Massachusetts Institute of Technology
 Department of Electrical Engineering and Computer Science

6.453 Quantum Optical Communication

Problem Set 3

Fall 2016

Issued: Thursday, September 22, 2016
Due: Thursday, September 29, 2016

Problem 3.1

Here we shall extend the results of Problem 2.2 to include classically-random polarizations. Suppose we have a $+z$-propagating, frequency- ω photon whose polarization vector (in Problem 2.1 notation) is,

$$
\mathbf{i} \equiv\left[\begin{array}{l}
\alpha_{x} \\
\alpha_{y}
\end{array}\right]
$$

where α_{x} and α_{y} are a pair of complex-valued classical random variables that satisfy

$$
\left|\alpha_{x}\right|^{2}+\left|\alpha_{y}\right|^{2}=1,
$$

with probability one. (Two joint complex-valued random variables, α_{x} and α_{y}, are really four joint real-valued random variables, viz., the real and imaginary parts of α_{x} and α_{y}.)

The Poincaré sphere representation for the average behavior of this random polarization vector is,

$$
\mathbf{r} \equiv\left[\begin{array}{c}
r_{1} \\
r_{2} \\
r_{3}
\end{array}\right]=\left[\begin{array}{c}
2 \operatorname{Re}\left[\left\langle\alpha_{x}^{*} \alpha_{y}\right\rangle\right] \\
2 \operatorname{Im}\left[\left\langle\alpha_{x}^{*} \alpha_{y}\right\rangle\right] \\
\left.\left.\left.\langle | \alpha_{x}\right|^{2}\right\rangle-\left.\langle | \alpha_{y}\right|^{2}\right\rangle
\end{array}\right],
$$

where - in keeping with the quantum notation for averages- $\langle\cdot\rangle$ denotes ensemble average.
(a) Use the Schwarz inequality to prove that $\mathbf{r}^{T} \mathbf{r} \equiv r_{1}^{2}+r_{2}^{2}+r_{3}^{2} \leq 1$, i.e., the \mathbf{r} vector lies on or inside the unit sphere.
(b) Let \mathbf{i}_{a} and \mathbf{i}_{b} be a pair of deterministic, orthogonal, complex-valued unit vectors, viz.,

$$
\mathbf{i}_{k}^{\dagger} \mathbf{i}_{l}=\delta_{k l} \equiv \begin{cases}1, & k=l \\ 0, & k \neq l\end{cases}
$$

where k and l can each be either a or b. By means of wave plates, a polarizing beam splitter, and a pair of ideal photon counters, it is possible to measure whether the photon is polarized along \mathbf{i}_{a} or along \mathbf{i}_{b}, by which we mean whether
the \mathbf{i}_{a}-polarization or the \mathbf{i}_{b}-polarization detector is the one that registers a photon detection. The statistics of this measurement satisfy,

$$
\begin{align*}
& \operatorname{Pr}\left(\text { polarized along } \mathbf{i}_{a}\right)=\frac{1+\mathbf{r}_{a}^{T} \mathbf{r}}{2}, \tag{1}\\
& \operatorname{Pr}\left(\text { polarized along } \mathbf{i}_{b}\right)=\frac{1+\mathbf{r}_{b}^{T} \mathbf{r}}{2}, \tag{2}
\end{align*}
$$

where \mathbf{r}_{a} and \mathbf{r}_{b} are the Poincaré sphere representations of \mathbf{i}_{a} and \mathbf{i}_{b}, respectively. Use the orthogonality of \mathbf{i}_{a} and \mathbf{i}_{b} to show that $\mathbf{r}_{a}=-\mathbf{r}_{b}$, so that Eqs. (1) and (2) constitute a proper probability distribution.
(c) Suppose that the photon's random polarization leads to $\mathbf{r}=\mathbf{0}$, i.e., $r_{1}=r_{2}=$ $r_{3}=0$. Show that

$$
\operatorname{Pr}\left(\text { polarized along } \mathbf{i}_{a}\right)=\operatorname{Pr}\left(\text { polarized along } \mathbf{i}_{b}\right)=\frac{1}{2}
$$

for all pairs of deterministic, orthogonal complex-valued unit vectors $\left\{\mathbf{i}_{a}, \mathbf{i}_{b}\right\}$, and thus that $\mathbf{r}=\mathbf{0}$ represents a state of completely random polarization. Contrast the preceding measurement statistics with what will be obtained when

$$
\mathbf{r}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad \mathbf{r}_{a}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad \mathbf{r}_{b}=\left[\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right]
$$

and when

$$
\mathbf{r}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad \mathbf{r}_{a}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad \mathbf{r}_{b}=\left[\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right]
$$

are the Poincaré sphere representations of the photon and the pair of orthogonal polarizations being measured.

