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Problem 1 (20 points)
For each statement below, indicate whether it is True or whether it is False, and
provide a brief explanation of your reasoning.

(a) (10 points) Consider a pair of single-mode electromagnetic fields, with annihila-
tion operators âA and âB, whose joint state |ψ〉AB is a pure state. Suppose that

ˆ ˆthe NA = â†AâA and NB = â†BâB measurements are made on these modes and
that the resulting classical outcomes, NA and NB, have measurement statistics
which satisfy

Var(NA −NB) < Var(NA) + Var(NB),

where Var(·) denotes variance.

True or False: The joint state of the âA and âB modes must be non-classical.

This statement is true. The only pure-state |ψ〉AB that is classical is the two-
mode coherent state, |ψ〉AB = |αA〉A|αB〉B, and semiclassical photodetection
theory gives correct measurement statistics for this state. Semiclassical photode-
tection theory tells us that for |ψ〉AB = |αA〉A|αB〉B the photon-count variances
obey Var(NA) = |αA|2 and Var(NB) = |αB|2. Moreover, semiclassical photode-
tection theory also tells us that these variances are due to shot noise and that
the shot noises from different photodetectors are statistically independent ran-
dom variables. So, for |ψ〉AB a classical state, we have that Var(NA − NB) =
Var(NA)+Var(NB). Hence for us to have Var(NA−NB) < Var(NA)+Var(NB),
the joint state |ψ〉AB must be non-classical.

(b) (10 points) Consider a single-mode electromagnetic field with photon annihila-
tion operator â whose Wigner distribution∫ is W (α∗, α).

True or False: The function F (α1) ≡ ∞
dα2W (α∗, α), where α and−∞ 1 α2 are

the real and imaginary parts of α, is non-negative for all values of α1.

This statement is true. To show that, we use the relation between the Wigner
distribution and the Wigner characteristic function,

ζ
W (α , α) =

∫
d2

∗ ∗
χW (ζ∗, ζ)eζ α−ζα∗ ,

π2
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plus ζ∗α− ζα∗ = −2jζ2α1 + 2jζ1α2 and get

F (α1) =

∫
d2ζ d

χW (ζ∗, ζ)e−2jζ2α1

π

∫
α2

e2jζ1α2

π

=

∫
dζ2
π

∫
dζ1 χW (ζ∗, ζ)e−2jζ2α1δ(ζ1)

=

∫
dζ2

χW (
π

−ζ2, ζ2)e−2jζ2α1

=

∫
dζ2
π
〈ejζ2(â+â†)〉e−2jζ2α1

=

∫
dζ2 2

π
〈e2jζ â1〉e−2jζ2α1 = p(α1),

where p(α1) is the probability density function (pdf) for homodyne detection
of the â1 = Re(â) quadrature to yield outcome α1. Because pdfs must be
non-negative, we have that F (α1) is non-negative for all α1.

Problem 2 (40 points)
Consider the asymmetric beam-splitter setup shown in Fig. 1. In this setup, the
beam spitter is illuminated by a signal mode (with annihilation operator âS) and a
local-oscillator (LO) mode (with annihilation operator âLO). We will be interested
in the output mode from that beam splitter whose annihilation operator is âout =√
ε âS +

√
1− ε âLO, where 0 < ε < 1 and the âLO mode is in the coherent state

|β
√
ε/(1− ε)〉LO.

âS

âLO

âout =
p
✏ âS +

p
1 � ✏ âLO

Figure 1: Asymmetric beam-splitter setup.

(a) (10 points) Suppose that the âS mode is in the coherent state |γ〉S.

(i) With only a simple statement of justification, find the state of the âout
mode.

When a beam splitter’s two input ports are illuminated by coherent states,
then its two output ports are in coherent states whose eigenvalues are found
by propagating the input-modes’ mean values through the beam-splitter
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relation. So, for the case at hand, we have that the state of the âout mode
is the coherent state

√| ε (γ + β)〉out.
(n)

(ii) Use your result from (i) to find ρaout(α
∗, α) ≡ out〈α|ρ̂aout|α〉out in the limit

ε→ 1.

