}\right\}$, we get

$$
j \hbar \frac{\partial}{\partial t}\left\langle h_{m}\right| \hat{U}\left(t, t_{0}\right)\left|h_{n}\right\rangle=h_{m}\left\langle h_{m}\right| \hat{U}\left(t, t_{0}\right)\left|h_{n}\right\rangle .
$$

For $m \neq n$, we need the solution to this homogeneous linear differential equation subject to the initial condition $\left\langle h_{m}\right| \hat{U}\left(t_{0}, t_{0}\right)\left|h_{n}\right\rangle=0$. The answer, of course, is

$$
\left\langle h_{m}\right| \hat{U}\left(t, t_{0}\right)\left|h_{n}\right\rangle=0, \quad \text { for } t \geq t_{0} \text { when } m \neq n
$$

For $m=n$, we need to solve,

$$
j \hbar \frac{\partial}{\partial t}\left\langle h_{n}\right| \hat{U}\left(t, t_{0}\right)\left|h_{n}\right\rangle=h_{n}\left\langle h_{n}\right| \hat{U}\left(t, t_{0}\right)\left|h_{n}\right\rangle, \quad \text { for } t \geq t_{0}
$$

subject to the initial condition,

$$
\left\langle h_{n}\right| \hat{U}\left(t_{0}, t_{0}\right)\left|h_{n}\right\rangle=1,
$$

The solution is easily found:

$$
\left\langle h_{n}\right| \hat{U}\left(t, t_{0}\right)\left|h_{n}\right\rangle=\exp \left[-j h_{n}\left(t-t_{0}\right) / \hbar\right], \quad \text { for } 1 \leq n<\infty .
$$

The matrix elements of an operator in a CON basis determine that operator, as shown in Problem 2.3 (a). For the case at hand now, we have that

$$
\hat{U}\left(t, t_{0}\right)=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty}\left\langle h_{m}\right| \hat{U}\left(t, t_{0}\right)\left|h_{n}\right\rangle\left|h_{m}\right\rangle\left\langle h_{n}\right|=\sum_{n=0}^{\infty} \exp \left[-j h_{n}\left(t-t_{0}\right) / \hbar\right]\left|h_{n}\right\rangle\left\langle h_{n}\right|,
$$

QED.
(b) We can derive this commutator result from the Schrödinger equation or from the matrix elements we've just found in (a). Let's take the latter approach here. We have that

$$
\begin{aligned}
\left\langle h_{m}\right|\left[\hat{U}\left(t, t_{0}\right), \hat{H}\right]\left|h_{n}\right\rangle & =\left\langle h_{m}\right|\left[\hat{U}\left(t, t_{0}\right) \hat{H}-\hat{H} \hat{U}\left(t, t_{0}\right)\right]\left|h_{n}\right\rangle \\
& =\left\langle h_{m}\right| \hat{U}\left(t, t_{0}\right) \hat{H}\left|h_{n}\right\rangle-\left\langle h_{m}\right| \hat{H} \hat{U}\left(t, t_{0}\right)\left|h_{n}\right\rangle \\
& =h_{n}\left\langle h_{m}\right| \hat{U}\left(t, t_{0}\right)\left|h_{n}\right\rangle-h_{m}\left\langle h_{m}\right| \hat{U}\left(t, t_{0}\right)\left|h_{n}\right\rangle
\end{aligned}
$$

where we have used the fact the \hat{H} is Hermitian, and hence its eigenvalues are real. The matrix elements from (a) now give us our first desired result,

$$
\left[\hat{U}\left(t, t_{0}\right), \hat{H}\right]=0
$$

The derivation of

$$
\left[\hat{U}^{\dagger}\left(t, t_{0}\right), \hat{H}\right]=0
$$

is essentially the same:

$$
\begin{aligned}
\left\langle h_{m}\right|\left[\hat{U}^{\dagger}\left(t, t_{0}\right), \hat{H}\right]\left|h_{n}\right\rangle & =\left\langle h_{m}\right|\left[\hat{U}^{\dagger}\left(t, t_{0}\right) \hat{H}-\hat{H} \hat{U}^{\dagger}\left(t, t_{0}\right)\right]\left|h_{n}\right\rangle \\
& =\left\langle h_{m}\right| \hat{U}^{\dagger}\left(t, t_{0}\right) \hat{H}\left|h_{n}\right\rangle-\left\langle h_{m}\right| \hat{H} \hat{U}^{\dagger}\left(t, t_{0}\right)\left|h_{n}\right\rangle \\
& =h_{n}\left\langle h_{m}\right| \hat{U}^{\dagger}\left(t, t_{0}\right)\left|h_{n}\right\rangle-h_{m}\left\langle h_{m}\right| \hat{U}^{\dagger}\left(t, t_{0}\right)\left|h_{n}\right\rangle .
\end{aligned}
$$

