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Introduction

Last time we established the quantum version of coupled-mode theory for sponta-
neous parametric downconversion (SPDC). We exhibited the exact solutions for the
output signal and idler beams, their jointly Gaussian state characterization when
the input beams are in their vacuum states, and the low-gain regime approximations
for the correlation functions that characterize that state. We also introduced the
lumped-element coupled-mode equations for the optical parametric amplifier (OPA),
presented their solutions, described their jointly Gaussian state when the signal and
idler inputs are unexcited, and showed that the OPA produced quadrature-noise
squeezing. Today, we shall finish our survey of the nonclassical signatures produced
by χ(2) interactions by considering Hong-Ou-Mandel interferometry, the generation
of polarization-entangled photon pairs from SPDC, and the photon-twins behavior of
the signal and idler beams from an OPA. Along the way we will learn about quantum
interference and photon indistinguishability.

Quantum Interference

Let us get started with a simple single-mode description in order to introduce quantum
interference. Consider the 50-50 beam splitter arrangement shown on slide 3. Here,
the only excited mo√ des at the input ports are the co-polarized, pure-tone, plane-wave
pulses âSin

e−jω0t/ T and âIine
−jω0t/

√
T , for 0 ≤ t ≤ T . The resulting excited modes

at the beam splitter’s output then have annihilation operators given by1

jâS
âSout = in

− âIin√ â
and âI

2
out =

− Sin
+ jâIin√ . (1)
2

1The reader should check that this is indeed a unitary transformation and that it conserves energy
and commutator brackets. It differs from the 50-50 beam splitter relation, âSout

= (âSin
+ âIin)/

√
2

and âIin = (âSin
− âIin)/

√
2, that we have previously employed. That difference, however, is one

of phase-angle choices that amount to simple changes in the input and output reference planes on
which the fields are defined. The new choices make the transformation symmetrical, which lends
itself to greater insight into the quantum interference process.
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We shall assume that the input modes are each in their single-photon state, so that
their joint state is the product state |ψin〉 = |1〉Sin

|1〉Iin . What then is the joint state of
the output modes? We know that it must be a pure state, because we are starting from
a pure state and the beam splitter transformation is a unitary evolution. We know
that it must contain exactly two photons, because the beam splitter transformation
conserves energy and there are exactly two photons present at its input. Thus we can
safely postulate

|ψout〉 = c20|2〉Sout|0〉Iout + c11|1〉Sout|1〉Iout + c02|0〉Sout|2〉Iout , (2)

for the output state’s number–state representation, where |c20|2 + |c11|2 + |c 2
02| = 1.

Furthermore, treating each input mode’s input state as an independent, billiard-ball
photon that is equally likely to be transmitted or reflected by the beam splitter, we
could easily be led to conclude that

|c |2 2
20 = |c02| = 1/4 and |c11|2 = 1/2, (3)

so that  1/4, for nS = 2, nI = 0

Pr(NSout = nS, NIout = nI) =
 1/2, for nS = 1, nI = 1

 (4)
1/4, for nS = 0, nI = 2

0, otherwise,

for ideal (unity quantum efficiency) photon counting measurements on the output
modes.

These results seem quite reasonable. There is only one way for both photons to
emerge in the âSout mode: the âSin

photon gets transmitted and the âIin photon gets
reflected. Similarly, there is only one way for them to both emerge in the âIout mode:
the âSin

photon gets reflected and the âIin photon gets transmitted. On the other hand,
there are two ways for one photon to emerge in each mode, i.e., both input photons
are transmitted or both are reflected by the beam splitter. Because this billiard-ball
picture says photon transmission and reflection is equally likely to occur at the 50-50
beam splitter, we get the photon counting distribution given above. Photons, however,
are not billiard balls, as we know from our work on polarization entanglement. In the
present context, their wave-like properties cause them to interfere at the 50-50 beam
splitter, leading, as we will soon show, to the following output state

ψout =
|2〉| 〉 Sout|0〉Iout + |0〉Sout|2〉Iout√ . (5)

2

Two things are worth noting before proceeding to the derivation: the input state
was a product state, but the output state is entangled; and both photons always
leave through the same output port. Why is it impossible to get one photon to
appear in each output port? Quantum interference is the answer. In particular, we
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must add the complex amplitudes for the two possible ways in which one photon
can appear in each output port before taking the squared magnitude to calculate
the photon counting probability for the event in which one photon is present at each
output port. It is the nature of 50-50 beam splitting that the complex amplitudes
for these two possibilities—both input photons transmitted or both reflected—have
equal magnitudes but are π radians out of phase. Hence their complex amplitudes
sum to zero, and we never get one photon emerging from each of the beam splitter’s
output ports.