Problem 3.2

Here we introduce the notion of a density operator, i.e., a way to account for classical randomness limiting our knowledge of a quantum system's state. Consider a quantum mechanical system whose state is not known. Instead, there is a classical probability distribution for this state. In particular, suppose that there are M distinct unitlength kets, $\left\{\left|\psi_{m}\right\rangle: 1 \leq m \leq M\right\}$, and that the system is known to be in one of these states. Moreover the probability that it is in state $\left|\psi_{m}\right\rangle$ is p_{m}, for $1 \leq m \leq M$, where $\left\{p_{m}: 1 \leq m \leq M\right\}$ is a classical probability distribution: $p_{m} \geq 0$ and $\sum_{m=1}^{M} p_{m}=1$.
(a) Suppose that we measure the observable \hat{O}, where \hat{O} has distinct eigenvalues, $\left\{o_{n}: 1 \leq n<\infty\right\}$, and a complete orthonormal set of associated eigenkets, $\left\{\left|o_{n}\right\rangle: 1 \leq n<\infty\right\}$. GIVEN that the state of the system is $\left|\psi_{m}\right\rangle$, we know that the \hat{O} measurement will yield outcome o_{n} with conditional probability $\left.\operatorname{Pr}\left(o_{n}| | \psi_{m}\right\rangle\right) \equiv\left|\left\langle o_{n} \mid \psi_{m}\right\rangle\right|^{2}$, for $1 \leq n<\infty$ and $1 \leq m \leq M$. Use this conditional probability distribution to obtain the unconditional probability, $\operatorname{Pr}\left(o_{n}\right)$, of getting the outcome o_{n} when we make the \hat{O} measurement.
(b) Define a density operator for the system by,

$$
\hat{\rho} \equiv \sum_{m=1}^{M} p_{m}\left|\psi_{m}\right\rangle\left\langle\psi_{m}\right| .
$$

Show that $\hat{\rho}$ is an Hermitian operator, and verify that your answer to (a) can be reduced to

$$
\operatorname{Pr}\left(o_{n}\right)=\left\langle o_{n}\right| \hat{\rho}\left|o_{n}\right\rangle, \quad \text { for } 1 \leq n<\infty .
$$

(c) Show that the expected value of the \hat{O} measurement, i.e.,

$$
\langle\hat{O}\rangle \equiv \sum_{n=1}^{\infty} o_{n} \operatorname{Pr}\left(o_{n}\right)
$$

satisfies

$$
\langle\hat{O}\rangle=\operatorname{tr}(\hat{\rho} \hat{O})
$$

where $\operatorname{tr}(\hat{A})$ for any linear Hilbert-space operator, \hat{A}, is the trace of that operator, defined as follows. Let $\{|k\rangle: 1 \leq k<\infty\}$ be an arbitrary complete set of orthonormal kets on the quantum system's state space, so that

$$
\hat{I}=\sum_{k=1}^{\infty}|k\rangle\langle k| .
$$

Then

$$
\operatorname{tr}(\hat{A}) \equiv \sum_{k=1}^{\infty}\langle k| \hat{A}|k\rangle
$$

i.e., it is the sum of the operator's diagonal matrix-elements in the $\{|k\rangle\}$ representation. Comment: The trace operation is invariant to the choice of the CON basis used for its calculation. Hence a propitious choice of the basis can be a great aid in simplifying the calculation of averages involving a density operator.

