Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

6.453 Quantum Optical Communication

Problem Set 4

Fall 2016

Issued: Thursday, September 29, 2016 Due: Thursday, October 6, 2016

Problem 4.1

Here we shall show that the creation operator, \hat{a}^{\dagger} , does *not* have any non-zero eigenkets. Suppose that a non-zero ket $|\beta\rangle$ satisfies

$$\hat{a}^{\dagger}|\beta\rangle = \beta|\beta\rangle,\tag{1}$$

where β is a complex number. Use the completeness of the number kets to expand $|\beta\rangle$ as follows,

$$|\beta\rangle = \sum_{n=0}^{\infty} b_n |n\rangle,$$

where $b_n = \langle n | \beta \rangle$. Substitute this expansion into Eq. (1) and show that the only possible solution is $b_n = 0$ for all n, i.e., the creation operator has no non-zero eigenkets.

Problem 4.2

Here we shall work out some properties of the coherent states. Let \hat{a} and \hat{a}^{\dagger} be the annihilation and creation operators for the frequency- ω quantum harmonic oscillator discussed in class. Let $\{ |\alpha \rangle : \alpha \in \mathcal{C} \}$ be the coherent states,

$$|\alpha\rangle \equiv \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} \exp(-|\alpha|^2/2)|n\rangle,$$

where $\{|n\rangle: 0 \le n < \infty\}$ are the number states and $\alpha \in \mathcal{C}$ is an arbitrary complex number.

- (a) Use the orthonormality of the number states, and the power series for the exponential function, to evaluate the inner product $\langle \alpha | \beta \rangle$ between two coherent states $|\alpha\rangle$ and $|\beta\rangle$. Are the coherent states normalized to unit length? Are coherent states with different eigenvalues orthogonal?
- (b) Use the completeness of the number states to show that the coherent states are overcomplete, i.e.,

$$\hat{I} = \int \frac{d^2 \alpha}{\pi} |\alpha\rangle\langle\alpha|,$$

where $d^2\alpha \equiv d\alpha_1 d\alpha_2$, with $\alpha_1 \equiv \text{Re}(\alpha)$ and $\alpha_2 \equiv \text{Im}(\alpha)$, and the integration region is the entire complex plane.

(c) Use the result from (b) to show that,

$$\hat{a} = \hat{a}\hat{I} = \int \frac{d^2\alpha}{\pi} \, \alpha |\alpha\rangle\langle\alpha|,$$

$$\hat{a}^{\dagger} = \hat{I}\hat{a}^{\dagger} = \int \frac{d^2\alpha}{\pi} \, \alpha^* |\alpha\rangle\langle\alpha|,$$

$$\hat{a}\hat{a}^{\dagger} = \hat{a}\hat{I}\hat{a}^{\dagger} = \int \frac{d^2\alpha}{\pi} \, |\alpha|^2 |\alpha\rangle\langle\alpha|,$$

$$\hat{a}^{\dagger}\hat{a} = \hat{a}\hat{a}^{\dagger} - \left[\hat{a}, \hat{a}^{\dagger}\right] = \int \frac{d^2\alpha}{\pi} \, (|\alpha|^2 - 1) |\alpha\rangle\langle\alpha|.$$

Problem 4.3

Here we will explore the phase behavior of the quantum harmonic oscillator whose annihilation operator is \hat{a} . The Susskind-Glogower phase operator $\widehat{e^{j\phi}}$ associated with \hat{a} is defined as follows

$$\widehat{e^{j\phi}} \equiv (\hat{a}\hat{a}^{\dagger})^{-1/2}\hat{a}.$$

(Note that the "widehat" symbol is used to indicate that this is *not* the exponentiation of j times an Hermitian operator $\hat{\phi}$.)

(a) Find the number-ket representation of $\widehat{e^{j\phi}}$, i.e., find c_{nm} such that

$$\widehat{e^{j\phi}} = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} c_{nm} |n\rangle\langle m|,$$

where $|n\rangle$ and $\langle m|$ are number states.

Useful Fact: If \hat{B} is an Hermitian operator with the eigenvalue-eigenket decomposition

$$\hat{B} = \sum_{n} b_n |b_n\rangle\langle b_n|,$$

and if $F(\cdot)$ is a deterministic function, then

$$F(\hat{B}) = \sum_{n} F(b_n) |b_n\rangle\langle b_n|$$

(b) Show that

$$|e^{j\phi}\rangle \equiv \sum_{n=0}^{\infty} e^{jn\phi} |n\rangle,$$

where $|n\rangle$ is the number state, is an eigenket of $\widehat{e^{j\phi}}$, and determine its associated eigenvalue.

