MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

Problem Set No. 9
Fall Term 2006
6.630 Electromagnetics

Issued: Week 10
Due: Week 11

Reading assignment: Section 2.6; J. A. Kong, "Electromagnetic Wave Theory".

Problem P9.1

Use the Smith chart to match the following load impedence, Z_{L} to the line impedance, $Z_{o}=50 \Omega$ by finding a suitable ℓ_{1} and ℓ_{2}.
(a) $Z_{L}=(100+25 j) \Omega$
(b) $Z_{L}=(100-25 j) \Omega$
(c) $Z_{L}=(25+50 j) \Omega$
(d) $Z_{L}=(25-50 j) \Omega$

Problem P9.2

(a) Determine the propagation constant $\theta(\omega)$, for the lumped transmission line shown in following figure. Show that the result can be placed in the form

$$
\sin ^{2} \frac{\theta}{2}=\frac{\omega^{2}-\omega_{0}^{2}}{\omega_{1}^{2}}
$$

where ω_{0}^{2} and ω_{1}^{2} are appropriate constants.

(b) For what range of ω will the line support a propagating wave, i.e., admit real θ solutions?

Problem P9.3

(a) Determine the dispersion relation for the backward wave line shown in following figure. That is, assume $V_{n}=A e^{-j n \theta}, I_{n}=B e^{-j n \theta}$ and determine $\theta(\omega)$. Sketch $\theta(\omega)$ for $\omega>$ $\omega_{0}=\frac{1}{2 \sqrt{L_{0} C_{0}}}$.
(b) For a given $\omega>\omega_{0}$, the result in part (a) yields two real real values of θ (excluding values which differ by $2 n \pi$). Determine the impedance, $Z=\frac{V_{n}}{I_{n}}$, for each of these modes and show that the time-averaged power flow is in the direction opposite the phase velocity.
(c) A voltage source $v_{s}(t)=V_{s} \sin \omega_{0} t$ is connected to terminal pair $a-a^{\prime}$. Determine the steady-state $v_{n}(t)$.
(d) Suppose the source connected to $a-a^{\prime}$ is given by

$$
v_{s}(t)=V_{s} \frac{\sin \omega_{1} t}{\omega_{1} t} \sin \omega_{0} t
$$

where $\omega_{1} \ll \omega_{0}$. Determine $v_{n}(t)$.

