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6.453 Quantum Optical Communication - Lecture 21  

§ Announcements
§ Pick up lecture notes, slides

§ Nonlinear Optics of          Interactions 
§ Coupled-mode equations for parametric downconversion
§ Phase-matching for efficient interactions
§ Classical and quantum solutions
§ Gaussian-state characterization
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Second-Order Nonlinear Optics 

§ Spontaneous Parametric Downconversion

§ Strong pump at frequency
§ No input at signal frequency
§ No input at idler frequency
§ Nonlinear mixing in         crystal produces signal and idler outputs 

pump 
signal 

idler 
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Coupled Equations for Plane-Wave Modes 

§ Monochromatic Pump, Signal, and Idler Electric Fields:

§ Non-depleting pump
§ Slowly-varying signal and idler complex amplitudes

§ Photon-Units Coupled-Mode Equations:

dAS(z)
= j�A⇤

dz I(z)ej�kz

dAI(z)
= j�A⇤

dz S(z)ej�kz
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Type-II Phase Matched Operation at Degeneracy 

§ Phase Matching for Efficient Coupling:

§ Conservation of photon momentum:
§ Type-II system:

§ Operation at Frequency Degeneracy:

§ Classical Input-Output Relation:
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Quantum Coupled-Mode Equations 

§ Strong, Monochromatic, Coherent-State Pump

§ Positive-Frequency Signal and Idler Field Operators:

§ Quantum Coupled-Mode Equations:
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Quantum Input-Output Relation 

§ Two-Mode Bogoliubov Relation

 where 
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Gaussian-State Characterization 

§ Signal and Idler at             are in Vacuum States 

§ Signal and Idler at             are in Zero-Mean Gaussian States 

§ Baseband Signal and Idler Field Operators:

§ Non-Zero Covariance Functions:
�
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Operation in the Low-Gain Regime 

§ Low-Gain Regime:

§ Approximate Bogoliubov Parameters:

§ Normally-Ordered and Phase-Sensitive Spectra:
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Type-II Optical Parametric Amplifier 

§ Doubly-Resonant Operation at Frequency Degeneracy

§ Normally-Ordered and Phase-Sensitive Covariances:

χ
(2)
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Quadrature Noise Squeezing 

§ Homodyne Detection of 45° Polarization (Signal + Idler)

spectrum 
analyzer 
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Quadrature Noise Squeezing:  Quantum Efficiency 1 

§ Homodyne Detection of 45° Polarization (Signal + Idler)

G2 = 0.1"
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Coming Attractions:  Lecture 22 

§  Lecture 22:
Quantum Signatures from Parametric Interactions
§  Hong-Ou-Mandel dip produced by parametric downconversion
§  Polarization entanglement produced by parametric downconversion
§  Photon twins from parametric amplifiers
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