(c) Show that $\{|e^{j\phi}\rangle: -\pi \leq \phi \leq \pi\}$ resolves the identity, i.e., prove that

$$\hat{I} = \int_{-\pi}^{\pi} \frac{d\phi}{2\pi} |e^{j\phi}\rangle \langle e^{j\phi}|.$$

It follows from this result that

$$\hat{\Pi}(\phi) \equiv \frac{|e^{j\phi}\rangle\langle e^{j\phi}|}{2\pi}$$

is a probability operator-valued measurement (POVM) for the phase of the \hat{a} mode.

Problem 4.4

Here we shall develop a little commutator calculus that will be needed in the next problem. Let \hat{a} and \hat{a}^{\dagger} be the annihilation and creation operators, respectively, of a quantum harmonic oscillator, and let $\hat{a}_1 \equiv \text{Re}(\hat{a})$ and $\hat{a}_2 \equiv \text{Im}(\hat{a})$ be the associated quadrature operators, i.e., the normalized versions of position and momentum for a mechanical oscillator, or charge and flux for an LC oscillator.

(a) Use $[\hat{a}_1, \hat{a}_2] = j/2$ to show that

$$\left[\hat{a}_1, \hat{a}_2^2\right] = j\hat{a}_2.$$

Assume that

$$[\hat{a}_1, \hat{a}_2^k] = jk\hat{a}_2^{k-1}/2, \text{ for } k > 2.$$

Show that

$$[\hat{a}_1, \hat{a}_2^{k+1}] = j(k+1)\hat{a}_2^k/2,$$

thus completing the induction proof that

$$[\hat{a}_1, \hat{a}_2^k] = jk\hat{a}_2^{k-1}/2, \text{ for } k = 1, 2, 3, \dots$$

By analogy with classical functions we define the following operator derivative,

$$\frac{d\hat{a}_2^k}{d\hat{a}_2} \equiv k\hat{a}_2^{k-1},$$

so that

$$[\hat{a}_1, \hat{a}_2^k] = (j/2) \frac{d\hat{a}_2^k}{d\hat{a}_2}, \text{ for } k = 1, 2, 3, \dots$$

(b) Follow a similar induction argument to that used in (a) to prove the commutation rule,

$$\left[\hat{a}_2, \hat{a}_1^k\right] = -jk\hat{a}_1^{k-1}/2 = -(j/2)\frac{d\hat{a}_1^k}{d\hat{a}_1}, \text{ for } k = 1, 2, 3, \dots,$$

where the last equality defines the operator derivative.

(c) Suppose that $F(\alpha_1)$ and $G(\alpha_2)$ are functions of real variables α_1 and α_2 that have convergent Taylor's series,

$$F(\alpha_1) = \sum_{n=0}^{\infty} \frac{\alpha_1^n}{n!} \left. \frac{d^n F(\alpha_1)}{d\alpha_1^n} \right|_{\alpha_1 = 0}, \quad \text{for } -\infty < \alpha_1 < \infty,$$

$$G(\alpha_2) = \sum_{n=0}^{\infty} \frac{\alpha_2^n}{n!} \left. \frac{d^n G(\alpha_2)}{d\alpha_2^n} \right|_{\alpha_2=0}, \text{ for } -\infty < \alpha_2 < \infty.$$

Define the operators $F(\hat{a}_1)$ and $G(\hat{a}_2)$ by the operator-valued Taylor's series,

$$F(\hat{a}_1) = \sum_{n=0}^{\infty} \frac{\hat{a}_1^n}{n!} \left. \frac{d^n F(\alpha_1)}{d\alpha_1^n} \right|_{\alpha_1 = 0},$$

$$G(\hat{a}_2) = \sum_{n=0}^{\infty} \frac{\hat{a}_2^n}{n!} \left. \frac{d^n G(\alpha_2)}{d\alpha_2^n} \right|_{\alpha_2=0}.$$

Use the results of (a) and (b) to find the commutators $[\hat{a}_1, G(\hat{a}_2)]$ and $[\hat{a}_2, F(\hat{a}_1)]$.

Problem 4.5

Here we shall show that the eigenkets of a quadrature operator can be found from a translation operator applied to the zero-eigenvalue eigenket.

(a) Assume that $|\alpha_1\rangle_1$ is an eigenket of the quadrature operator \hat{a}_1 with eigenvalue α_1 . Because \hat{a}_1 is Hermitian, α_1 is a real number. Define a translation operator,

$$\hat{A}_1(\xi) \equiv \exp(-2j\xi \hat{a}_2) = \sum_{n=0}^{\infty} \frac{(-2j\xi)^n}{n!} \hat{a}_2^n, \text{ for } -\infty < \xi < \infty.$$

Use

$$\hat{a}_1 \hat{A}_1(\xi) |\alpha_1\rangle_1 = \hat{A}_1(\xi) \hat{a}_1 |\alpha_1\rangle_1 + \left[\hat{a}_1, \hat{A}_1(\xi)\right] |\alpha_1\rangle_1,$$

and the results from Problem 4.3 to show that $\hat{A}_1(\xi)|\alpha_1\rangle_1$ is an eigenket of \hat{a}_1 with eigenvalue $\alpha_1 + \xi$, for any real number ξ .