Using $\left\langle h_{m}\right| \hat{U}^{\dagger}\left(t, t_{0}\right)\left|h_{n}\right\rangle=\left\langle h_{n}\right| \hat{U}\left(t, t_{0}\right)\left|h_{m}\right\rangle^{*}$, in conjunction with the results from (a), completes the proof.
(c) First, expand $\left|\psi\left(t_{0}\right)\right\rangle$ in the $\left\{\left|h_{n}\right\rangle\right\}$ basis:

$$
\left|\psi\left(t_{0}\right)\right\rangle=\sum_{n=0}^{\infty} \psi_{n}\left(t_{0}\right)\left|h_{n}\right\rangle, \quad \text { where } \psi_{n}\left(t_{0}\right) \equiv\left\langle h_{n} \mid \psi\left(t_{0}\right)\right\rangle
$$

Next, use the results of (a) and Problem 2.3 to get,

$$
|\psi(t)\rangle=\hat{U}\left(t, t_{0}\right)\left|\psi\left(t_{0}\right)\right\rangle=\sum_{n=0}^{\infty} \exp \left[-j h_{n}\left(t-t_{0}\right) / \hbar\right] \psi_{n}\left(t_{0}\right)\left|h_{n}\right\rangle
$$

This result holds for an arbitrary initial state. We are given that $\left|\psi\left(t_{0}\right)\right\rangle=\left|h_{1}\right\rangle$. Thus, $\psi_{n}\left(t_{0}\right)=\delta_{n 1}$, and so

$$
|\psi(t)\rangle=\exp \left[-j h_{1}\left(t-t_{0}\right) / \hbar\right]\left|h_{1}\right\rangle=\exp \left[-j h_{1}\left(t-t_{0}\right) / \hbar\right]\left|\psi\left(t_{0}\right)\right\rangle .
$$

(d) We know that the outcome of the \hat{O} measurement at time t will be one of the eigenvalues, $\left\{o_{k}\right\}$, and that,

$$
\operatorname{Pr}\left(\hat{O} \text {-measurement outcome }=o_{k}\right)=\left|\left\langle o_{k} \mid \psi(t)\right\rangle\right|^{2}, \quad \text { for } k=1,2,3, \ldots
$$

Using the result of (c), we see that this probability distribution is the same for all $t \geq t_{0}$, when $\left|\psi\left(t_{0}\right)\right\rangle=\left|h_{1}\right\rangle$. Because $\left|h_{1}\right\rangle$ is an arbitrary eigenket of the Hamiltonian, this means that these eigenkets are stationary states, i.e., when any observable is measured on a system in the eigenket of a (time-independent) Hamiltonian, the resulting measurement statistics are independent of the time at which that measurement was made.

Problem 2.5

Here we shall derive the time-frequency uncertainty principle of classical signal analysis. Essentially the same derivation can lead to the Heisenberg uncertainty principle for position and momentum by means of wave function (rather than Dirac-notation) quantum mechanics.
(a) Because $|x(t)|^{2} \geq 0$ for all t, and because $|X(f)|^{2} \geq 0$ for all f, it is clear that $p(t) \geq 0$ for all t and $P(f) \geq 0$ for all f. We have that

$$
\int_{-\infty}^{\infty} d t p(t)=\int_{-\infty}^{\infty} d t K|x(t)|^{2}=K \int_{-\infty}^{\infty} d t|x(t)|^{2}=1
$$

where $K \equiv 1 / \int_{-\infty}^{\infty} d t|x(t)|^{2}$. Likewise,

$$
\int_{-\infty}^{\infty} d f P(f)=\int_{-\infty}^{\infty} d f K^{\prime}|X(f)|^{2}=K^{\prime} \int_{-\infty}^{\infty} d f|X(f)|^{2}=1
$$

where $K^{\prime} \equiv 1 / \int_{-\infty}^{\infty} d f|X(f)|^{2}$. Thus, both $p(t)$ and $P(f)$ are properly normalized, non-negative functions, hence they can be thought of as probability densities. Note that Parseval's theorem tells us that $K=K^{\prime}$ in the above derivation.
(b) The inverse tranform integral that relates $X(f)$ back to $x(t)$ is

$$
x(t)=\int_{-\infty}^{\infty} d f X(f) e^{j 2 \pi f t}
$$

Differentiating both sides of this equation with respect to t, and bringing the derivative inside the f-integral on the right-hand side gives the desired result:

$$
\frac{d x(t)}{d t}=\int_{-\infty}^{\infty} d f j 2 \pi f X(f) e^{j 2 \pi f t}
$$

Next, using this result and Parseval's theorem, we have that

$$
\begin{aligned}
T W & =\frac{\sqrt{\int_{-\infty}^{\infty} d t t^{2}|x(t)|^{2} \int_{-\infty}^{\infty} d f f^{2}|X(f)|^{2}}}{\int_{-\infty}^{\infty} d t|x(t)|^{2}} \\
& =\frac{1}{2 \pi} \frac{\sqrt{\int_{-\infty}^{\infty} d t t^{2}|x(t)|^{2} \int_{-\infty}^{\infty} d t\left|\frac{d x(t)}{d t}\right|^{2}}}{\int_{-\infty}^{\infty} d t|x(t)|^{2}}
\end{aligned}
$$

