Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

### 6.453 <br> Quantum Optical Communication

## Mid-Term Examination Solutions

Fall 2016

Problem 1 (20 points)
For each statement below, indicate whether it is True or whether it is False, and provide a brief explanation of your reasoning.
(a) (10 points) Consider a pair of single-mode electromagnetic fields, with annihilation operators $\hat{a}_{A}$ and $\hat{a}_{B}$, whose joint state $|\psi\rangle_{A B}$ is a pure state. Suppose that the $\hat{N}_{A}=\hat{a}_{A}^{\dagger} \hat{a}_{A}$ and $\hat{N}_{B}=\hat{a}_{B}^{\dagger} \hat{a}_{B}$ measurements are made on these modes and that the resulting classical outcomes, $N_{A}$ and $N_{B}$, have measurement statistics which satisfy

$$
\operatorname{Var}\left(N_{A}-N_{B}\right)<\operatorname{Var}\left(N_{A}\right)+\operatorname{Var}\left(N_{B}\right),
$$

where $\operatorname{Var}(\cdot)$ denotes variance.
True or False: The joint state of the $\hat{a}_{A}$ and $\hat{a}_{B}$ modes must be non-classical.
This statement is true. The only pure-state $|\psi\rangle_{A B}$ that is classical is the twomode coherent state, $|\psi\rangle_{A B}=\left|\alpha_{A}\right\rangle_{A}\left|\alpha_{B}\right\rangle_{B}$, and semiclassical photodetection theory gives correct measurement statistics for this state. Semiclassical photodetection theory tells us that for $|\psi\rangle_{A B}=\left|\alpha_{A}\right\rangle_{A}\left|\alpha_{B}\right\rangle_{B}$ the photon-count variances obey $\operatorname{Var}\left(N_{A}\right)=\left|\alpha_{A}\right|^{2}$ and $\operatorname{Var}\left(N_{B}\right)=\left|\alpha_{B}\right|^{2}$. Moreover, semiclassical photodetection theory also tells us that these variances are due to shot noise and that the shot noises from different photodetectors are statistically independent random variables. So, for $|\psi\rangle_{A B}$ a classical state, we have that $\operatorname{Var}\left(N_{A}-N_{B}\right)=$ $\operatorname{Var}\left(N_{A}\right)+\operatorname{Var}\left(N_{B}\right)$. Hence for us to have $\operatorname{Var}\left(N_{A}-N_{B}\right)<\operatorname{Var}\left(N_{A}\right)+\operatorname{Var}\left(N_{B}\right)$, the joint state $|\psi\rangle_{A B}$ must be non-classical.
(b) (10 points) Consider a single-mode electromagnetic field with photon annihilation operator $\hat{a}$ whose Wigner distribution is $W\left(\alpha^{*}, \alpha\right)$.
True or False: The function $F\left(\alpha_{1}\right) \equiv \int_{-\infty}^{\infty} \mathrm{d} \alpha_{2} W\left(\alpha^{*}, \alpha\right)$, where $\alpha_{1}$ and $\alpha_{2}$ are the real and imaginary parts of $\alpha$, is non-negative for all values of $\alpha_{1}$.
This statement is true. To show that, we use the relation between the Wigner distribution and the Wigner characteristic function,

$$
W\left(\alpha^{*}, \alpha\right)=\int \frac{\mathrm{d}^{2} \zeta}{\pi^{2}} \chi_{W}\left(\zeta^{*}, \zeta\right) e^{\zeta^{*} \alpha-\zeta \alpha^{*}}
$$

plus $\zeta^{*} \alpha-\zeta \alpha^{*}=-2 j \zeta_{2} \alpha_{1}+2 j \zeta_{1} \alpha_{2}$ and get