Problem 3.3

Here we will explore the difference between a pure state and a mixed state, i.e., the difference between knowing that a quantum system is in a definite state $|\psi\rangle$ as
opposed to having a classically-random distribution over a set of such states, namely a density operator $\hat{\rho}$. Because the density operator is Hermitian, it has eigenvalues and eigenkets. Let us assume that these form a countable set, viz., $\hat{\rho}$ has eigenvalues, $\left\{\rho_{n}: 1 \leq n<\infty\right\}$, and associated eigenkets $\left\{\left|\rho_{n}\right\rangle: 1 \leq n<\infty\right\}$, that satisfy

$$
\hat{\rho}\left|\rho_{n}\right\rangle=\rho_{n}\left|\rho_{n}\right\rangle, \quad \text { for } 1 \leq n<\infty .
$$

Without loss of generality, we can assume that these eigenkets form a complete orthonormal set, i.e.,

$$
\begin{aligned}
\left\langle\rho_{m} \mid \rho_{n}\right\rangle & =\delta_{n m}, \\
\hat{I} & =\sum_{n=1}^{\infty}\left|\rho_{n}\right\rangle\left\langle\rho_{n}\right| .
\end{aligned}
$$

(a) Show that the eigenvalues $\left\{\rho_{n}\right\}$ satisfy

$$
0 \leq \rho_{n} \leq 1, \quad \text { for } 1 \leq n<\infty
$$

and

$$
\sum_{n=1}^{\infty} \rho_{n}=1
$$

(b) Show that $\operatorname{tr}(\hat{\rho})=1$ for any density operator
(c) Suppose that the quantum system is in a pure state, i.e., it is known to be in the state $|\psi\rangle$. Show that this situation can be represented in density-operator form by setting $\rho_{1}=1$ and $\left|\rho_{1}\right\rangle=|\psi\rangle$, viz., a pure state has a density operator with only one eigenket whose associated eigenvalue is non-zero. Show that $\operatorname{tr}\left(\hat{\rho}^{2}\right)=1$ for any pure-state density operator.
(d) When the density operator has two or more eigenkets with non-zero eigenvalues we say that the state is mixed, i.e., there are at least two different pure states that can occur with non-zero probabilities. Show that $\operatorname{tr}\left(\hat{\rho}^{2}\right)<1$ for any mixedstate density operator.

Problem 3.4

In this problem we shall explore the density operator for single-photon polarization. Suppose that we are interested in the polarization state of a frequency- ω, $+z$-propagating, single photon. We know that a pure state of such a photon can be written as the 2-D complex-valued ket vector,

$$
|\mathbf{i}\rangle \equiv\left[\begin{array}{l}
\alpha_{x} \\
\alpha_{y}
\end{array}\right]
$$

in the $x-y$ (horizontal-vertical) basis, with $\left|\alpha_{x}\right|^{2}+\left|\alpha_{y}\right|^{2}=1$. If we measure the polarization state of this photon using the basis,

$$
\left|\mathbf{i}^{\prime}\right\rangle \equiv\left[\begin{array}{c}
\alpha_{x}^{\prime} \\
\alpha_{y}^{\prime}
\end{array}\right]
$$

and

$$
\left|\mathbf{i}_{\perp}^{\prime}\right\rangle \equiv\left[\begin{array}{c}
\alpha_{y}^{\prime *} \\
-\alpha_{x}^{\prime *}
\end{array}\right]
$$

where $\left|\alpha_{x}^{\prime}\right|^{2}+\left|\alpha_{y}^{\prime}\right|^{2}=1$, then we will get outcome \mathbf{i}^{\prime} with probability

$$
\left.\operatorname{Pr}\left(\mathbf{i}^{\prime}| | \mathbf{i}\right\rangle\right)=\left|\left\langle\mathbf{i}^{\prime} \mid \mathbf{i}\right\rangle\right|^{2}
$$

and outcome $\mathbf{i}_{\perp}^{\prime}$ with probability

$$
\left.\left.\operatorname{Pr}\left(\mathbf{i}_{\perp}^{\prime}| | \mathbf{i}\right\rangle\right)=\left|\left\langle\mathbf{i}_{\perp}^{\prime} \mid \mathbf{i}\right\rangle\right|^{2}=1-\operatorname{Pr}\left(\mathbf{i}^{\prime}| | \mathbf{i}\right\rangle\right)
$$