To verify that the output state is as given in Eq. (5), let us assume that this
equation is correct. The normally-ordered characteristic function for the output state
then obeys,

χout
N (ζS

∗ ∗
ζ S

†
, ζ â +ζ aS

†
IˆI ζ â âS

∗
S ζ

out out I Iout out
I
∗; ζS, ζI) ≡ 〈e e− − 〉 = (6)

〈 ζS âS
† ζI âI

† ∗
e oute oute−ζ âS Soute−ζ

∗âI Iout( 〉 = (7)

Sout〈2|+
√ ζ

2ζSSout〈1|
2

+ S√ S2 out〈0|
)
Iout〈0|+

(
Iout〈2|+

√ ζ
2ζI Iout〈1|

2

+ I√ I2 out〈0|
)
Sout〈0|

√( 2
×

|2〉Sout

√
− ζ

2ζS
∗|1〉

∗2

Sout + S√ 0
2
| 〉Sout

)
|0〉Iout +

(
|2〉Iout

√
− ζ

2ζI
∗|1〉

∗2

Iout + I√ 0
2
| 〉Iout

)
|0〉Sout

√
2

= 1− |ζS|2 − |ζI |2 + |ζ2
S + ζ2

I |2/4, (8)

where the second equality follows because âSout and âIout commute, and the third
equality follows from series expansion of the exponentials plus the assumed output
state. Now let us show that we can get this same result by starting from the input
state and the beam splitter transformation.

From Eq. (1), we can easily show that

χout jζ∗ ζ∗

N (ζS
∗, ζI
∗; ζS, ζ

Sin
I) = χN

(
S − I√ j

,
− ζS − ζI

2
√ j

χ
2

)
Iin
N

(
ζI
∗ − ζS∗√ j

,
− ζI − ζS

2
√ .

2

)
(9)

By series expansion of the exponentials in the characteristic functions on the right-
hand side and the fact that the input modes are in their single-photon states, we then
get

χout
N (ζS

∗, ζI
∗; ζS, ζI) = (1− |jζS + ζ 2 2

I | /2)(1− |jζI + ζS| /2) (10)

= 1− |ζS|2 − |ζI |2 + |jζS + ζI |2|jζI + ζS|2/4 (11)

= 1− |ζS|2 − |ζI |2 + |jζ 2 2
S + ζI | |ζI − jζS| /4 (12)

= 1− |ζ |2 2
S − |ζI | + |ζ2

S + ζ2
I |2/4, (13)
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which shows that Eq. (5) is indeed the output state.2

The calculational tools we have developed this semester allowed us to determine
the output state for the slide 3 arrangement when its input modes are in their single-
photon states. The work we have just completed, however, affords little insight into
the quantum interference phenomenon that we described qualitatively before pro-
ceeding with our calculations. To gain that insight let us rewrite the input state in
the following form,

|ψin〉 = |1〉Sin
|1〉Iin = â†S â† 0 S 0 I , (14)

in Iin
| 〉

in
| 〉

in

where we have used photon-creating nature of â†S and â†
in I . Now, because

in

S
âS =

−jâ out − âIout
in

√ −âS
and âI

2
in

= out − jâIout√ (15)
2

is the inverse transformation associated with Eq. (1), and because the vacuum state
|0〉Sin

|0〉Iin at the beam splitter’s input leads to the vacuum state |0〉Sout|0〉Iout at its
output, Eq. (14) implies that

|ψout〉 =

(
jâ†Sout

− â†Iout√
2

)(
−â†Sout

+ jâ†Iout√ 0
2

)
| 〉Sout|0〉Iout (16)

=
−jâ†2S − âS

† †
out out

âIout + â†Iout â
†
Sout
− jâ†2Iout |0

2
〉Sout|0〉Iout (17)

2 S 0 I + 0 S 2 I
= j

| 〉 〉− out| out | 〉 out| 〉 out√ . (18)
2

The four terms in the numerator on the right-hand side of the second equality rep-
resent the four possible ways in which the two photons that enter the beam splitter
may emerge from that beam splitter. As promised, the second and third terms—
which represent the events in which both are transmitted or both are reflected—have
equal magnitudes and are π radians out of phase. As a result, these terms interfere
destructively , and we never get one photon emerging from each of the beam split-
tyer’s output ports. Recall that the absolute phase of a ket is irrelevant, i.e., it does
not affect quantum measurement statistics. Thus, this much quicker derivation does
reproduce Eq. (5) while clearly revealing the underlying quantum intereference.

2If you could not have guessed that Eq. (5) would be the output state, you could have converted
χout
N (ζS

∗ , ζI
∗; ζS , ζI) to the anti-normally ordered characteristic function. The operator-valued inverse

Fourier transform of this anti-normally ordered characteristic function is the joint density operator
for the output modes. By evaluating the number-ket matrix elements for this joint density operator
you would have been led to conclude that the output modes were in the pure state given by Eq. (5).
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Photon Indistinguishability

A key element in the quantum interference phenomenon that we just studied is photon
indistinguishability, viz., two photons that are in the same mode cannot be distin-
guished from each other. As a prelude to our treatment of Hong-Ou-Mandel interfer-
ometry, let us re-examine the preceding quantum interference setup when the input
photons are no longer indistinguishable. For this purpose, let us consider both the
x and y polarizations of pure-tone, plane-w√ ave pulses arriving at the beam splitter’s
input ports, i.e., (âin~

Sx
ix+ âin~

Sy
iy)e

−jω0t/ T and (âin~
Ix
ix+ âin~

Iy
iy)e

−jω0t/
√
T for 0 ≤ t ≤ T .