(b) Let $|0\rangle_1$ be the \hat{a}_1 eigenket whose eigenvalue is zero. Show that

$$|\alpha_1\rangle_1 = \exp(-2j\alpha_1\hat{a}_2)|0\rangle_1,$$

is an \hat{a}_1 eigenket with eigenvalue α_1 and that $_1\langle \alpha_1|\alpha_1\rangle_1=_1\langle 0|0\rangle_1$.

(c) Assume that $|\alpha_2\rangle_2$ is an eigenket of the quadrature operator \hat{a}_2 with eigenvalue α_2 . Because \hat{a}_2 is Hermitian, α_2 is a real number. Define a translation operator,

$$\hat{A}_2(\xi) \equiv \exp(2j\xi \hat{a}_1) = \sum_{n=0}^{\infty} \frac{(2j\xi)^n}{n!} \hat{a}_1^n, \quad \text{for } -\infty < \xi < \infty.$$

Use

$$\hat{a}_2 \hat{A}_2(\xi) |\alpha_2\rangle_2 = \hat{A}_2(\xi) \hat{a}_2 |\alpha_2\rangle_2 + \left[\hat{a}_2, \hat{A}_2(\xi)\right] |\alpha_2\rangle_2,$$

and the results from Problem 4.3 to show that $\hat{A}_2(\xi)|\alpha_2\rangle_2$ is an eigenket of \hat{a}_2 with eigenvalue $\alpha_2 + \xi$, for any real number ξ .

(d) Let $|0\rangle_2$ be the \hat{a}_2 eigenket whose eigenvalue is zero. Show that

$$|\alpha_2\rangle_2 = \exp(2j\alpha_2\hat{a}_1)|0\rangle_2,$$

is an \hat{a}_2 eigenket with eigenvalue α_2 and that $_2\langle\alpha_2|\alpha_2\rangle_2=_2\langle0|0\rangle_2$.

Problem 4.6

Here we shall continue our development of the quadrature-operator eigenkets. The results of Problem 4.5 show that these operators have continuous spectra, i.e., their eigenvalues are $\{-\infty < \alpha_1 < \infty\}$ and $\{-\infty < \alpha_2 < \infty\}$, respectively. Because \hat{a}_1 and \hat{a}_2 are observables, the appropriate orthonormality and completeness conditions for their eigenkets are therefore,

$$_1\langle \alpha_1'|\alpha_1\rangle_1 = \delta(\alpha_1 - \alpha_1') \text{ and } _2\langle \alpha_2'|\alpha_2\rangle_2 = \delta(\alpha_2 - \alpha_2'),$$

$$\hat{I} = \int_{-\infty}^{\infty} d\alpha_1 |\alpha_1\rangle_{11}\langle \alpha_1| = \int_{-\infty}^{\infty} d\alpha_2 |\alpha_2\rangle_{22}\langle \alpha_2|.$$

- (a) Use the Heisenberg uncertainty principle to show that $|\alpha_1\rangle_1$ and $|\alpha_2\rangle_2$ have infinite average energy, i.e., that $\langle \hat{H} \rangle = \hbar \omega (\langle \hat{a}_1^2 \rangle + \langle \hat{a}_2^2 \rangle) = \infty$ for these states.
- (b) We want to determine the relationship between the eigenkets $|\alpha_1\rangle_1$ and $|\alpha_2\rangle_2$. Use the results of Problem 4.5 to show that

$$_{2}\langle\alpha_{2}|\alpha_{1}\rangle_{1} = \exp(-2j\alpha_{1}\alpha_{2})_{2}\langle0|0\rangle_{1}.$$

Hint: The power series expansion of $\hat{A}_1(\xi)$ can be used to show that $|\alpha_2\rangle_2$ is an eigenket of this translation operator; likewise $|\alpha_1\rangle_1$ is an eigenket of the translation operator $\hat{A}_2(\xi)$.

(c) Find $|_2\langle 0|0\rangle_1|^2$ by evaluating

$${}_{2}\langle\alpha_{2}'|\alpha_{2}\rangle_{2} = {}_{2}\langle\alpha_{2}'|\hat{I}|\alpha_{2}\rangle_{2} = {}_{2}\langle\alpha_{2}'|\left(\int_{-\infty}^{\infty}d\alpha_{1}\,|\alpha_{1}\rangle_{11}\langle\alpha_{1}|\right)|\alpha_{2}\rangle_{2},$$

using the result of (b). Assume that $_2\langle 0|0\rangle_1$ is positive real to completely pin down $_2\langle \alpha_2|\alpha_1\rangle_1$.

MIT OpenCourseWare https://ocw.mit.edu

6.453 Quantum Optical Communication Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.