(a) Verify that the density operator for this pure state,

$$
\hat{\rho}=|\mathbf{i}\rangle\langle\mathbf{i}|
$$

gives these same probabilities via

$$
\left.\operatorname{Pr}\left(\mathbf{i}^{\prime}| | \mathbf{i}\right\rangle\right)=\left\langle\mathbf{i}^{\prime}\right| \hat{\rho}\left|\mathbf{i}^{\prime}\right\rangle
$$

and

$$
\left.\left.\operatorname{Pr}\left(\mathbf{i}_{\perp}^{\prime}| | \mathbf{i}\right\rangle\right)=\left\langle\mathbf{i}_{\perp}^{\prime}\right| \hat{\rho}\left|\mathbf{i}_{\perp}^{\prime}\right\rangle=1-\operatorname{Pr}\left(\mathbf{i}^{\prime}| | \mathbf{i}\right\rangle\right) .
$$

(b) Now suppose that the single photon is in a mixed state, i.e., that α_{x} and α_{y} are complex-valued random variables whose joint distribution ensures that $\left|\alpha_{x}\right|^{2}+$ $\left|\alpha_{y}\right|^{2}=1$ with probability one. Show that the density operator $\hat{\rho}$ can now be written in the form

$$
\hat{\rho}=\left[\begin{array}{ll}
\left.\left.\langle | \alpha_{x}\right|^{2}\right\rangle & \left\langle\alpha_{x} \alpha_{y}^{*}\right\rangle \\
\left\langle\alpha_{x}^{*} \alpha_{y}\right\rangle & \left.\left.\langle | \alpha_{y}\right|^{2}\right\rangle
\end{array}\right],
$$

by verifying that this expression yields the proper formulas for the unconditional measurement probabilities, $\operatorname{Pr}\left(\mathbf{i}^{\prime}\right)$ and $\operatorname{Pr}\left(\mathbf{i}_{\perp}^{\prime}\right)$, i.e.,

$$
\left.\left\langle\mathbf{i}^{\prime}\right| \hat{\rho}\left|\mathbf{i}^{\prime}\right\rangle=\operatorname{Pr}\left(\mathbf{i}^{\prime}\right)=\int d \alpha_{x} \int d \alpha_{y} p\left(\alpha_{x}, \alpha_{y}\right) \operatorname{Pr}\left(\mathbf{i}^{\prime}| | \mathbf{i}\right\rangle\right),
$$

and

$$
\left.\left\langle\mathbf{i}_{\perp}^{\prime}\right| \hat{\rho}\left|\mathbf{i}_{\perp}^{\prime}\right\rangle=\operatorname{Pr}\left(\mathbf{i}_{\perp}^{\prime}\right)=\int d \alpha_{x} \int d \alpha_{y} p\left(\alpha_{x}, \alpha_{y}\right) \operatorname{Pr}\left(\mathbf{i}_{\perp}^{\prime}| | \mathbf{i}\right\rangle\right),
$$

where $p\left(\alpha_{x}, \alpha_{y}\right)$ is the joint probability density for α_{x} and α_{y}. Note that you have just shown that the preceding form of the density operator is equivalent to the mixed-state Poincaré vector that you studied in Problem 3.1.

Problem 3.5

Let \hat{A} and \hat{B} be observables for some quantum system. In particular, let \hat{A} and \hat{B} each be Hermitian operators with complete orthonormal (CON) sets of eigenkets, $\left\{\left|a_{n}\right\rangle: 1 \leq n<\infty\right\}$ and $\left\{\left|b_{n}\right\rangle: 1 \leq n<\infty\right\}$, and associated eigenvalues, $\left\{a_{n}: 1 \leq\right.$ $n<\infty\}$ and $\left\{b_{n}: 1 \leq n<\infty\right\}$, respectively.
(a) The commutator of \hat{A} and \hat{B} is, by definition,

$$
[\hat{A}, \hat{B}] \equiv \hat{A} \hat{B}-\hat{B} \hat{A}
$$

Show that $\frac{1}{j}[\hat{A}, \hat{B}]$ is an Hermitian operator.
(b) Assume that these observables commute, i.e.,

$$
[\hat{A}, \hat{B}] \equiv \hat{A} \hat{B}-\hat{B} \hat{A}=0
$$

and that the eigenvalues of \hat{A} are distinct, as are the eigenvalues of \hat{B}. Show that every eigenket of \hat{A} is also an eigenket of \hat{B} and that every eigenket of \hat{B} is also an eigenket of \hat{A}, i.e., \hat{A} and \hat{B} have a common, CON set of eigenkets.