$$
\begin{aligned}
F\left(\alpha_{1}\right) & =\int \frac{\mathrm{d}^{2} \zeta}{\pi} \chi_{W}\left(\zeta^{*}, \zeta\right) e^{-2 j \zeta_{2} \alpha_{1}} \int \frac{\mathrm{~d} \alpha_{2}}{\pi} e^{2 j \zeta_{1} \alpha_{2}} \\
& =\int \frac{\mathrm{d} \zeta_{2}}{\pi} \int \mathrm{~d} \zeta_{1} \chi_{W}\left(\zeta^{*}, \zeta\right) e^{-2 j \zeta_{2} \alpha_{1}} \delta\left(\zeta_{1}\right) \\
& =\int \frac{\mathrm{d} \zeta_{2}}{\pi} \chi_{W}\left(-\zeta_{2}, \zeta_{2}\right) e^{-2 j \zeta_{2} \alpha_{1}} \\
& =\int \frac{\mathrm{d} \zeta_{2}}{\pi}\left\langle e^{j \zeta_{2}\left(\hat{a}+\hat{a}^{\dagger}\right)}\right\rangle e^{-2 j \zeta_{2} \alpha_{1}} \\
& =\int \frac{\mathrm{d} \zeta_{2}}{\pi}\left\langle e^{2 j \zeta_{2} \hat{a}_{1}}\right\rangle e^{-2 j \zeta_{2} \alpha_{1}}=p\left(\alpha_{1}\right)
\end{aligned}
$$

where $p\left(\alpha_{1}\right)$ is the probability density function (pdf) for homodyne detection of the $\hat{a}_{1}=\operatorname{Re}(\hat{a})$ quadrature to yield outcome $\alpha_{1}$. Because pdfs must be non-negative, we have that $F\left(\alpha_{1}\right)$ is non-negative for all $\alpha_{1}$.

## Problem 2 (40 points)

Consider the asymmetric beam-splitter setup shown in Fig. 1. In this setup, the beam spitter is illuminated by a signal mode (with annihilation operator $\hat{a}_{S}$ ) and a local-oscillator (LO) mode (with annihilation operator $\hat{a}_{\text {LO }}$ ). We will be interested in the output mode from that beam splitter whose annihilation operator is $\hat{a}_{\text {out }}=$ $\sqrt{\epsilon} \hat{a}_{S}+\sqrt{1-\epsilon} \hat{a}_{\mathrm{LO}}$, where $0<\epsilon<1$ and the $\hat{a}_{\mathrm{LO}}$ mode is in the coherent state $|\beta \sqrt{\epsilon /(1-\epsilon)}\rangle_{\mathrm{LO}}$.


Figure 1: Asymmetric beam-splitter setup.
(a) (10 points) Suppose that the $\hat{a}_{S}$ mode is in the coherent state $|\gamma\rangle_{S}$.
(i) With only a simple statement of justification, find the state of the $\hat{a}_{\text {out }}$ mode.
When a beam splitter's two input ports are illuminated by coherent states, then its two output ports are in coherent states whose eigenvalues are found by propagating the input-modes' mean values through the beam-splitter
relation. So, for the case at hand, we have that the state of the $\hat{a}_{\text {out }}$ mode is the coherent state $|\sqrt{\epsilon}(\gamma+\beta)\rangle_{\text {out }}$.
(ii) Use your result from (i) to find $\rho_{a_{\text {out }}}^{(n)}\left(\alpha^{*}, \alpha\right) \equiv{ }_{\text {out }}\langle\alpha| \hat{\rho}_{a_{\text {out }}}|\alpha\rangle_{\text {out }}$ in the limit $\epsilon \rightarrow 1$.
Before letting $\epsilon \rightarrow 1$, we have that

$$
\rho_{a_{\text {out }}}^{(n)}\left(\alpha^{*}, \alpha\right) \equiv{ }_{\text {out }}\langle\alpha| \hat{\rho}_{a_{\text {out }}}|\alpha\rangle_{\text {out }}=\left.\left.\right|_{\text {out }}\langle\alpha \mid \sqrt{\epsilon}(\gamma+\beta)\rangle_{\text {out }}\right|^{2}=e^{-|\alpha-\sqrt{\epsilon}(\gamma+\beta)|^{2}} .
$$

After we let $\epsilon \rightarrow 1$ we get $\rho_{a_{\text {out }}}^{(n)}\left(\alpha^{*}, \alpha\right)=e^{-|\alpha-\gamma-\beta|^{2}}$.
(b) (10 points) Figure 2 uses the beam-splitter setup in a photon-counting communication receiver with the following characteristics.

