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6.453 Quantum Optical Communication - Lecture 23  

§ Announcements
§ Pick up lecture notes, slides
§ Term papers are due Tuesday, December 13th

§ More Quantum Optical Applications
§ Binary optical communication with squeezed states
§ Phase-sensing interferometry with squeezed states
§ Super-dense coding with entangled states
§ Quantum lithography with “N00N” states
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Minimum Probability of Error Binary Communication 

§ Binary Phase-Shift-Keying with Coherent States

§ Optimum Decision Rule and Minimum Probability of Error
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Minimum Probability of Error Binary Communication 

§ Binary Phase-Shift-Keying with Squeezed States

§ Optimum Decision Rule and Minimum Probability of Error
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Phase-Sensing Interferometry with Coherent States 

§ Phase-Conjugate Mach-Zehnder Interferometer:

§ Homodyne Measurement of :    
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Phase-Sensing Interferometry with Squeezed States 

§ Phase-Conjugate Mach-Zehnder Interferometer:

§ Homodyne Measurement of
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Binary Communication with Single Photons 

§ Binary Polarization Modulation, Lossless Channel,

§ One Bit of Information Transmitted per Photon

PBS 
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Super-Dense Coding with Entangled Photons 

§ Alice and Bob Share a Singlet State of Two Photons:

§ Alice Uses Two Classical Bits to Modulate Her Photon:
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Super-Dense Coding with Entangled Photons 

§ Alice Sends Her Photon to Bob
§ Bob then has a Bell state:

§ Bob Makes the Bell-Observable Measurement
§ Bob decodes both of Alice’s bits without error

www.rle.mit.edu/qoptics	10	

Optical Lithography with Coherent States 

§ Interference Between Plane Waves on a Photoresist
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Optical Lithography with “N00N” States 

§ Interference Between Plane Waves on an N-Photon Resist
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Subject Outline Revisited —  We’re Done! 

§ Quantum Optics
§ Dirac notation quantum mechanics; harmonic oscillator quantization;

number states, coherent states, and squeezed states; P represent-
ation and classical fields.

§ Single-Mode and Two-Mode Quantum Systems
§ Direct, homodyne, and heterodyne detection; linear propagation loss;

phase insensitive and phase sensitive amplifiers; entanglement and
teleportation.

§ Multi-Mode Quantum Systems
§ Field quantization; quantum photodetection.

§ Nonlinear Optics
§ Phase-matched interactions; optical parametric amplifiers; generation

of squeezed states, photon-twin beams, non-classical fourth-order
interference, and polarization entanglement.

§ Quantum Systems Theory
§ Optimum binary detection; quantum precision measurements;

quantum cryptography.
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