Before letting ε→ 1, we have that

ρ(n)aout(α
∗, α) ≡ out〈α|ρ̂aout α

√| 〉out = |out〈α| ε (γ + β)〉out|2 = e−|α−
√
ε (γ+β)|2 .

After we let ε→ (n)
1 we get ρaout(α

∗, α) = e−|α−γ−β|
2
.

(b) (10 points) Figure 2 uses the beam-splitter setup in a photon-counting commu-
nication receiver with the following characteristics.

– The binary message b being communicated is equally likely to be 0 or 1.

– When b = 0, the âS mode is in the coherent state
√|− NS〉S. When b = 1,

the âS mode is in the coherent state
√| NS〉S.

– The beam-splitter setup has 0 < ε < 1 and β =
√
NS.

˜ ˆ– The receiver’s output is b = 1 when the Nout = â†outâout measurement’s
˜outcome Nout is non-zero. The receiver’s output is b = 0 when Nout = 0.

âS

âLO

âout =
p
✏ âS +

p
1 � ✏ âLO b̃ = 1

>
=

b̃ = 0

b̃

Nout

0

Figure 2: Photon-counting communication receiver.

(i) Use your result from (a) to find the states that the âout mode is in when
b = 0 and b = 1.

The beam-splitter’s inputs are both coherent states when b = 0, so the
result from (a) plus the states given in this part imply that the âout mode
is in the vacuum state |0〉out when b = 0. The beam-splitter’s inputs are
both coherent states when b = 1, so the results from (a) plus the states
given here imply that the âout mode is in the coherent state |2√εNS〉out
when b = 1.

˜(ii) Use your results from (i) to find the receiver’s error probability, Pr(b 6= b).
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We have that

˜Pr(b 6 ˜ ˜= b) = Pr(b = 1, b = 0) + Pr(b = 0, b = 1)

˜= Pr(b = 0) Pr(b = 1 | ˜b = 0) + Pr(b = 1) Pr(b = 0 | b = 1)

1
=

2
Pr(Nout > 0 | b = 0) +

1
Pr(Nout = 0 | b = 1)

2

= e−4εNS/2.

For ε→ 1 and NS � 1, comparing this answer to the binary phase-shift keying
results from Homework Problem 8.4(d) shows that the Fig. 3 receiver’s error
probability is only a factor of two higher than that of the optimum quantum
receiver, and the Fig. 3 receiver’s error probability is significantly lower than
that of the optimum homodyne receiver.

(c) (10 points) Now, let the âS mode be in an arbitrary state specified by the density
operator ρ̂S.

ρ
(i) Find χ aout

A (ζ∗, ζ), the anti-normally ordered characteristic function of the
âout mode. Your answer should be expressed in terms of the âS mode’s
anti-normally ordered characteristic function, β, and ε.

This calculation is straightforward. We have that

ρ
χ aout (ζ∗

∗ †

A , ζ) = 〈e−ζ âouteζâout〉
√

〈e−ζ∗= ( ε âS+
√
1−ε âLO)eζ(

√
ε â†S+

√
1−ε â†LO)〉

= χ
ρaS
A (
√
ε ζ∗,
√
ε ζ)χ

ρaLO
A (

√
1− ε ζ∗,

√
1− ε ζ)

ρ
= χ

aS
A (
√
ε ζ∗,
√
ε ζ)e−ζ

∗√ε β+ζ
√
ε β∗−(1−ε)|ζ|2 ,

ρ
where: the first equality is the definition of χ aout

A ; the second used the beam
splitter’s input-output relation; the third used the fact that the signal and

ρ
LO modes’ operators commute with each other plus the definitions of χ

aS
A

ρ
and χ

aLO
A ; and the fourth used the anti-normally ordered characteristic

function of a coherent state.

(ii) Specialize your result from (i) to the limit ε→ 1.