- The binary message $b$ being communicated is equally likely to be 0 or 1 .
- When $b=0$, the $\hat{a}_{S}$ mode is in the coherent state $\left|-\sqrt{N_{S}}\right\rangle_{S}$. When $b=1$, the $\hat{a}_{S}$ mode is in the coherent state $\left|\sqrt{N_{S}}\right\rangle_{S}$.
- The beam-splitter setup has $0<\epsilon<1$ and $\beta=\sqrt{N_{S}}$.
- The receiver's output is $\tilde{b}=1$ when the $\hat{N}_{\text {out }}=\hat{a}_{\text {out }}^{\dagger} \hat{a}_{\text {out }}$ measurement's outcome $N_{\text {out }}$ is non-zero. The receiver's output is $\tilde{b}=0$ when $N_{\text {out }}=0$.


Figure 2: Photon-counting communication receiver.
(i) Use your result from (a) to find the states that the $\hat{a}_{\text {out }}$ mode is in when $b=0$ and $b=1$.
The beam-splitter's inputs are both coherent states when $b=0$, so the result from (a) plus the states given in this part imply that the $\hat{a}_{\text {out }}$ mode is in the vacuum state $|0\rangle_{\text {out }}$ when $b=0$. The beam-splitter's inputs are both coherent states when $b=1$, so the results from (a) plus the states given here imply that the $\hat{a}_{\text {out }}$ mode is in the coherent state $\left|2 \sqrt{\epsilon N_{S}}\right\rangle_{\text {out }}$ when $b=1$.
(ii) Use your results from (i) to find the receiver's error probability, $\operatorname{Pr}(\tilde{b} \neq b)$.

We have that

$$
\begin{aligned}
\operatorname{Pr}(\tilde{b} \neq b) & =\operatorname{Pr}(\tilde{b}=1, b=0)+\operatorname{Pr}(\tilde{b}=0, b=1) \\
& =\operatorname{Pr}(b=0) \operatorname{Pr}(\tilde{b}=1 \mid b=0)+\operatorname{Pr}(b=1) \operatorname{Pr}(\tilde{b}=0 \mid b=1) \\
& =\frac{1}{2} \operatorname{Pr}\left(N_{\text {out }}>0 \mid b=0\right)+\frac{1}{2} \operatorname{Pr}\left(N_{\text {out }}=0 \mid b=1\right) \\
& =e^{-4 \epsilon N_{S}} / 2 .
\end{aligned}
$$

For $\epsilon \rightarrow 1$ and $N_{S} \gg 1$, comparing this answer to the binary phase-shift keying results from Homework Problem 8.4(d) shows that the Fig. 3 receiver's error probability is only a factor of two higher than that of the optimum quantum receiver, and the Fig. 3 receiver's error probability is significantly lower than that of the optimum homodyne receiver.
(c) (10 points) Now, let the $\hat{a}_{S}$ mode be in an arbitrary state specified by the density operator $\hat{\rho}_{S}$.
(i) Find $\chi_{A}^{\rho_{\text {out }}}\left(\zeta^{*}, \zeta\right)$, the anti-normally ordered characteristic function of the $\hat{a}_{\text {out }}$ mode. Your answer should be expressed in terms of the $\hat{a}_{S}$ mode's anti-normally ordered characteristic function, $\beta$, and $\epsilon$.
This calculation is straightforward. We have that

$$
\begin{aligned}
\chi_{A}^{\rho_{a_{\text {out }}}}\left(\zeta^{*}, \zeta\right) & =\left\langle e^{-\zeta^{*} \hat{a}_{\text {out }}} e^{\zeta \zeta_{\text {out }}^{\dagger}}\right\rangle \\
& =\left\langle e^{-\zeta^{*}\left(\sqrt{\epsilon} \hat{a}_{S}+\sqrt{1-\epsilon} \hat{a}_{\mathrm{LO}}\right)} e^{\zeta\left(\sqrt{\epsilon} \hat{a}_{S}^{\dagger}+\sqrt{1-\epsilon} \hat{a}_{\mathrm{LO}}^{\dagger}\right)}\right\rangle \\
& =\chi_{A}^{\rho_{a_{S}}}\left(\sqrt{\epsilon} \zeta^{*}, \sqrt{\epsilon} \zeta\right) \chi_{A}^{\rho_{a_{\mathrm{LO}}}}\left(\sqrt{1-\epsilon} \zeta^{*}, \sqrt{1-\epsilon} \zeta\right) \\
& =\chi_{A}^{\rho_{a_{S}}}\left(\sqrt{\epsilon} \zeta^{*}, \sqrt{\epsilon} \zeta\right) e^{-\zeta^{*} \sqrt{\epsilon} \beta+\zeta \sqrt{\epsilon} \beta^{*}-(1-\epsilon)|\zeta|^{2}},
\end{aligned}
$$