We will assume that the input state for these four modes is

|ψin〉 = |1〉Sinx
|0〉Siny

(cos(θ)|1〉Iinx |0〉Iiny + sin(θ)|0〉Iinx |1〉Iiny ), (19)

so that one photon enters each of the beam splitter’s input ports, but they are po-
larized along ~ix and ~iθ ≡ cos(θ)~ix + sin(θ)~iy, respectively. For sin(θ) 6= 0, this makes
the photons in the two input modes (at least partly) distinguishable. In particular,
photon counting on the âin

Sy
mode will never register a detection, but photon counting

on the âin
Iy

mode will register a detection with non-zero probability sin2(θ).
Our route to finding the output state for this situation will be a generalization of

the simple quantum interference calculation that we gave at the end of the previous
section.3 The input state we have assumed can be written as follows,

|ψin〉 = âin
S
†
x
(cos(θ)âin

I
†

x
+ sin(θ)âin

I
†

y
)|0〉Sinx

|0〉Siny
|0〉Iinx |0〉Iiny (20)

Using the fact that the vacuum state |0〉Sinx
|0〉Siny

|0〉Iinx |0〉Iiny at the beam splitter’s
input yields the vacuum state |0〉Soutx

|0〉Souty
|0〉Ioutx |0〉Iouty at its output, and the beam-

splitter relations

jâin

âout S
Sk

= k
− âin

Ik√
â

and âout
I

2 k
=
− in

Sk
+ jâin

Ik√ , for k = x, y, (21)
2

we find that the output state is

jâout† âout†

|ψ I
out〉 =

(
Sx
−

x√
â

cos(
2

)[
θ)

(
− out

S
†

x
+ jâout

I
†

x√
â

+
2

)
sin(θ)

(
− out

S
†

y
+ jâout

I
†

y√
2

)]
× |0〉Soutx

|0〉Souty
|0〉Ioutx |0〉Iouty (22)

= j cos(θ)
|2〉 |

− Soutx
0〉Ioutx + |0〉Soutx

|2〉Ioutx√ 0
2

| 〉Souty
|0〉Iouty

−j|1〉Soutx
|1〉S

+ sin(θ)
outy
− |1〉Soutx

|1〉Iouty + |1〉Ioutx |1〉Souty
− j|1〉Ioutx |1〉Iouty .

2

(23)

3The characteristic function approach can also be employed, but it is considerably more tedious.
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So, if we count the number of photons—summed over both polarizations—emerging
from one of the output ports, there will be a probability sin2(θ)/2 of getting one
count. The difference in the polarization states of the incoming photons makes them
at least partially distinguishable, and hence degrades the quantum interference that,
for indistinguishable single-photon inputs, makes it impossible to observe only one
count (with unity quantum efficiency detectors) at an output port. When θ = π/2,
the input photons are orthogonally polarized and thus completely distinguishable. In
this case the output state is

ψ
−j

| 〉 =
|1〉Soutx y

out

|1〉Sout − |1〉Soutx
|1〉Iouty + |1〉Ioutx |1〉Souty

− j|1〉Ioutx |1〉Iouty , (24)
2

whose photon counting distribution,  1/4, for nS = 2, nI = 0

1/2, for nS = 1, nI = 1
Pr(Nout

Sx
+Nout

Sy
= nS, N

out out
Ix +NIy = nI) = (25)

is

 1/4, for nS = 0, nI = 2

0, otherwise,

in agreement with what is obtained from the simple billiard-ball photon picture
given earlier.

Hong-Ou-Mandel Interferometry

Slide 4 shows a continuous-wave (cw) SPDC source driving a Hong-Ou-Mandel (HOM)
interferometer. In the HOM configuration, two input beams are combined on a 50-50
beam splitter that can be moved to produce a differential time delay T in its input-
output relation (see below). The output beams from the splitter are directed to a
pair of photodetectors, each with quantum efficiency η but otherwise ideal, whose
output photocurrents are processed by a coincidence counter. This counter measures
the number of Tg-sec-long time intervals in which a coincidence has occurred, i.e., the
number of Tg sec gate intervals in which both detectors have registered photodetec-
tions. Moreover, the coincidence measurement is performed as the differential delay
T is varied. From our work on quantum interference, we expect that there will be no
coincidences when a pair of indistinguishable photons—one in each input arm of the
50-50 beam splitter—enter the interferometer. Let’s see if that is so for the photon
pairs produced by cw SPDC.

We will assume that the SPDC source is a type-II system which is phase-matched
at frequency degeneracy and operated in the low-gain regime. As shown on slide 4,
a half-wave plate is used to rotate the signal-beam’s polarization state so that it
is co-polarized with the idler. In this case we can take the joint state of the y-
polarized (non-vacuum state) beams that enter the HOM interferometer to be a zero-

(n)
mean Gaussian that is characterized by its non-zero correlation functions, Kkk (τ) ≡
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〈Êk
† ˆ(t + τ)Ek(t)〉 (p) ˆ ˆfor k = S, I, and KSI (τ) ≡ 〈ES(t + τ)EI(t)〉. Using the results of

Lecture 21 we have that these correlation functions are given by,

(n) (n) ω
KSS (τ) = KII τ) =

∫
d

(
sin(

κ
2π
| |2l2

(
ω∆k′l/2)

2

ω∆k′l/2

)
ejωτ (26)

=

 |κ|2l

 |∆k′|
(

1− |τ |
, for |τ | ≤ |∆k′|l|∆k′|l (27)

