

Super-Dense Coding with Entangled Photons
• Alice and Bob Share a Singlet State of Two Photons:

$$|\psi^{-}\rangle_{AB} = \frac{|H\rangle_{A}|V\rangle_{B} - |V\rangle_{A}|H\rangle_{B}}{\sqrt{2}}$$
• Alice Uses Two Classical Bits to Modulate Her Photon:

$$\alpha|H\rangle_{A} + \beta|V\rangle_{A} \longrightarrow \alpha|H\rangle_{A} + \beta|V\rangle_{A}, \text{ if } m = 00$$

$$\alpha|H\rangle_{A} + \beta|V\rangle_{A} \longrightarrow \alpha|H\rangle_{A} - \beta|V\rangle_{A}, \text{ if } m = 01$$

$$\alpha|H\rangle_{A} + \beta|V\rangle_{A} \longrightarrow \alpha|V\rangle_{A} + \beta|H\rangle_{A}, \text{ if } m = 10$$

$$\alpha|H\rangle_{A} + \beta|V\rangle_{A} \longrightarrow \alpha|V\rangle_{A} - \beta|H\rangle_{A}, \text{ if } m = 11$$

Subject Outline Revisited — <i>We're Done!</i>
 Quantum Optics Dirac notation quantum mechanics; harmonic oscillator quantization; number states, coherent states, and squeezed states; <i>P</i> representation and classical fields.
 Single-Mode and Two-Mode Quantum Systems Direct, homodyne, and heterodyne detection; linear propagation loss; phase insensitive and phase sensitive amplifiers; entanglement and teleportation.
 Multi-Mode Quantum Systems Field quantization; quantum photodetection.
 Nonlinear Optics Phase-matched interactions; optical parametric amplifiers; generation of squeezed states, photon-twin beams, non-classical fourth-order interference, and polarization entanglement.
 Quantum Systems Theory Optimum binary detection; quantum precision measurements; quantum cryptography.

6.453 Quantum Optical Communication Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.