When ε→ 1 we have

ρ ρ
χ aout
A (ζ∗, ζ) = χ

aS ζ∗β+ζβ∗

A (ζ∗, ζ)e− .

ρ
(d) (10 points) For your χ aout

A (ζ∗, ζ) from (c), use the operator-valued inverse trans-
form relation,

ζ
ρ̂ out =

∫
d2

a
ρ
χ aout

π A (ζ∗, ζ)e−ζâ
†
outeζ

∗âout ,
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(n)
to obtain ρaout(α

∗, α) ≡ out〈α|ρ̂aout|α〉out in the ε→ 1 limit. Your answer should
(n)

be expressed in terms of ρS (α∗, α) ≡ S〈α|ρ̂aS |α〉S, and β.

The calculation proceeds as follows.

ρ(n)aout(α
∗, α) = out〈α|ρ̂aout|α〉out

ζ
= 〈α|

∫
d2

out
π

χ
ρaout
A (ζ∗, ζ)e−ζâ

†
outeζ

∗âout|α〉out

=

∫
d2ζ ρ

χ aout

π A (ζ∗, ζ)e−ζα
∗
eζ
∗α

=

∫
d2ζ ρ

χ
aS (ζ∗, ζ)e−ζ

∗β+ζβ∗e−ζα
∗
eζ
∗α

π A

= ρ(n)aS
(α∗ − β∗, α− β).

Note that if ρ̂S = |γ〉SS〈γ|, where |γ〉S is a coherent state, the result just
obtained implies that ρ̂out = |γ + β〉outout〈γ + β|, i.e., the âout mode is in the
coherent state |γ + β〉out, as found more easily in (a). What (d) has shown is
that the Fig. 1 setup with ε→ 1 performs a mean-field translation by β on an
arbitrary signal-mode input state.

Problem 3 (40 points)
The system shown in Fig. 3 is a quantum non-demolition (QND) setup for measuring
the photon number of an optical mode with annihilation operator â. The cross-Kerr-
effect box has the following input-output relation:

ĉ = ejκâ
†âb̂

ˆ ˆ†ˆ
d = ejκb ba,ˆ

where κ > 0 is a constant. The homodyne detector is set up to measure the ĉ2 = Im(ĉ)
observable.

â

b̂

ĉ

d̂

c2
Homodyne
detectorCross-

Kerr
e↵ect

Figure 3: Quantum non-demolition detection setup.
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(a) (10 points) Evaluate the number-ket matrix elements,

b〈nb|a〈na|
†

ejκâ âˆ ˆ
bejκb

†b̂â|ma〉a|mb〉b
and

〈n | 〈 | ˆ ˆ
n ejκb

†b
b b a a aeˆ jκâ†âb̂|ma〉a|mb〉b.

Let’s start with

ejκâ
†âˆ ˆ ˆ ˆ ˆ
bejκb

†bâ|ma〉a|mb〉
† ˆ †

b = (ejκâ ââ|m 〉 )(bejκb ba a |mb〉b)
= (ejκ(ma−1)√ma |ma − 1〉a)(

√
mb e

jκmb|mb − 1〉b),

and

ˆ ˆ
ejκb

†baeˆ jκâ†âb̂|ma〉a|
†

mb〉b = (aeˆ jκâ â|ma〉 ˆ†ˆˆ
a)(e

jκb bb|mb〉b)
= (
√
ma e

jκma |ma − 1〉a)(ejκ(mb−1)√mb |mb − 1〉b),

We now get the desired matrix elements:

〈n | 〈n | a†ejκˆ âˆ ˆ ˆ
bejκb

†b
b b a a â|ma〉a|mb〉b = (ejκ(ma−1)√ma δna,ma−1)(

√
mb e

jκmbδnb,mb−1),

and

〈 | 〈 | ˆ ˆjκb†b jκâ†âˆ
b nb a na e aeˆ b|ma〉a mb

√| 〉b = ( ma e
jκmaδna,ma−1)(e

jκ(mb−1)√mb δnb,mb−1),

where

δj,k =

{
1, for j = k

0, for j 6= k.