0,

)
otherwise,

and

(p)
KSI (τ) =

∫
dω sin(ω∆k′l/2)

jκl
2π ω∆k′l/2

ejω(τ+∆k′l/2) =


jκ

, for 0 ∆ ′
∆k

≤ τ ≤ | k′ |l| | (28)
0, otherwise,

where we have assumed the ∆k′ < 0, as shown on the bottom of slide 4.
The field operators that illuminate the two photodetectors in the HOM setup will

be taken to be

ˆ ˆES(t) + EI(t 2)
ÊSout(t =

− T/
) √ − ˆ ˆEˆ S(t+ T/2) + EI(t)

and EI
2

out(t) = √ , (29)
2

where T is the differential delay arising from the position of the beam splitter. Let
NSout and NIout be the number of photons detected in the time interval 0 b

ˆ
≤ t ≤ Tg y

ˆthe photodetectors that are illuminated by ESout(t) and EIout(t), respectively. From
our work on quantum photodetection theory, we know that these classical random
variables have statistics that are equivalent to those of the observables∫ Tg Tg

N̂Sout ≡ ˆ ˆt ES
′† ˆ ˆ ˆd
out

(t)ES
′
out

(t) and NIout ≡
∫

dt EI
′†
out

(t)EI
′
out

(t), (30)
0 0

where

ÊS
′
out

(t)
√≡ η ÊSout(t) +

√
1− η ÊηS(t) and Ê ′Iout(t) ≡

√
η ÊIout(t) +

√
ˆ1− η EηI (t),

(31)
ˆ ˆwith EηS(t) and EηI (t) being in their vacuum states. It follow that〈∫ Tg T

〈N̂Sout〉 ˆ= dt ES
′† ˆ
out

(t)ES
′
out

(t)

〉
g

ˆ ˆ= η dt
0

〈∫
ES
†
out

(t)ESout(t)
0

〉
(32)

η
= ˆ[

2

∫ Tg

dt
0

〈ES
† ˆ(t)ES(t)〉+ 〈ÊI

†(t− ˆT/2)EI(t− T/2)〉] (33)

η
=

∫ Tg
(n) (n) η

dt [K
2 SS (0) +KII (0)] =

|κ|2lTg
0

. (34)
|∆k′|
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A similar calculation—which the reader should perform—will show that

η〈N̂Iout〉 =
|κ|2lTg

. (35)
|∆k′|

Signal and idler photons are produced in pairs by SPDC, so there should be no
surprise that the preceding singles averages—the average number of counts in the
gate interval for a single detector—should be identical. What we are interested in is
the average number of coincidences in this gate interval. That will require a bit more
work to determine.

(n)
In typical SPDC operation, the photon flux of the signal and idler, i.e., KSS (0) =

(n)
KII (0) = |κ|2/|∆k′|, will be less than (often much less than) 106 s−1. The duration
of the coincidence gate, however, will usually be Tg ∼ 1 ns. Consequently, we have

〈N̂Sout〉 = 〈N̂Iout〉 � 1, (36)

and so it is fair to say that each detector detects at most one photon during the time
interval 0 ≤ t ≤ Tg.

4 From this approximation we can use the classical photocount
variables to identify coincidences by virtue of{

1, if there is a coincidence in 0
NSoutNIout =

≤ t ≤ Tg
(37)

0, otherwise.

Invoking quantum photodetection theory again, we have that

ˆ ˆC(T ;Tg) ≡ 〈NSoutNIout〉 (38)

gives the average number of coincidences in 0 ≤ t ≤ Tg as a function of the differential
delay T and the gate duration Tg. To evaluate C(T ;Tg) we write〈∫ Tg Tg

ˆ ′† ˆ ′ ˆ ˆC(T ;Tg) = dt ESout
(t)ESout

(t)

∫
duEI

′†
out

(u)EI
′
out

(u)
0 0

〉
, (39)

ˆcombine the product of integrals into a double integral and use the fact that ESout(t)
ˆand EIout(u) commute with each other and with each other’s adjoint, obtaining∫ Tg

∫ Tg
ˆ ˆC(T ;Tg) = dt du 〈ÊS

′† ˆ
out

(t)EI
′†
out

(u)ES
′
out

(t)EI
′
out

(u)
0 0

〉 (40)

2

∫ Tg
∫ Tg

〈 ˆ† ˆ ˆ ˆ= η dt du ESout
(t)EI

†
out

(u)ESout(t)EIout(u) (41)
0

〉.
0

4A rigorous proof of this statement requires a bit more work than indicated here, but will be
omitted.

8



ˆ ˆ ˆ ˆBecause ES(t) and EI(t) are in a jointly Gaussian state, and ESout(t) and EIout(t)
are obtained from a linear transformation of these field operators, they too are in a
jointly Gaussian state. Thus the quantum version of the Gaussian moment factoring
theorem allows us to reduce the fourth-order field-operator moment in C(T ;Tg) to
sums of products of second-order field-operator moments, viz.,5

T

C(T Tg) = η2

∫
g Tg

ˆ ˆ ˆ ˆ; dt

∫
du 〈ES

†
out

(t)ESout(t)〉〈EI
†
out

(u)EIout(u)
0 0

〉

+ η2

∫ Tg

dt

∫ Tg

du |〈 ˆ ˆE 2
Sout(t)EIout(u)

0 0

〉| (42)

Tg Tg

〈 ˆ 〉〈 ˆ
∫

(
= NSout N 2

Iout〉+ η

∫
p)

dt du K
0 0

| SoutIout
(t− u)|2 (43)

=

(
η|κ|2lTg
|∆k′|

)2

+ η2Tg

∫ Tg

−Tg
dτ |K(p)

SoutIout
(τ)|2

(
1− |τ |

Tg

)
(44)

≈
(
η|κ|2lTg ∞

|

)2

+ η2T
|∆k′ g

∫
dτ | (p)

K 2
SoutIout

(τ)| , (45)
−∞

where the approximation assumes that Tg � |T | + |∆k′|l. In typical SPDC-HOM
experiments, T and |∆k′|l are on the order of psec, so this approximation is well
justified for Tg ∼ 1 ns.