where: the first equality is the definition of $\chi_{A}^{\rho_{\text {aut }}}$; the second used the beam splitter's input-output relation; the third used the fact that the signal and LO modes' operators commute with each other plus the definitions of $\chi_{A}^{\rho_{a}}$ and $\chi_{A}^{\rho_{a}}$; and the fourth used the anti-normally ordered characteristic function of a coherent state.
(ii) Specialize your result from (i) to the limit $\epsilon \rightarrow 1$.

When $\epsilon \rightarrow 1$ we have

$$
\chi_{A}^{\rho_{a_{\text {out }}}}\left(\zeta^{*}, \zeta\right)=\chi_{A}^{\rho_{a}}\left(\zeta^{*}, \zeta\right) e^{-\zeta^{*} \beta+\zeta \beta^{*}}
$$

(d) (10 points) For your $\chi_{A}^{\rho_{\text {aut }}}\left(\zeta^{*}, \zeta\right)$ from (c), use the operator-valued inverse transform relation,

$$
\hat{\rho}_{a_{\text {out }}}=\int \frac{\mathrm{d}^{2} \zeta}{\pi} \chi_{A}^{\rho_{\text {out }}}\left(\zeta^{*}, \zeta\right) e^{-\zeta \hat{a}_{\text {out }}^{\dagger}} e^{\zeta^{*} \hat{a}_{\text {out }}}
$$

to obtain $\rho_{a_{\text {out }}}^{(n)}\left(\alpha^{*}, \alpha\right) \equiv{ }_{\text {out }}\langle\alpha| \hat{\rho}_{a_{\text {out }}}|\alpha\rangle_{\text {out }}$ in the $\epsilon \rightarrow 1$ limit. Your answer should be expressed in terms of $\rho_{S}^{(n)}\left(\alpha^{*}, \alpha\right) \equiv{ }_{S}\langle\alpha| \hat{\rho}_{a_{S}}|\alpha\rangle_{S}$, and $\beta$.
The calculation proceeds as follows.

$$
\begin{aligned}
\rho_{a_{\text {out }}}^{(n)}\left(\alpha^{*}, \alpha\right) & ={ }_{\text {out }}\langle\alpha| \hat{\rho}_{a_{\text {out }}}|\alpha\rangle_{\text {out }} \\
& ={ }_{\text {out }}\langle\alpha| \int \frac{\mathrm{d}^{2} \zeta}{\pi} \chi_{A}^{\rho_{a_{\text {out }}}}\left(\zeta^{*}, \zeta\right) e^{-\zeta \hat{\text { out }}^{\dagger}} e^{\zeta^{*} \hat{a}_{\text {out }}}|\alpha\rangle_{\text {out }} \\
& =\int \frac{\mathrm{d}^{2} \zeta}{\pi} \chi_{A}^{\rho_{a_{\text {out }}}}\left(\zeta^{*}, \zeta\right) e^{-\zeta \alpha^{*}} e^{\zeta^{*} \alpha} \\
& =\int \frac{\mathrm{d}^{2} \zeta}{\pi} \chi_{A}^{\rho_{a_{S}}}\left(\zeta^{*}, \zeta\right) e^{-\zeta^{*} \beta+\zeta \beta^{*}} e^{-\zeta \alpha^{*}} e^{\zeta^{*} \alpha} \\
& =\rho_{a_{S}}^{(n)}\left(\alpha^{*}-\beta^{*}, \alpha-\beta\right) .
\end{aligned}
$$

Note that if $\hat{\rho}_{S}=|\gamma\rangle_{S S}\langle\gamma|$, where $|\gamma\rangle_{S}$ is a coherent state, the result just obtained implies that $\hat{\rho}_{\text {out }}=|\gamma+\beta\rangle_{\text {outout }}\langle\gamma+\beta|$, i.e., the $\hat{a}_{\text {out }}$ mode is in the coherent state $|\gamma+\beta\rangle_{\text {out }}$, as found more easily in (a). What (d) has shown is that the Fig. 1 setup with $\epsilon \rightarrow 1$ performs a mean-field translation by $\beta$ on an arbitrary signal-mode input state.