ˆ ˆBecause these matrix elements determine the operators ĉd and dĉ, respectively,
ˆand because they have the same values, we have that [c,̂ d] = 0, i.e., the ĉ

ˆand d annihilation operators commute. More generally, it can be shown that
ˆ[c,̂ ĉ† ˆ ˆ] = [d, d†] = 1, and [c,̂ d†] = 0. Thus the cross-Kerr effect box preserves

commutator operators, hence no noise modes need to be included in its input-
output relation.

(b) (10 points) Assume that the â mode is in the number state |ma〉a. Let Nd be
ˆ ˆthe outcome of the Nd = d†d̂ measurement. Find the probability mass function

ˆPr(Nd = n). Hint: You do not need to know the state of the b mode.

ˆ †̂ ˆ † − ˆ†ˆ ˆ†ˆ
We have that Nd = d d = â e jκb bejκb bâ = â†â. So, Nd can be interpreted

ˆas the outcome of the Na = â†â measurement. Because we are told that the â
mode is in the number state |ma〉a, we have that

Pr(Nd = n) = |a〈n|ma〉a|2 = δn,ma .
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ˆ ˆThe equivalence of the Nd and Na measurements shows that the cross-Kerr effect
box does not disturb the â mode’s photon-counting statistics. In particular, if

ˆthe â mode is in a number state, then the d mode will be in that same number
state.

ˆ(c) (10 points) Assume that de |√the â mo is in the number state ma〉a and the b mode
is in the coherent state | Nb〉b. Find 〈ĉ2〉 and 〈∆ĉ22〉, the mean and variance of
the ĉ2 measurement.

For the mean of ĉ2 we have that

†
〈ĉ2〉

〈(
ĉ− ĉ

=
2j

)〉
= a〈ma|b〈

√ ˆejκâ
†âb

Nb|
2j
|
√
Nb〉b|ma〉a − a〈ma|b〈

√
Nb|

b̂†e−jκâ
†â

2j
|
√
Nb〉b|ma〉a

=
ejκma

√
Nb −

√
Nb e

−jκma

2j
=
√
Nb sin(κma).

We’ll get the variance from 〈∆ĉ22〉 = 〈ĉ22〉 − 〈ĉ 2
2〉 once we’ve found the mean-

square via

〈ĉ22〉 =

〈(
ĉ− ĉ† 2

2j

) 〉
〈

ˆ(ejκâ
†âb̂)2 ˆ+ (b†e−jκâ

†â)2 − b†e−jκâ†âejκâ†âb̂− ejκâ†âˆ̂bb†e−jκâ†â
= −4

〉
e2jκmaNb +Nbe

−2jκma

=
− 2Nb − 1

−4

1
= Nb

− cos(2κma)
+ 1/4

2

= Nb sin2(κma) + 1/4.

It follows that 〈∆ĉ22〉 = 1/4.

ˆ(d) (10 points) Assume that the states of the â and b modes are as given in (c),
and that κma �√ 1. Let c2 denote the outcome of the ĉ2 measurement and define
Ña = c2/ Nb κ to be the QND estimate of the â mode’s photon number. Find
the mean-squared error of this estimate, i.e., 〈 ˜(N 2

a −ma) 〉.
This part is really easy. From (c) we find that

〈Ña〉 = 〈c2〉/
√
Nb κ = 〈ĉ2〉/

√
Nb κ = sin(κma)/κ ≈ ma, because κma � 1.
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Thus, for the mean-squared error when κma � 1 we get

〈 ˜ ˜(N −m )2〉 ≈ 〈∆N2〉 = 〈∆ĉ2a a a 2〉/Nbκ
2 ≈ 1/4Nbκ

2.

Thus, when Nbκ
2 � ˜1 the QND setup’s output Na is a very accurate estimate

of the â mode’s photon number.
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