ˆ ˆTo go further we use the beam splitter relation for ESout(t) and EIout(t) to express
their phase-sensitive cross-correlation function in terms of the corresponding cross-

ˆ ˆcorrelation function for ES(t) and EI(t), i.e.,

ˆ
(p)

〈
ˆES(t+ τ) + EI(t+ τ 2)

KSoutIout
(τ =

− T/
) √ − ˆ ˆES(t+ T/2) + EI(t)

2
√ (46)

2

〉
(p)

K
= SI (τ)− (p)

KSI (−τ + T )
. (47)

2

5See the random processes notes for a brief discussion of the Gaussian moment factoring theorem
for real-valued classical random variables. The corresponding result for the quantum case that we

ˆ ˆwill use several times today is as follows. If Ea(t) and Eb(t) are in a zero-mean jointly Gaussian
state then

〈Êa
† ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ(t)Eb

†(u)Ea(t)Eb(u)〉 = 〈Ea
†(t)Ea(t)〉〈Eb

†(u)Eb(u)〉+ 〈Ea
†(t)Eb(u)〉〈Eb

†(u)Ea(t)〉

+ 〈Êa
† ˆ ˆ(t)Eb

†(u)〉〈 ˆEa(t)Eb(u)〉.

ˆThis same result can be used for a single field, E(t), that is in a zero-mean Gaussian state by setting
ˆ ˆ ˆEa(s) = Eb(s) = E(s) in the preceding expression for s = t, u
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whence

C(T ;Tg) ≈
(
η|κ|2lTg 2

|∆k′|

)
η2Tg

+
4

∫ ∞
) )

d | (p
τ K K 2

SI (τ)− (p
SI (−τ + T )| . (48)

−∞

For |T | ≥ 2|∆k′|l, the two terms inside the integrand’s magnitude squared are non-
overlapping time functions, so that

κ
C(T ;Tg ≈

(
η

)
| |2lTg
|∆k′|

)2

+
η2Tg

∞

2

∫
dτ | (p)

KSI (τ)|2 (49)
−∞

=

(
η|κ|2lTg
|∆k′|

)2

+
η2|κ|2lTg

. (50)
2|∆k′|

In the low-flux limit that we have assumed, wherein |κ|2l/|∆k′| � 1, the first term on
the right in Eq. (50) can be neglected in comparison with the second. Experimentalists
refer to the first term as the“accidental” coincidences, not the “true” coincidences that
are counted by the second term . Thus we shall suppress these accidentals and say
that

η2Tg
C(T ;Tg) ≈

∞
p p)

dτ | ( ) (
KSI (τ)−K (

4 SI −τ + T )|2, (51)
−∞

gives the HOM interferometer’s coincidence

∫
count in the Tg-sec gate interval. As

shown on slide 5, C(T ;Tg) drops to zero when T = |∆k′|l, despite the average num-
ber of singles on each detector being unaffected by the differential delay T . This
C(T ;Tg) → 0 as T → |∆k′|l behavior is called the HOM dip, and it occurs because

(p) (p)
for this value of the differential delay we get KSI (τ) = KSI (−τ + T ). The HOM dip
is the signature of quantum interference between indistinguishable photons that we
saw earlier in this lecture, as we will now explain.

In type-II phase-matched, frequency-degenerate, cw SPDC, a single pump pho-
ton can spontaneously fission into a signal-idler photon pair at some z-plane within
the χ(2) crystal. Inside the crystal, the signal and idler photons propagate at their
respective group velocities,

vgS =

(
dkS(ωP/2 + ω)

dω

∣∣∣∣
ω=0

)−1

and vgI =

(
−dkI(ωP/2− ω)

−

dω

∣
ω=0

) 1

. (52)

Thus the component photons of this signal-idler pair separate as they

∣∣
propagate from

where they were created to the crystal’s exit facet at z = l, because

∣

dk
∆k′ = − S(ωP/2 + ω) d

dω

∣∣∣ k∣
ω=0

− I(ωP/2− ω) 1
=

dω

∣∣∣∣
ω=0

− 1
+

vgS
=

v
6 0. (53)

gI

We have assumed ∆k′ < 0, which means that inside the nonlinear crystal the signal
(p) ˆpropagates slower than the idler does. So, consistent with the KSI (τ) = 〈ES(t +

10



ˆτ)EI(t)〉 sketch on slide 4, a signal-idler pair created at z = l is correlated at τ = 0,
while a signal-idler pair created at z = 0 will be correlated at τ = |∆k′|l, and signal-
idler pairs created at intermediate z-planes within the χ(2) crystal will be correlated
at τ values intermediate between these two extremes.6 In order to make the two
component photons of a signal-idler pair be indistinguishable—so that quantum in-
terference will occur in the HOM interferometer—we need the differential delay T to
compensate for the idler’s group velocity advantage in the crystal. That is indeed is
what T = |∆k′|l accomplishes.

