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Problem 7.1

Here we shall develop the quantum state for a single-mode field that prevails when
that mode is in thermal equilibrium at temperature T K.

(a) Let’s try to maximize the objective function,

∞ ∞ ∞

F ({Pn}, λ1, λ2) ≡ −
∑

Pn ln(Pn) + λ1

(

1−
∑

P −
∑

~n

)

+ λ2

(

E ωnPn

n=0 n=0 n=0

)

,

by straightforward multivariable calculus. First we look for the stationary points
of this function, i.e., the {Pn}, λ1, λ2 that satisfy,

∂F ({Pn}, λ1, λ2)
= 0, for n = 0, 1, 2, . . .,

∂Pn

∂F ({Pn}, λ1, λ2)
= 0,

∂λ1

∂F ({Pn}, λ1, λ2)
= 0.

∂λ2

These stationary points are extrema—local maxima or local minima or saddle
points—of the objective function. We then check the matrix of second deriva-
tives of the objective function at these stationary points. Stationary points for
which this matrix is negative semi-definite are local maxima. If there is only one
such point, it is also the global maximum. However, if there are multiple sta-
tionary points at which the second-derivative matrix is negative semi-definite we
must evaluate the objective function at all of these local maxima to determine
the global maximum.

Requiring that the partial derivatives of the objective function with respect
to the Lagrange multipliers be zero enforces the constraints on our entropy
maximization, viz., when these partial derivatives are zero we have that

∂F ({Pn}, λ1, λ2)
∞

= 1−
∂λ1

∑

Pn = 0,
n=0

∂F ({Pn}, λ1, λ2)
∞

= E −
∂λ2

∑

~ωnPn = 0.
n=0
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Adjoining these constraints to the rest of the maximization procedure described
above makes it clear that unconstrained maximization of F ({Pn}, λ1, λ2) is
equivalent to maximizing S({Pn}) subject to the constraints ∞

n=0 Pn = 1 and
∑∞

~n=0 ωnPn = E . In particular, suppose that the multivariable-calculus un-
constrained maximization of F were not equivalent to the c

∑

onstrained maxi-
mization of S. Then, for any λ1, λ2, substituting the {Pn} obtained from the
constrained maximization of S into F ({Pn}, λ1, λ1) would lead a value larger

than the global maximum of F as found from multivariable calculus, which
constitutes a contradiction.

(b) We have that,

∂F ({Pn}, λ1, λ2)
= − ln(Pn)− 1− λ1 − n~ωλ2 = 0, for n = 0, 1, 2, . . .,

∂Pn

for the first equation in (a), whence,

Pn = e−(1+λ1+n~ωλ2), for n = 0, 1, 2, . . .,

where λ and λ ∞ ∞
~1 2 must be used to ensure that n=0 Pn = 1 and n=0 ωnPn = E

prevail. The only non-zero second derivative

∑

s for this problem

∑

are,

∂2F ({Pn}, λ1, λ2)

∂P 2
n

= −
1

< 0, for Pn > 0,
Pn

so the preceding {Pn} is indeed the global maximum that we seek. (Strictly
speaking, we should also check that the {Pn} are all positive. We’ll do that
check in (f), below.)

(c) Using the sum formula for the geometric series, we can sum the {Pn} result
from (b) to get,

∞ ∞
∑

−(1+λ1)
∑

−n~ωλ2
e−(1+λ1)

Pn = e e =
n=0 n=0

=
1− e−~ωλ2

1.

This result allows us to eliminate λ1 from the result of (b), viz., the entropy-
maximizing probability distribution is,

Pn = (1− e−~ωλ2)e−n~ωλ2 , for n = 0, 1, 2, . . .,

where λ2 must be chosen to ensure that
∑∞

~n=0 ωnPn = E prevails.

(d) We have that,

∞ ∞
∑

n ωP = (1− e−~ωλ n ~
~ 2

n )
n=0

∑

~ωe−n ωλ2 = E .
n=0
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Differentiation of the sum formula for the geometric series yields,

~ωe−~ωλ2 ∂
=

(1− e−~ωλ2)2 ∂λ2

(

1

1− e−~ωλ2

)

=
∂

∂

(

∞ ∞

λ2

∑

e−n~ωλ2

n=0

)

=
∑

n~ωe−n~ωλ2

n=0

Combining the two preceding equations, we get,

~ωe−~ωλ2

E =
1− e−~ωλ2

=
~ω

e~ωλ2 − 1

for the field mode’s average energy above its ground state, i.e., above the zero-
point energy, ~ω/2.

