

6.453 Quantum Optical Communication - Lecture 19

- Announcements
 - Pick up lecture notes, slides
- Continuous-Time Photodetection
 - Noise spectral densities in direct detection
 - Semiclassical theory of coherent detection
 - Quantum theory of coherent detection
 - Coherent-detection signatures of non-classical light

rle III

www.rle.mit.edu/qoptics

Semiclassical versus Quantum Photodetection

- Semiclassical Theory: Given $\{P(t) : -\infty < t < \infty\}$
 - $\{\,i(t): -\infty < t < \infty\,\}\,$ is an inhomogeneous Poisson Impulse Train
 - Rate function $\,\lambda(t) \equiv \eta P(t)/\hbar\omega_{o}\,$
- Quantum Theory:

$$\hat{E}'(t) \equiv \sqrt{\eta} \,\hat{E}(t) + \sqrt{1 - \eta} \,\hat{E}_{\eta}(t)$$

$$i(t) \leftrightarrow \hat{i}(t) \equiv q \hat{E}'^{\dagger}(t) \hat{E}'(t)$$

rle IIII

3

Stationary Statistics for Continuous-Wave Sources

Stationary Mean and Covariance Functions:

$$\langle x(t) \rangle = \text{constant} \equiv \langle x \rangle$$

$$\langle \Delta x(t+\tau)\Delta x(t)\rangle$$
 = function of τ only $\equiv K_{xx}(\tau)$

Semiclassical Photodetection:

$$\langle i \rangle = q \frac{\eta \langle P \rangle}{\hbar \omega_o}$$
 and $K_{ii}(\tau) = q \langle i \rangle \delta(\tau) + q^2 \frac{\eta^2 K_{PP}(\tau)}{(\hbar \omega_o)^2}$

Quantum Photodetection:

$$\langle i \rangle = q \eta \langle \hat{E}^{\dagger}(0) \hat{E}(0) \rangle$$

$$K_{ii}(\tau) = q\langle i\rangle\delta(\tau) + q^2\eta^2[\langle \hat{E}^{\dagger}(\tau)\hat{E}^{\dagger}(0)\hat{E}(\tau)\hat{E}(0)\rangle - \langle \hat{E}^{\dagger}(0)\hat{E}(0)\rangle^2]$$

rle III

www.rlo.mit.odu/goptics

Photocurrent Noise Spectral Density

Photocurrent Noise Spectral Density:

$$S_{ii}(\omega) \equiv \int_{-\infty}^{\infty} d\tau \, K_{ii}(\tau) e^{-j\omega\tau}$$

Propagation Through a Linear Time-Invariant Filter:

$$i(t) \longrightarrow h(t), H(\omega) \longrightarrow i'(t)$$

$$S_{i'i'}(\omega) = S_{ii}(\omega)|H(\omega)|^2$$

• Physical Interpretation: $S_{ii}(\omega)$ = mean-squared fluctuation strength per unit bilateral bandwidth (in Hz) in frequency ω components of i(t)

rle III

5

www.rle.mit.edu/goptics

Direct-Detection Signatures of Non-Classical Light

Semiclassical Theory:

$$S_{ii}(\omega) = q\langle i \rangle + q^2 \frac{\eta^2 S_{PP}(\omega)}{(\hbar \omega_o)^2} \ge q\langle i \rangle$$

• Quantum Theory:

$$S_{ii}(\omega) \geq 0$$

Sub-Shot-Noise Non-Classical Signature:

$$S_{ii}(\omega) < q\langle i \rangle$$

rle Uii

young pla mit adu/apptics

Balanced Homodyne Detection

• Signal =
$$E(t)$$
 or $\hat{E}(t)$, LO = $\sqrt{\frac{P_{\rm LO}}{\hbar\omega_o}}\,e^{j\theta}$ or $\left|\sqrt{\frac{P_{\rm LO}}{\hbar\omega_o}}\,e^{j\theta}\right>$

■ Low-Pass Filter:
$$H(\omega) = 1, \quad \text{for } |\omega| \leq \frac{\Delta \omega}{2}$$

rle III

www.rle.mit.edu/goptics

Balanced Homodyne Detection (Within Passband)

Semiclassical Statistics in Strong Local Oscillator Limit:

$$i_{\text{hom}}(t) = 2q\eta \sqrt{\frac{P_{\text{LO}}}{\hbar\omega_o}} \text{Re}(E(t)e^{-j\theta}) + i_{\text{LO}}(t)$$

Gaussian-process local oscillator shot noise:

$$\langle i_{\rm LO} \rangle = 0$$
 and $S_{i_{\rm LO}i_{\rm LO}}(\omega) = q^2 \frac{\eta P_{\rm LO}}{\hbar \omega_o}$