The Biphoton and Generation of Polarization Entanglement

Our Gaussian-state analysis of the HOM dip obtained with SPDC, although rigorous,
is much more elaborate than what almost all experimentalists—and for that matter
almost all theorists—ordinarily employ. Instead, for the low-gain, low-flux regime
in which we evaluated the HOM dip, they would say that the output state from
frequency-degenerate, cw SPDC is

ω|ψSI〉 = |0〉S| 〉I +

∫ ∞ d
0

−∞

sin(ω∆k′l/2)
jκl

2π

′
ejω∆k l/2 + ω ω′ |ωP/2 〉S| P/2

ω∆k l/2
− ω〉I . (54)

Here: |0〉S and |0〉 ˆ ˆ
I are the vacuum states of ES(t) and EI(t), respectively; ωP/2+ω S

ˆis the state in which E (t)e−jωP t/2

| 〉
S has one photon at frequency ωP/2 + ω and no

ˆphotons at other frequencies; and |ωP/2− ω〉I is the state in which EI(t)e
−jωP t/2 has

one photon at frequency ωP/2 − ω and no photons at other frequencies. There are
many things worth noting about Eq. (54).

• The state |ψSI〉 is not properly normalized.

• Because we are in the low-gain, low-flux regime for SPDC, the vacuum term in
|ψSI〉 dominates its non-vacuum term.

• The non-vacuum term is called the biphoton state. It is an entangled state in
which a signal photon at frequency ωP/2+ω is accompanied by an idler photon
at frequency ωP/2 − ω, in accord with energy conservation for pump-photon
fission.

• In coincidence-counting experiments we can post-select for the biphoton state
by including in our data processing only those measurements in which both a
signal photon and an idler photon were detected.

• Equation (54) reproduces the rigorous Gaussian-state results for the first and
ˆ ˆsecond moments of ES(t) and EI(t). Thus, in the low-gain, low-flux regime for

6 (p)
Remember, that KSI (τ) is the phase-sensitive cross-correlation function outside the nonlinear

crystal, where both the signal and idler photons propagate at the vacuum light speed, c.

11



cw SPDC—in which at most one signal-idler pair is observed over the measure-
ment interval—it is appropriate to use Eq. (54) in lieu of the rigorous jointly
Gaussian state of the signal and idler beams.7

To exercise what we have just said about the biphoton state, let us use that
approach to characterize the scheme shown on slide 6 for generating polarization-
entangled photon pairs from SPDC. Here we have two type-II phase-matched, cw
SPDC sources pumped in antiphased manner. They need not be operated at fre-
quency degeneracy, i.e., the center frequencies for the signal and idler may be ωS 6= ωI
so long as ωS +ωI = ωP and kS(ωS)+kI(ωI) = kP (ωP ). As shown on slide 6, we have
oriented the nonlinear crystals for these two sources such that a polarizing beam split-
ter is able to direct both signal beams to one of its output ports and both idler beams
to its other output port. The joint state of the two SPDC sources, from Eq. (54), is

∞ dω|ψin〉 =

(
|0〉Sx |0〉Iy +

∫
−∞

sin(ω∆k′l/2)
jκl

2π
j ′
e ω∆k l/2 ωS + ω S ωI ω I

ω∆k′l/2
| 〉 x| − 〉 y

)

⊗
(

ω|0〉Sy |0〉I −
∫ ∞ d

x

−∞ 2π
jκl

sin(ω∆k′l/2) j ′
e ω∆k l/2 ωS + ω S ωI ω I .

ω∆k′l/2
| 〉 y | − 〉 x

)
(55)

On the right-hand side of the first line we have only included the state of the x-
polarized signal and the y-polarized idler, and on the second line we have only included
the state of the y-polarized signal and the x-polarized idler, as the other polarizations
are all in their vacuum states. The minus sign in the second term on the right-hand
side of the second line is due to the antiphased pumping.8

After the polarizing beam splitter, and using the fact that the vacuum terms
predominate on both lines of Eq. (55), we get the following output state to first order
of smallness:

|ψout〉 = |0〉Sx|0〉Sy |0〉Ix|0〉Iy+∫ ∞ dω

−∞ 2π
jκl

sin(ω∆k′l/2) ′
ejω∆k l/2(|ω′ S + ω〉S ω

ω∆k l/2 x| I − ω〉Iy − |ωS + ω〉Sy |ωI − ω〉Ix).

(56)

Equation (56) is a frequency-entangled, polarization-singlet state. Let us exhibit its
polarization entanglement by returning to the full Gaussian-state characterization for
the output state from the slide 6 system.

7The interested reader may want to try to analyze the HOM dip using Eq. (54) as the signal-idler
input state.