(e) With λ2 = 1/kT , we now have,

1
N ≡ E/~ω = ,

e~ω/kT − 1

from (d). At λ = 1.55µm wavelength, we have that ω = 1.28 × 10−19
~ joules.

At T = 290K, we have that kT = 4.00× 10−21 joules. Thus, we get,

1
N = = 1.32× 10−14.

e32.0 − 1

Because the photon energy ~ω at the fiber communication wavelength is so
much higher than the room temperature thermal-fluctuation energy kT , the
average number of thermal-noise photons in the field mode is extremely small.

(f) From (d) we have that,

e~ω/kT
N + 1

= .
N

Then, using this result and λ2 = 1/kT in (c), we find,

N
Pn =

(

1−
N + 1

)(

N

N + 1

)n

=
Nn

, for n = 0, 1, 2, . . .,
(N + 1)n+1

as desired.

Problem 7.2

Here we shall explore what happens when a Bogoliubov (squeezing) transformation
is applied to a field mode that is in thermal equilibrium at temperature T K.

(a) The mean values of the input-mode’s quadrature measurements are easily found.
We know that these mean values are zero when the field is in a number state.
Because the thermal equilibrium state is diagonal in the number basis, i.e., it
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is a random mixture of number states with the Bose-Einstein probability dis-
tribution, the unconditional means of the quadrature measurements are found
by averaging their values when they are in the number state |n〉 over the Bose-
Einstein distribution. Clearly, this procedure yields,

〈âIN1
〉 = 0 and 〈âIN2

〉 = 0.

Now, because µ and ν are both real valued, the Bogoliubov transformation that
generates âOUT from âIN implies,

âOUT1
= (µ+ ν)âIN1

and âOUT2
= (µ− ν)âIN2

(1)

Averaging these equations then gives us,

〈âOUT1
〉 = 0 and 〈âOUT2

〉 = 0.

(b) Because the quadrature measurements are zero-mean, their variances equal their
mean-squared values. This is true for both the input and the output modes of
the Bogoliubov transformation. Now, when the input mode is in the number
state |n〉, we know that,

2n+ 1
〈â2

1
〉 = 〈ˆ2IN aIN2

〉 = .
4

Averaging these results over the Bose-Einstein distribution gives the uncondi-
tional mean squares,

〈â2
1

IN1
〉 = 〈â2

2N +
IN2

〉 = ,
4

where N = 1/(e~ω/kT − 1) is the average photon number in the input mode.
Now, using Eq. (1), we get,

〈∆â2 2 2 2 2 2N + 1
OUT1

〉 = 〈âOUT1
〉 = (µ+ ν) 〈âIN1

〉 = (µ+ ν)
4

〈∆â2OUT2
〉 = 〈â2

2N + 1
OUT2

〉 = (µ− ν)2〈â2IN2
〉 = (µ− ν)2

4

This result shows that the thermal noise in the input mode is squeezed—because
µ, ν are positive—in the 2-quadrature of the output mode, and anti-squeezed
(stretched?) in the 1-quadrature of the output mode. However, because N > 0
for T > 0, we see that the output state is never a minimum uncertainty-product
state, i.e.,

〈∆â2 2 2N + 1
OUT1

〉〈∆âOUT2
〉 =

(

4

)2

>
1
.

16
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Problem 7.3

Here we shall develop the semiclassical treatment for photodetection of a chaotic field,
i.e., one whose classical complex-amplitude is a zero-mean, complex-valued Gaussian
random variable with statistically independent, identically distributed real and imag-
inary parts. Because of what we have already done in Problem Set 1, the present
problem is trivial.

(a) From Problem 1.4, we know that r ≡
√

a2S1
+ a2S2

is Rayleigh distributed, with

probability density function

R

p (R) =

{

2

r

e−R2/N , for 0 ≤ R,
N

0, otherwise.

