MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

Problem Set No. 8
Fall Term 2006
6.630 Electromagnetics

Reading assignment: Section 2.4, 2.6; J. A. Kong, "Electromagnetic Wave Theory". Problem P8.1

A TEM transmission line is driven by a voltage source $V_{o} \cos \omega t$ at 100 MHz . The characteristic impedance of the transmission line is $Z_{o}=100 \Omega$ for $\epsilon=\epsilon_{o}$. The transmission line length is $l=75 \mathrm{~cm}$

(a) Let $\epsilon=\epsilon_{o}$, show that $l=\lambda / 4$. If the voltage at $z=-l$ is

$$
V_{1}(t)=\frac{1}{\sqrt{2}} V_{o} \cos \left(\omega t-\frac{\pi}{4}\right)
$$

what is the load impedance Z_{L} ?
(b) Let $\epsilon=4 \epsilon_{o}$, find the wavelength λ. What is the input impedance $Z_{i n}$ at $z=-l$? What is the voltage $V_{1}(t)$ at $z=-l$?

Problem P8.2

Convert the following time domain expressions into their complex equivalents in the frequency domain, where we have defined

$$
\begin{aligned}
& A=\operatorname{Re}\left[\underline{A} e^{j \omega t}\right] \\
\text { Example : } & A=\sin \omega t \quad \underline{A}=-j
\end{aligned}
$$

(a)Find \underline{A}.
(b) Find A.
(i) $A=3 \sin \left(\omega t-\frac{\pi}{4}\right)$
(i) $\underline{A}=j e^{j \pi / 4}$
(ii) $A=\hat{x} \sin \omega t-\hat{y} 2 \cos \omega t$
(ii) $\underline{A}=\hat{x}+\hat{y} 3 j$
(iii) $A=\cos \phi \cos \omega t$
(iii) $\underline{A}=A_{0} e^{j \phi}+j$

Problem P8.3

Consider the TEM transmission line system connected to a time-harmonic voltage source as shown in the following figure.

(a) Find the impedance Z_{A} in terms of Z_{o}.
(b) Find the impedance Z_{B} in terms of Z_{o}.
(c) Find the impedance Z_{C} in terms of Z_{o}.
(d) Show that the time average power dissipated in Z_{C} is $\left|V_{o}\right|^{2} / 8 Z_{0}$.Assume Z_{o} is real.
(e) Find the voltage V_{L} across the load Z_{L} in terms of V_{o} and use V_{L} to calculate the time average power dissipated in the load Z_{L} in terms of V_{o} and Z_{o}. Assume Z_{o} is real.