Problem 3.6

Here we introduce the notation of tensor products, to permit us to deal with multiple quantum systems. Let \mathcal{H}_{1} and \mathcal{H}_{2} be the Hilbert spaces of possible states for two quantum systems, \mathcal{S}_{1} and \mathcal{S}_{2}, respectively. If we are interested in making a joint measurement on these two systems, e.g., the sum of their "positions", etc., we need to have a way to describe states and observables for the joint system. Let $\left\{\left|\phi_{n}\right\rangle_{1}\right.$: $1 \leq n<\infty\}$ and $\left\{\left|\theta_{m}\right\rangle_{2}: 1 \leq m<\infty\right\}$ be orthonormal bases for \mathcal{H}_{1} and \mathcal{H}_{2}, respectively, where the subscripts 1 and 2 indicate to which Hilbert space the states belong. The Hilbert space of states for the joint quantum system-i.e., systems 1 and 2 together-is spanned by the tensor product states $\left\{\left|\phi_{n}\right\rangle_{1} \otimes\left|\theta_{m}\right\rangle_{2}: 1 \leq n, m<\infty\right\}$, i.e., an arbitrary state $|\psi\rangle \in \mathcal{H}$ can be expressed as a linear combination,

$$
\begin{equation*}
|\psi\rangle=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} c_{n m}\left(\left|\phi_{n}\right\rangle_{1} \otimes\left|\theta_{m}\right\rangle_{2}\right) \tag{3}
\end{equation*}
$$

by appropriate choice of the coefficients $\left\{c_{n m}\right\}$. Thus, because the inner product between $\left|\phi_{n}\right\rangle_{1} \otimes\left|\theta_{m}\right\rangle_{2}$ and $\left|\phi_{k}\right\rangle_{1} \otimes\left|\theta_{l}\right\rangle_{2}$ is defined to be,

$$
\left({ }_{2}\left\langle\theta_{l}\right| \otimes_{1}\left\langle\phi_{k}\right|\right)\left(\left|\phi_{n}\right\rangle_{1} \otimes\left|\theta_{m}\right\rangle_{2}\right)=\left({ }_{2}\left\langle\theta_{l} \mid \theta_{m}\right\rangle_{2}\right)\left({ }_{1}\left\langle\phi_{k} \mid \phi_{n}\right\rangle_{1}\right),
$$

the inner product between $|\psi\rangle$ from Eq. (3) and

$$
\left|\psi^{\prime}\right\rangle=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} d_{n m}\left(\left|\phi_{n}\right\rangle_{1} \otimes\left|\theta_{m}\right\rangle_{2}\right)
$$

is

$$
\left\langle\psi^{\prime} \mid \psi\right\rangle=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} d_{n m}^{*} c_{n m}
$$

(a) Let \hat{A}_{1} be an observable of system 1, i.e., an Hermitian operator on \mathcal{H}_{1} with a complete set of eigenkets, and let \hat{B}_{2} be an observable of system 2, i.e., an Hermitian operator on \mathcal{H}_{2} with a complete set of eigenkets. The tensor product $\hat{C}=\hat{A}_{1} \otimes \hat{B}_{2}$ is a linear operator that maps the state $\left|\phi_{n}\right\rangle_{1} \otimes\left|\theta_{m}\right\rangle_{2}$ into the state $\left(\hat{A}_{1}\left|\phi_{n}\right\rangle_{1}\right) \otimes\left(\hat{B}_{2}\left|\theta_{m}\right\rangle_{2}\right)$.
Show that \hat{C} is an Hermitian operator on \mathcal{H} which has a complete set of eigenkets, so that \hat{C} is an observable on the joint Hilbert space of systems 1 and 2.
(b) Let

$$
\hat{A}_{1}=\sum_{n=1}^{\infty} a_{n}\left|a_{n}\right\rangle_{11}\left\langle a_{n}\right| \quad \text { and } \quad \hat{B}_{2}=\sum_{m=1}^{\infty} b_{m}\left|b_{m}\right\rangle_{22}\left\langle b_{m}\right|
$$