8Recall that κ is proportional to the complex amplitude of the pump field. So with κ defined for
one SPDC source, antiphased pumping flips the sign of κ for the other SPDC source.
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The signal and idler beams at the output ports of the polarizing beam splitter
on slide 6 are in a zero-mean jointly Gaussian state with the following non-zero
correlation functions:

(n) (n) (n) (n)
KSxSx

(τ) = KSySy
(τ) = KIxIx

(τ) = KIyIy
(τ) (57)

l
= K(n)(τ) ≡

 |κ|2

 |∆k′|
(

1− |τ |
k|

)
, for ∆

∆k′|l |τ | ≤ | ′|l
(58)

0, otherwise,

and

jκ
(p) (p)

K ( ) (
SxIy

τ) = −KSyIx
(τ = K p)(τ) ≡

 , for 0
∆k′

≤ τ ≤ |∆k′|l| | (59)
0, otherwise,

where we have continued to assume that ∆k′ < 0.
Suppose that we perform the following coincidence counting experiment. We use

a polarization analysis system to illuminate one photodetector with the i ≡ α~ix +β~iy
component of the signal beam and we use another polarization analysis system to
illuminate a second photodetector with the orthogonal, i′ ≡ β∗~ix − α∗~iy, polarization
of the idler beam, where |α|2 + |β|2 = 1. Paralleling what we did for the HOM
interferometer, we can show that the average number of coincidence counts for this
setup satisfies

∞
(p)

CSiIi
(T ;Tg) = η2Tg

∫
dτ |KS I (τ)′ i i′

|2, (60)
−∞

where

(p) ˆ ˆ ˆ ˆKS I (τ) = 〈[α∗ES t
i′ x( + τ) + β∗ESy(t+ τ)][βEIx(t)

i
− αEIy(t)]〉 (61)

= −|α|2 (p) (p)
KSxIy

(τ) + |β|2KSyIx
(τ) = −K(p)(τ), (62)

so that
η2 κ g

CSiIi
(T ;T′ g) =

| |2lT
. (63)

|∆k′|
Similar calculations—which the reader should attempt—yield

η2|κ|2lTg
CSi

Tg) =′Ii(T ; and CSiIi(T ;Tg) = CSi Ii
(T ;T ) = 0. (64)

|∆k′| ′ ′ g

These are the continuous-time signatures of singlet-state polarization entanglement,
cf. the results from Lecture 13 for the a pair of antiphased two-mode parametric ampli-
fiers. In particular, when the signal and idler outputs from the polarizing beam splitter
on slide 6 undergo polarization analysis in an arbitrary common basis, whenever a
coincidence occurs, the signal and idler detections will have occurred in orthogonal
polarizations.
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Photon Twins from an Optical Parametric Amplifier

Our last task for today will be to develop the continuous-time version of the photon-
twins signature of nonclassical light that we developed earlier this semester within the
two-mode construct. In effect, we have already seen that signature in the biphoton
state, i.e., SPDC produces signal and idler photons in pairs via photon fission. How-
ever, instead of working with the SPDC source, we shall employ the lumped-element
optical parametric amplifier model from Lecture 21 to study photon twinning. SPDC
produces signal-idler pairs at rates ≤ 106 s−1 in typical systems. This pair rate is well
resolved by the ∼1 ns response times of fast photodetectors. A doubly-resonant OPA
that is capable of producing 10 dB of quadrature-noise squeezing in a 10 MHz band-
width will produce ∼108 signal-idler pairs per second in that bandwidth. Although
single signal-idler pairs from an OPA can still be resolved by a fast photodetector,
this source is much closer to the system that experimentalists have actually used for
photon-twins experiments, viz., the optical parametric oscillator (OPO). The OPO
is an OPA pumped above its oscillation threshold. Its signal and idler outputs can
easily reach rates of 1013 photons per second. However, rather than introduce yet
another χ(2) analysis into the mix, we shall content ourselves with demonstrating the
photon twins behavior of the OPA.

The setup of interest is shown on slide 10. The signal and idler outputs from a
doubly-resonant, type-II phase-matched OPA are separated—with a polarizing beam
splitter—and directed to ideal (unity quantum efficiency) photodetectors. The re-
sulting photocounts, NS and NI , for the time interval 0 ≤ t ≤ T are then combined
to yield the photocount difference ∆N ≡ NS − NI . In semiclassical photodetection,
NS and NI are Poisson distributed, given the powers that illuminate their respective
photodetectors during 0 ≤ t ≤ T . Thus, because the shot noises from different de-
tectors are statistically independent, we know that their difference, ∆N , will have a
variance that satisfies the following shot-noise limit:

var(∆N) ≡ 〈[∆N − 〈∆N〉]2〉 ≥ 〈NS〉+ 〈NI〉. (65)

From quantum theory, however, we expect the variance of ∆N to be zero, because
signal and idler photons are created in pairs, and we are using ideal photodetectors,
i.e., ideal photon counters. To probe whether this is really so, we start from the

ˆ ˆquantum observables, NS, NI , and ∆̂ ≡ ˆ ˆN NS − NI , whose measurement statistics
coincide with those of the classical random variables NS, NI , and ∆N , where

ˆ
∫ T T

ˆout† ˆout ˆ ˆ ˆNS = dt ES (t)ES (t) and NI =

∫
dt Eout

I
†(t)Eout

I (t), (66)
0 0

with { Êout
m (t) : m = S, I } being the baseband field operators for the OPA’s outputs.