## Problem 3 (40 points)

The system shown in Fig. 3 is a quantum non-demolition (QND) setup for measuring the photon number of an optical mode with annihilation operator $\hat{a}$. The cross-Kerreffect box has the following input-output relation:

$$
\begin{aligned}
& \hat{c}=e^{j \kappa \hat{a}^{\dagger} \hat{a}} \hat{b} \\
& \hat{d}=e^{j \kappa \hat{b} \dagger} \hat{b} \hat{a}
\end{aligned}
$$

where $\kappa>0$ is a constant. The homodyne detector is set up to measure the $\hat{c}_{2}=\operatorname{Im}(\hat{c})$ observable.


Figure 3: Quantum non-demolition detection setup.
(a) (10 points) Evaluate the number-ket matrix elements,

$$
{ }_{b}\left\langle\left. n_{b}\right|_{a}\left\langle n_{a}\right| e^{j \kappa \hat{a}^{\dagger} \hat{a}} \hat{b} e^{j \kappa \hat{b} \dagger \hat{b}} \hat{a} \mid m_{a}\right\rangle_{a}\left|m_{b}\right\rangle_{b}
$$

and

$$
{ }_{b}\left\langle\left. n_{b}\right|_{a}\left\langle n_{a}\right| e^{j \kappa \hat{b} \dagger \hat{b}} \hat{a} e^{j \kappa \hat{a}^{\dagger} \hat{a}} \hat{b} \mid m_{a}\right\rangle_{a}\left|m_{b}\right\rangle_{b} .
$$

Let's start with

$$
\begin{aligned}
e^{j \kappa \hat{a}^{\dagger} \hat{a} \hat{b}} e^{j \kappa \hat{b} \dagger \hat{b}} \hat{a}\left|m_{a}\right\rangle_{a}\left|m_{b}\right\rangle_{b} & =\left(e^{j \kappa \hat{a} \dagger \hat{a}} \hat{a}\left|m_{a}\right\rangle_{a}\right)\left(\hat{b} e^{j \kappa \hat{b} \dagger \hat{b}}\left|m_{b}\right\rangle_{b}\right) \\
& =\left(e^{j \kappa\left(m_{a}-1\right)} \sqrt{m_{a}}\left|m_{a}-1\right\rangle_{a}\right)\left(\sqrt{m_{b}} e^{j \kappa m_{b}}\left|m_{b}-1\right\rangle_{b}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
e^{j \kappa \hat{b} \dagger \hat{b}} \hat{a} e^{j \kappa \hat{a}^{\dagger} \hat{a} \hat{b}}\left|m_{a}\right\rangle_{a}\left|m_{b}\right\rangle_{b} & =\left(\hat{a} e^{j \kappa \hat{a}^{\dagger} \hat{a}}\left|m_{a}\right\rangle_{a}\right)\left(e^{j \kappa \hat{b} \dagger \hat{b}} \hat{b}\left|m_{b}\right\rangle_{b}\right) \\
& =\left(\sqrt{m_{a}} e^{j \kappa m_{a}}\left|m_{a}-1\right\rangle_{a}\right)\left(e^{j \kappa\left(m_{b}-1\right)} \sqrt{m_{b}}\left|m_{b}-1\right\rangle_{b}\right),
\end{aligned}
$$