From Problem 1.3, we know that y ≡ r2 = |a |2S is exponentially distributed,
with probability density function,

N

py(Y =

{

e−Y/

)
, for Y ≥ 0,

N

0, otherwise.

(b) From the results of (a) and Problem 1.5(a) we immediately find that the photon-
count probability distribution is Bose-Einstein:

Nn

Pn = , for n = 0, 1, 2, . . .
(N + 1)n+1

(c) From Problem 1.5(c) we now get,

〈NS〉 = N and 〈∆N2
S〉 = N +N2,

where the first term in the variance expression is the shot noise and the second
term in the variance expression is the excess noise.

Problem 7.4

Here we shall examine the semiclassical photodetection statistics for the superposition
of a coherent field and a chaotic field.

(a) Given knowledge of aS, we have the

〈NS〉 = |aS|
2 = α2

S + 2αSnS1
+ |nS|

2,

where we have used the fact that αS is real valued. Averaging over the statistics
of nS now gives us the unconditional mean value,

〈NS〉 = α2
S + 2αS〈nS1

〉+ 〈|n 2 2 2 2 2
S| 〉 = αS + 〈(nS1

+ nS2
)〉 = αS +N.
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(b) The conditional mean-square of NS, given knowledge of aS, is

〈N2
S〉 = |aS|

2 + |aS|
4 = α2

S + 2αSnS1
+ |nS|

2 + (α2
S + 2αSnS1

+ |nS|
2)2,

from the conditional distribution’s being Poisson with mean |aS|
2. Averaging

this result over the statistics of nS provides the unconditional mean square,

〈N2
S〉 = α2

S +N + 〈(α2
S + 2αSn

2
S1

+ |nS| )
2〉

To evaluate the second term on the right, we square out and average:

〈(α2
S + 2αSnS1

+ |nS|
2)2〉

= α4
S + 4α3

S〈nS1
〉+ 4α2

S〈n
2
S1
〉+ 4αS〈nS1

(n2
S1

+ n2
S2
)〉+ 2α2

S〈|nS|
2〉+ 〈|nS|

4〉

= α4
S + 4α2

SN + 2N2,

where we have used the statistical independence of nS1
and nS2

, the fact that
the third moment of a zero-mean Gaussian random variable is zero, and the
complex-Gaussian moment factoring result 〈|nS|

4〉 = 2〈|nS|
2〉2. We now have

the final result for the unconditional mean square:

〈N2
S〉 = α2

S +N + α4
S + 4α2

SN + 2N2 = α2
S +N + (α2

S +N)2 + 2α2
SN +N2.

(c) The variance is the mean square minus the square of the mean, so,

〈∆N2
S〉 = (α2

S +N) + (2α2
SN +N2).

In this variance expression, (α2
S +N) is the shot-noise term and (2α2

SN +N2)
is the excess noise term.

(d) We have that the unconditional photon-counting probability distribution obeys,

Pr(NS = n) =

∫

d2aS Pr(NS = n | aS )p(aS)

=

∫ n

d2
|aS|

2

aS
n!

e−|aS |
2 e−|aS−αS |

2/N

πN

e−α2 /NS

=
n!N

∫ ∞

0

dr 2r2n+1e−r2(N+1)/N

∫ 2π

0

dφ
e2αSr cos(φ)/N

2π

e−α2 /NS

=
∞

dr 2r2n+1e−r2(N+1)/N I0(2αSr/N)
n!N

∫

0

Nn

=
(N + 1)n+1

e−α2

S/(N+1)Ln

(

−
α2
S .

N(N + 1)

)
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The first equality follows from basic probability theory: p(aS) is the probabil-
ity density function for the complex-valued random variable aS, i.e., the joint
probability density function for the real-valued random variables aS1

and aS2
,

and the notational definition
∫ ∫ ∞ ∫ ∞

d2aS ≡ daS1
daS2

.
−∞ −∞

The second equality uses the Poisson distribution for the conditional photon
counting probabilities, given aS, and the joint Gaussian distribution for aS1

and
aS2

. The third equality follows from introduction of polar coordinates, aS = rejφ

with r ≥ 0. The fourth equality follows from the following definite integral,

∫ 2π eβ cos(φ)

dφ
0

= I0(2β),
2π

as found in standard integral tables. The last equality follows from the definite
integral that was given on the problem set.
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