The mean and variance calculations that we must perform are similar to, but simpler
than, what we have already done for HOM interferometry.
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In Lecture 21 we established that the OPA’s signal and idler outputs were in a
zero-mean, stationary, jointly Gaussian state whose non-zero correlation functions
are,

K(n)
mm(τ) = 〈Êout GΓ† ˆ(t)Eout

m m (u)〉 =
2

[
e−(1−G)Γ|τ | e−(1+G)Γ|τ |

1−G
− ,

1 +G

]
for m = S, I, (67)

(p) GΓ
KSI (τ) =

2

[
e−(1−G)Γ|τ |

1−G
+
e−(1+G)Γ|τ |

.
1 +G

]
(68)

Thus, the average signal and idler photocounts obey

ΓT〈 ˆ 〉
∫ T T G2

〈 ˆ ˆN out out (n)
m = dt Em

†(t)Em (t)〉 =

∫
dtKmm(0) =

0 0

, for m = S, I. (69)
1−G2

Equation (69) is what we expect: signal and idler photons are created in pairs so the
average number of signal and idler counts in any T -sec-long interval should coincide.
Equation (69) implies,

〈∆̂N〉 = 〈N̂S〉 − 〈N̂I〉 = 0, (70)

so that the nonclassical photon-twins signature we are seeking becomes

〈(∆̂N)2 2G2ΓT〉 < 〈 ˆ
S〉+ 〈 ˆN NI〉 = . (71)

1−G2

Evaluating 〈(∆̂N)2〉 mimics, in several respects, what we did to find the average
coincidence count for HOM interferometry. We start from

̂ T

〈 2〉
〈∫

ˆ ˆ(∆N) = dt [Eout
S
†(t)Eout

S (t)
0

− Êout
I
† ˆ(t)Eout

I (t)]

×
∫ T

ˆ ˆ ˆ ˆdu [Eout
S
†(u)Eout

S (u)− Eout
I
†(u)Eout

I (u)]
0

〉
. (72)

Then, we combine the product of single integrals into a double integral and use the
ˆfact that Eout ˆ
S (t) and Eout

I (t) commute with each other and with each other’s adjoint
but have the δ-function commutator with their own adjoints. This leads us to

T

〈(∆̂N)2〉 =

∫ T
†

dt 〈Êout† ˆ ˆ ˆ
S (t)Eout

S (t)
0

〉+

∫
du

0

〈Eout
I (u)Eout

I (u)〉

∫ T ∫ T

〈 ˆout† ˆout† ˆout ˆ+ dt du E out
S (t)ES (u)ES (t)ES (u)

0 0

〉

+

∫ T

ˆdt

∫ T

du 〈Êout† ˆout† ˆout out
I (t)EI (u)EI (t)EI (u)

0 0

〉

−
∫ T ∫ T

〈 ˆout† ˆout† ˆ ˆ2 dt du ES (t)EI (u)Eout
S (t)Eout

I (u)
0 0

〉, (73)
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which can be reduced—by means of the quantum form of Gaussian moment factoring
(n) (n) (p)

and the specific forms we have for KSS (τ), KSS (τ), and KSI (τ)—to

〈(∆̂ T
)2 2G2Γ

N 〉 =
2G2Γ2T

1−G2
−

T

1−G2

∫
dτ

−T

(
1
|τ |− e
T

)
−2Γ|τ | (74)

2G2ΓT
=

1

1−G2

− e−2ΓT

. (75)
2ΓT

Equation (75) falls below the semiclassical (shot-noise) limit of 2G2ΓT/(1 − G2) for
all T > 0, but only equals zero in the limit of T → ∞. Thus, even though we have
perfectly efficient detectors, the number of signal photons counted exactly matches the
number of idler photon counted only in the infinite integration-time limit. It is easy
to understand why that should be so. Although signal and idler photons are created
in pairs, within the OPA, each photon from any pair may stay inside the doubly-
resonant cavity for many cavity lifetimes, i.e., many times the reciprocal bandwidth
1/Γ. Only when we have counted photons for many cavity lifetimes are we assured
that both photons from almost every pair have exited the cavity. Hence it is only in
this limit that we are guaranteed to get a photocount difference whose variance is well
below the semiclassical limit. Indeed, Eq. (75) shows that the normalized variance of
the photocount difference satisfies

〈(∆̂N)2〉 1
≈

〈N̂S〉+ 〈N̂I〉

{
, for ΓT � 1

(76)
1/2ΓT � 1, for ΓT � 1.

We have plotted this normalized variance in the right panel on slide 11—along with
the corresponding semiclassical value of unity—as a function of ΓT . Also shown on
that slide is a plot of the normalized variance for the individual photon counts,9

〈 ˆ[∆NS]2〉 ˆ[∆
=
〈 NI ]

2〉
〈N̂S〉

, (77)
〈N̂I〉

versus ΓT for G2 = 0.01. These individual variances are super-Poissonian, i.e., they
exceed the shot-noise limit. Moreover, they are the same as would be found from the
semiclassical theory of photodetection. That agreement between the semiclassical
and quantum theories for the individual photocount variances is no accident. As in
the case of the two-mode parametric amplifier, the reduced density operators for the
signal and idler beams from our doubly-resonant OPA are classical states, i.e., they
have proper P representations.10

9We leave the derivation of these photocount variances as an exercise for the reader. Their
derivation is similar to what we have done for 〈(∆

10
N̂)2〉.

A zero-mean Gaussian state that has no phase-sensitive correlation can be shown to be a classical
state, but we shall not provide the proof.

16



The Road Ahead

In the next lecture, we shall survey a collection of additional applications of non-
classical light: binary optical communication with squeezed states; phase-sensing
interferometry with squeezed states; super-dense coding with entangled states; and
quantum lithography with “N00N” states.
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