We now get the desired matrix elements:
${ }_{b}\left\langle n_{b}\right|{ }_{a}\left\langle n_{a}\right| e^{j \kappa \hat{a}^{\dagger} \hat{a} \hat{b}} e^{j \kappa \hat{b} \dagger \hat{b}} \hat{a}\left|m_{a}\right\rangle_{a}\left|m_{b}\right\rangle_{b}=\left(e^{j \kappa\left(m_{a}-1\right)} \sqrt{m_{a}} \delta_{n_{a}, m_{a}-1}\right)\left(\sqrt{m_{b}} e^{j \kappa m_{b}} \delta_{n_{b}, m_{b}-1}\right)$,
and
${ }_{b}\left\langle\left. n_{b}\right|_{a}\left\langle n_{a}\right| e^{j \kappa \hat{b} \dagger \hat{b}} \hat{a} e^{j \kappa \hat{a} \dagger} \hat{a} \hat{b} \mid m_{a}\right\rangle_{a}\left|m_{b}\right\rangle_{b}=\left(\sqrt{m_{a}} e^{j \kappa m_{a}} \delta_{n_{a}, m_{a}-1}\right)\left(e^{j \kappa\left(m_{b}-1\right)} \sqrt{m_{b}} \delta_{n_{b}, m_{b}-1}\right)$,
where

$$
\delta_{j, k}= \begin{cases}1, & \text { for } j=k \\ 0, & \text { for } j \neq k\end{cases}
$$

Because these matrix elements determine the operators $\hat{c} \hat{d}$ and $\hat{d} \hat{c}$, respectively, and because they have the same values, we have that $[\hat{c}, \hat{d}]=0$, i.e., the $\hat{c}$ and $\hat{d}$ annihilation operators commute. More generally, it can be shown that $\left[\hat{c}, \hat{c}^{\dagger}\right]=\left[\hat{d}, \hat{d}^{\dagger}\right]=1$, and $\left[\hat{c}, \hat{d}^{\dagger}\right]=0$. Thus the cross-Kerr effect box preserves commutator operators, hence no noise modes need to be included in its inputoutput relation.
(b) (10 points) Assume that the $\hat{a}$ mode is in the number state $\left|m_{a}\right\rangle_{a}$. Let $N_{d}$ be the outcome of the $\hat{N}_{d}=\hat{d}^{\dagger} \hat{d}$ measurement. Find the probability mass function $\operatorname{Pr}\left(N_{d}=n\right)$. Hint: You do not need to know the state of the $\hat{b}$ mode.
We have that $\hat{N}_{d}=\hat{d}^{\dagger} \hat{d}=\hat{a}^{\dagger} e^{-j \kappa \hat{b} \dagger \hat{b}} e^{j \kappa \hat{b} \dagger \hat{b}} \hat{a}=\hat{a}^{\dagger} \hat{a}$. So, $N_{d}$ can be interpreted as the outcome of the $\hat{N}_{a}=\hat{a}^{\dagger} \hat{a}$ measurement. Because we are told that the $\hat{a}$ mode is in the number state $\left|m_{a}\right\rangle_{a}$, we have that

$$
\operatorname{Pr}\left(N_{d}=n\right)=\left.\left.\right|_{a}\left\langle n \mid m_{a}\right\rangle_{a}\right|^{2}=\delta_{n, m_{a}} .
$$

The equivalence of the $\hat{N}_{d}$ and $\hat{N}_{a}$ measurements shows that the cross-Kerr effect box does not disturb the $\hat{a}$ mode's photon-counting statistics. In particular, if the $\hat{a}$ mode is in a number state, then the $\hat{d}$ mode will be in that same number state.
(c) (10 points) Assume that the $\hat{a}$ mode is in the number state $\left|m_{a}\right\rangle_{a}$ and the $\hat{b}$ mode is in the coherent state $\left|\sqrt{N_{b}}\right\rangle_{b}$. Find $\left\langle\hat{c}_{2}\right\rangle$ and $\left\langle\Delta \hat{c}_{2}^{2}\right\rangle$, the mean and variance of the $\hat{c}_{2}$ measurement.
For the mean of $\hat{c}_{2}$ we have that