Quantum Statistics in Strong Local Oscillator Limit:

$$i_{\text{hom}}(t) \leftrightarrow \hat{i}_{\text{hom}}(t) = 2q\eta\sqrt{\frac{P_{\text{LO}}}{\hbar\omega_o}}\operatorname{Re}(\hat{E}(t)e^{-j\theta}) + i_{\eta}(t)$$

Gaussian-process sub-unity quantum efficiency noise:

$$\langle i_{\eta} \rangle = 0$$
 and $S_{i_{\eta}i_{\eta}}(\omega) = q^2 (1 - \eta) \frac{\eta P_{\text{LO}}}{\hbar \omega_{\alpha}}$

rle III

www.rle.mit.edu/qoptics

Balanced Heterodyne Detection

- Signal = $E_S(t)e^{-j\omega_{\rm IF}t}$ or $\hat{E}_S(t)e^{-j\omega_{\rm IF}t}+\hat{E}_I(t)e^{j\omega_{\rm IF}t}$
- LO = $\sqrt{P_{\rm LO}/\hbar\omega_o}$ or $|\sqrt{P_{\rm LO}/\hbar\omega_o}\rangle$
- Bandpass Filter: $H(\omega)=1, \quad {
 m for} \; |\omega\pm\omega_{
 m IF}| \leq rac{\Delta\omega}{2}$

rle IIIii

9

www.rle.mit.edu/goptics

Balanced Heterodyne Detection (Within Passband)

Semiclassical Statistics in Strong Local Oscillator Limit:

$$i_{\rm het}(t) = 2q\eta \sqrt{\frac{P_{\rm LO}}{\hbar\omega_o}} \text{Re}(E_S(t)e^{-j\omega_{\rm IF}t}) + i_{\rm LO}(t)$$

• Gaussian-process local oscillator shot noise:

$$\langle i_{\rm LO} \rangle = 0$$
 and $S_{i_{\rm LO}i_{\rm LO}}(\omega) = q^2 \frac{\eta P_{\rm LO}}{\hbar \omega_o}$

Quantum Statistics in Strong Local Oscillator Limit:

$$i_{\rm het}(t) \leftrightarrow \hat{i}_{\rm het}(t) = 2q\eta \sqrt{\frac{P_{\rm LO}}{\hbar\omega_o}} \operatorname{Re}[(\hat{E}_S(t) + \hat{E}_I^{\dagger}(t))e^{-j\omega_{\rm IF}t}] + i_{\eta}(t)$$

Gaussian-process sub-unity quantum efficiency noise:

$$\langle i_{\eta} \rangle = 0$$
 and $S_{i_{\eta}i_{\eta}}(\omega) = q^2 (1 - \eta) \frac{\eta P_{\text{LO}}}{\hbar \omega_{\alpha}}$

rle III

10

www.rle.mit.edu/qoptics

Coherent-Detection Non-Classical Light Signatures

Semiclassical Theory (within filter passband):

$$S_{i_{\text{hom}}i_{\text{hom}}}(\omega) \ge S_{i_{\text{LO}}i_{\text{LO}}}(\omega) = q^2 \frac{\eta P_{\text{LO}}}{\hbar \omega_o}$$

$$S_{i_{\rm het}i_{\rm het}}(\omega) \ge S_{i_{\rm LO}i_{\rm LO}}(\omega) = q^2 \frac{\eta P_{\rm LO}}{\hbar \omega_o}$$

• Quantum Theory (within filter passband):

$$S_{i_{\text{hom}}i_{\text{hom}}}(\omega) \ge S_{i_{\eta}i_{\eta}}(\omega) = \frac{q^2\eta(1-\eta)P_{\text{LO}}}{\hbar\omega_0}$$

Sub-Shot-Noise Spectra (in passband) are Non-Classical:

$$S_{i_{\text{hom}}i_{\text{hom}}}(\omega) \text{ or } S_{i_{\text{het}}i_{\text{het}}}(\omega) < q^2 \frac{\eta P_{\text{LO}}}{\hbar \omega_o}$$

11

www.rle.mit.edu/goptics

Coming Attractions: Lecture 20

Lecture 20:

Nonlinear Optics of $\chi^{(2)}$ Interactions

- Maxwell's equations with a nonlinear polarization
- Coupled-mode equations for parametric downconversion
- Phase-matching for efficient interactions

rle III

12

ww.rle.mit.edu/qoptics

MIT OpenCourseWare https://ocw.mit.edu

6.453 Quantum Optical Communication Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.