Applying the Schwarz inequality then yields,

$$
T W \geq \frac{1}{2 \pi} \frac{\left|\int_{-\infty}^{\infty} d t t x^{*}(t) \frac{d x(t)}{d t}\right|}{\int_{-\infty}^{\infty} d t|x(t)|^{2}}
$$

with equality if and only if $\frac{d x(t)}{d t}=C t x(t)$, for $-\infty<t<\infty$, with C a complex number.
(c) Because $|z| \geq|\operatorname{Re}(z)|$ for any complex number z, we can loosen the bound in (b) to the following:

$$
T W \geq \frac{1}{2 \pi} \frac{\left|\operatorname{Re}\left(\int_{-\infty}^{\infty} d t t x^{*}(t) \frac{d x(t)}{d t}\right)\right|}{\int_{-\infty}^{\infty} d t|x(t)|^{2}}
$$

with equality if and only if $x^{*}(t) \frac{d x(t)}{d t}$ is real valued. Now, expanding the real part in the numerator we have that

$$
\begin{aligned}
\operatorname{Re}\left(\int_{-\infty}^{\infty} d t t x^{*}(t) \frac{d x(t)}{d t}\right) & =\frac{1}{2}\left[\int_{-\infty}^{\infty} d t\left(t x^{*}(t) \frac{d x(t)}{d t}+t x(t) \frac{d x^{*}(t)}{d t}\right)\right] \\
& =\frac{1}{2} \int_{-\infty}^{\infty} d t t \frac{d\left(|x(t)|^{2}\right)}{d t} \\
& =\frac{1}{2}\left(\left.t|x(t)|^{2}\right|_{-\infty} ^{\infty}-\int_{-\infty}^{\infty} d t|x(t)|^{2}\right)=\frac{1}{2}(0-1)=-\frac{1}{2},
\end{aligned}
$$

where the second equality uses the chain rule for differentiation, the third equality follows via integration by parts, and the last equality relies on the fact that
$|x(t)|^{2}$ integrates to unity on $-\infty<t<\infty$. Plugging this result back into our last $T W$ bound completes the proof that $T W \geq 1 / 4 \pi$.
(d) We have already stated that equality occurs in (b) if and only if $\frac{d x(t)}{d t}=C t x(t)$ for C a complex number. Rearranging this equality condion to read

$$
\frac{d \ln [x(t)]}{d t}=\frac{1}{x(t)} \frac{d x(t)}{d t}=C t
$$

leads to the solution

$$
\ln [x(t)]=C t^{2} / 2+D
$$

where D is another complex number (constant of integration). Exponentiating now yields what we wanted to show: $x(t)=A \exp \left(a t^{2}\right)$, where A and a are complex numbers, is a time function that will satisfy the bound in (b) with equality $\operatorname{IF} \operatorname{Re}(a)<0$, so that $\int_{-\infty}^{\infty} d t|x(t)|^{2}<\infty$.
If we assume that $x(t)$ is of this form, then to satisfy $T W=1 / 4 \pi$ we need only impose the additional constraint that $x^{*}(t) \frac{d x(t)}{d t}$ be real valued. Substituting in the form we have for $x(t)$ shows that this latter condition is equivalent to requiring that $2|A|^{2}$ at $\exp \left[2 \operatorname{Re}(a) t^{2}\right]$ be real valued. This only happens when a is real.

The putative $x(t)$ and $X(f)$ Fourier transform pair can be verified by using the characteristic function for the Gaussian probability density function. In particular, we know that

$$
\int_{-\infty}^{\infty} d t \frac{\exp \left(-t^{2} / 4 t_{0}^{2}\right)}{\sqrt{4 \pi t_{0}^{2}}} e^{-j 2 \pi f t}=\exp \left(-4 \pi^{2} f^{2} t_{0}^{2}\right)
$$

which leads to the desired result for $X(f)$ after we multiply both sides of this equation by $\sqrt{4 \pi t_{0}^{2}} /\left(2 \pi t_{0}^{2}\right)^{1 / 4}=\left(8 \pi t_{0}^{2}\right)^{1 / 4}$. Next, because

$$
|x(t)|^{2}=\frac{\exp \left(-t^{2} / 2 t_{0}^{2}\right)}{\sqrt{2 \pi t_{0}^{2}}}
$$

is a Gaussian probability density with mean zero and variance t_{0}^{2}, we obtain $T=t_{0}$. Similarly, we see that

$$
|X(f)|^{2}=\sqrt{8 \pi t_{0}^{2}} \exp \left(-8 \pi^{2} f^{2} t_{0}^{2}\right)
$$

is a Gaussian probability density with mean zero and variance $1 / 16 \pi^{2} t_{0}^{2}$. Thus we have that $W=1 / 4 \pi t_{0}$, and $T W=1 / 4 \pi$.

MIT OpenCourseWare
https://ocw.mit.edu

6.453 Quantum Optical Communication

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