$$
\begin{aligned}
\left\langle\hat{c}_{2}\right\rangle & =\left\langle\left(\frac{\hat{c}-\hat{c}^{\dagger}}{2 j}\right)\right\rangle \\
& ={ }_{a}\left\langle m_{a}\right|{ }_{b}\left\langle\sqrt{N_{b}}\right| \frac{e^{j \kappa \hat{a}^{\dagger} \hat{a} \hat{b}}}{2 j}\left|\sqrt{N_{b}}\right\rangle_{b}\left|m_{a}\right\rangle_{a}-{ }_{a}\left\langle m_{a}\right|{ }_{b}\left\langle\sqrt{N_{b}}\right| \frac{\hat{b}^{\dagger} e^{-j \kappa \hat{a}^{\dagger} \hat{a}}}{2 j}\left|\sqrt{N_{b}}\right\rangle_{b}\left|m_{a}\right\rangle_{a} \\
& =\frac{e^{j \kappa m_{a}} \sqrt{N_{b}}-\sqrt{N_{b}} e^{-j \kappa m_{a}}}{2 j}=\sqrt{N_{b}} \sin \left(\kappa m_{a}\right) .
\end{aligned}
$$

We'll get the variance from $\left\langle\Delta \hat{c}_{2}^{2}\right\rangle=\left\langle\hat{c}_{2}^{2}\right\rangle-\left\langle\hat{c}_{2}\right\rangle^{2}$ once we've found the meansquare via

$$
\begin{aligned}
\left\langle\hat{c}_{2}^{2}\right\rangle & =\left\langle\left(\frac{\hat{c}-\hat{c}^{\dagger}}{2 j}\right)^{2}\right\rangle \\
& =\left\langle\frac{\left(e^{j \kappa \hat{a}^{\dagger} \hat{a}} \hat{b}\right)^{2}+\left(\hat{b}^{\dagger} e^{-j \kappa \hat{a}^{\dagger} \hat{a}}\right)^{2}-\hat{b}^{\dagger} e^{-j \kappa \hat{a}^{\dagger} \hat{a}} e^{j \kappa \hat{a}^{\dagger} \hat{a} \hat{b}}-e^{j \kappa \hat{a}^{\dagger} \hat{a} \hat{b} \hat{b}^{\dagger} e^{-j \kappa \hat{a}^{\dagger} \hat{a}}}-4}{-4}\right\rangle \\
& =\frac{e^{2 j \kappa m_{a}} N_{b}+N_{b} e^{-2 j \kappa m_{a}}-2 N_{b}-1}{-4} \\
& =N_{b} \frac{1-\cos \left(2 \kappa m_{a}\right)}{2}+1 / 4 \\
& =N_{b} \sin ^{2}\left(\kappa m_{a}\right)+1 / 4
\end{aligned}
$$

It follows that $\left\langle\Delta \hat{c}_{2}^{2}\right\rangle=1 / 4$.
(d) (10 points) Assume that the states of the $\hat{a}$ and $\hat{b}$ modes are as given in (c), and that $\kappa m_{a} \ll 1$. Let $c_{2}$ denote the outcome of the $\hat{c}_{2}$ measurement and define $\tilde{N}_{a}=c_{2} / \sqrt{N_{b}} \kappa$ to be the QND estimate of the $\hat{a}$ mode's photon number. Find the mean-squared error of this estimate, i.e., $\left\langle\left(\tilde{N}_{a}-m_{a}\right)^{2}\right\rangle$.
This part is really easy. From (c) we find that

$$
\left\langle\tilde{N}_{a}\right\rangle=\left\langle c_{2}\right\rangle / \sqrt{N_{b}} \kappa=\left\langle\hat{c}_{2}\right\rangle / \sqrt{N_{b}} \kappa=\sin \left(\kappa m_{a}\right) / \kappa \approx m_{a}, \text { because } \kappa m_{a} \ll 1 .
$$

Thus, for the mean-squared error when $\kappa m_{a} \ll 1$ we get

$$
\left\langle\left(\tilde{N}_{a}-m_{a}\right)^{2}\right\rangle \approx\left\langle\Delta \tilde{N}_{a}^{2}\right\rangle=\left\langle\Delta \hat{c}_{2}^{2}\right\rangle / N_{b} \kappa^{2} \approx 1 / 4 N_{b} \kappa^{2}
$$

Thus, when $N_{b} \kappa^{2} \gg 1$ the QND setup's output $\tilde{N}_{a}$ is a very accurate estimate of the $\hat{a}$ mode's photon number.

MIT OpenCourseWare
https://ocw.mit.edu

### 6.453 Quantum Optical Communication

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