be the diagonal (eigenvalue/eigenket) decompositions of \hat{A}_{1} and \hat{B}_{2}, where the $\left\{a_{n}\right\}$ are assumed to be distinct, as are the $\left\{b_{m}\right\}$. When we measure \hat{A}_{1} on system 1 and we measure \hat{B}_{2} on system 2 with the joint system being in state $|\psi\rangle$, given by Eq. (3), the outcome will be an ordered pair $\left\{\left(a_{n}, b_{m}\right)\right\}$ of eigenvalues. The probability that $\left(a_{n}, b_{m}\right)$ occurs is given by,

$$
\operatorname{Pr}\left(a_{n}, b_{m}\right)=\mid\left.\langle\psi|\left(\left|a_{n}\right\rangle_{1} \otimes\left|b_{m}\right\rangle_{2}\right)\right|^{2}
$$

Show that this is a proper probability distribution. Express the marginal probabilities, $\operatorname{Pr}\left(a_{n}\right)$ and $\operatorname{Pr}\left(b_{m}\right)$, in terms of $|\psi\rangle$, the $\left\{\left|a_{n}\right\rangle_{1}\right\}$ and the $\left\{\left|b_{m}\right\rangle_{2}\right\}$.
(c) Specialize the results of (b) to the case of a product state, viz., a state that satisfies $|\psi\rangle=\left|\psi_{1}\right\rangle_{1} \otimes\left|\psi_{2}\right\rangle_{2}$.

Problem 3.7

Here we prove that it is impossible to clone the unknown state of a quantum system by means of a unitary evolution. It is a proof by contradiction. Suppose that we have a quantum system whose Hilbert space of states is \mathcal{H}_{S}, where ${ }_{S}$ indicates that this is the source system. Suppose too that we have a target system whose Hilbert space of states is \mathcal{H}_{T}. We will assume that these two Hilbert spaces have the same dimensionality, e.g., 2.

We wish to construct a perfect cloner, viz., a unitary operator, \hat{U}, on the tensor product space $\mathcal{H} \equiv \mathcal{H}_{S} \otimes \mathcal{H}_{T}$ such that

$$
\begin{equation*}
\hat{U}\left(|\psi\rangle_{S} \otimes|0\rangle_{T}\right)=|\psi\rangle_{S} \otimes|\psi\rangle_{T}, \tag{4}
\end{equation*}
$$

where $|\psi\rangle_{S}$ is an arbitrary unit-length ket in \mathcal{H}_{S}, and $|0\rangle_{T}$ is a reference ("blank") unit-length ket in \mathcal{H}_{T}. Thus, the perfect cloner does not disturb the source state while it turns the target's "blank" state into a clone of the source state.

Let $\left|\psi_{1}\right\rangle_{S}$ and $\left|\psi_{2}\right\rangle_{S}$ be two distinct, unit-length kets in \mathcal{H}_{S}, let α and β be two non-zero complex numbers, and assume that we have found a perfect cloner operator \hat{U} that satisfies Eq. (4) for all unit-length source kets.
(a) Define

$$
\left|\psi^{\prime}\right\rangle_{S}=\frac{\alpha\left|\psi_{1}\right\rangle_{S}+\beta\left|\psi_{2}\right\rangle_{S}}{\sqrt{|\alpha|^{2}+|\beta|^{2}+2 \operatorname{Re}\left[\alpha^{*} \beta\left({ }_{S}\left\langle\psi_{1} \mid \psi_{2}\right\rangle_{S}\right)\right]}}
$$

Use unitarity to evaluate the length of the ket $|\theta\rangle \equiv \hat{U}\left(\left|\psi^{\prime}\right\rangle_{S} \otimes|0\rangle_{T}\right)$.
(b) Use the linearity of \hat{U} to show that

$$
\begin{equation*}
|\theta\rangle=\alpha^{\prime}\left(\left|\psi_{1}\right\rangle_{S} \otimes\left|\psi_{1}\right\rangle_{T}\right)+\beta^{\prime}\left(\left|\psi_{2}\right\rangle_{S} \otimes\left|\psi_{2}\right\rangle_{T}\right) . \tag{5}
\end{equation*}
$$

where

$$
\begin{aligned}
\alpha^{\prime} & \equiv \frac{\alpha}{\sqrt{\left.|\alpha|^{2}+|\beta|^{2}+2 \operatorname{Re}\left[\alpha^{*} \beta{ }_{S}\left\langle\psi_{1} \mid \psi_{2}\right\rangle_{S}\right)\right]}} \\
\beta^{\prime} & \equiv \frac{\beta}{\sqrt{\left.|\alpha|^{2}+|\beta|^{2}+2 \operatorname{Re}\left[\alpha^{*} \beta{ }_{S}\left\langle\psi_{1} \mid \psi_{2}\right\rangle_{S}\right)\right]}}
\end{aligned}
$$

(c) Use Eq. (5) to evaluate the length of $|\theta\rangle$. Show that this result contradicts what you found in (a), and thus conclude that there is no unitary \hat{U} that can be a perfect cloner.

Problem 3.8

Here we prove that it is impossible to erase the unknown state of a quantum system by means of a unitary evolution. It is a proof by contradiction. Suppose that we have a quantum system whose Hilbert space of states is \mathcal{H}_{S}, where ${ }_{S}$ indicates that this is the source system. Suppose too that we have an ancilla system whose Hilbert space of states is \mathcal{H}_{A}. We will assume that these two Hilbert spaces have the same dimensionality, e.g., 2.

We wish to construct a perfect eraser, viz., a unitary operator, \hat{U}, on the tensor product space $\mathcal{H} \equiv \mathcal{H}_{S} \otimes \mathcal{H}_{A}$ such that

$$
\begin{equation*}
\hat{U}\left(|\psi\rangle_{S} \otimes|0\rangle_{A}\right)=|0\rangle_{S} \otimes|0\rangle_{A} \tag{6}
\end{equation*}
$$

where $|\psi\rangle_{S}$ is an arbitrary unit-length ket in \mathcal{H}_{S}, and $|0\rangle_{A}$ is a reference ("blank") unit-length ket in \mathcal{H}_{A}. Thus, the perfect eraser does not disturb the ancilla state while it turns the source's input state into a "blank."

Let $\left|\psi_{1}\right\rangle_{S}$ and $\left|\psi_{2}\right\rangle_{S}$ be two distinct, unit-length kets in \mathcal{H}_{S}, let α and β be two non-zero complex numbers, and assume that we have found a perfect eraser operator \hat{U} that satisfies Eq. (6) for all unit-length source kets.
(a) Define

$$
\left|\psi^{\prime}\right\rangle_{S}=\frac{\alpha\left|\psi_{1}\right\rangle_{S}+\beta\left|\psi_{2}\right\rangle_{S}}{\sqrt{|\alpha|^{2}+|\beta|^{2}+2 \operatorname{Re}\left[\alpha^{*} \beta\left({ }_{S}\left\langle\psi_{1} \mid \psi_{2}\right\rangle_{S}\right)\right]}} .
$$

Use unitarity to evaluate the length of the ket $|\theta\rangle \equiv \hat{U}\left(\left|\psi^{\prime}\right\rangle_{S} \otimes|0\rangle_{A}\right)$.
(b) Use the linearity of \hat{U} to show that

$$
\begin{equation*}
|\theta\rangle=\left(\alpha^{\prime}+\beta^{\prime}\right)\left(|0\rangle_{S} \otimes|0\rangle_{A}\right) . \tag{7}
\end{equation*}
$$

where

$$
\begin{aligned}
\alpha^{\prime} & \equiv \frac{\alpha}{\sqrt{|\alpha|^{2}+|\beta|^{2}+2 \operatorname{Re}\left[\alpha^{*} \beta\left({ }_{S}\left\langle\psi_{1} \mid \psi_{2}\right\rangle_{S}\right)\right]}} \\
\beta^{\prime} & \equiv \frac{\beta}{\sqrt{\left.|\alpha|^{2}+|\beta|^{2}+2 \operatorname{Re}\left[\alpha^{*} \beta{ }_{S}\left\langle\psi_{1} \mid \psi_{2}\right\rangle_{S}\right)\right]}}
\end{aligned}
$$

(c) Use Eq. (7) to evaluate the length of $|\theta\rangle$. Show that this result contradicts what you found in (a), and thus conclude that there is no unitary \hat{U} that can be a perfect eraser.

MIT OpenCourseWare
https://ocw.mit.edu

6.453 Quantum Optical Communication

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

