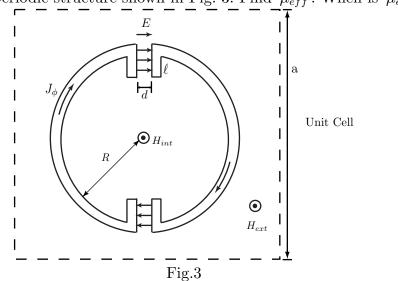

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

6.630 Electromagnetics Quiz No. 2

Time: 3:00pm-5:00pm

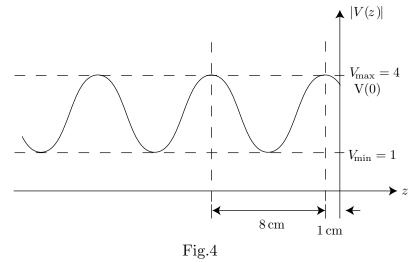
Problem 1 (8%)

Close one end of a charged transmission line at t = 0 with V(z) = 1 as shown in Fig. 1. Determine V(z) at times t = 0, $\frac{\ell}{2v}$, $\frac{\ell}{v}$, $\frac{3\ell}{2v}$.


Problem 2 (6%)

Find the radiation pattern for the six-dipoles array as shown in Fig. 2. What are the unit pattern, group pattern, and resultant pattern?

Problem 3 (10%)


Consider the periodic structure shown in Fig. 3. Find μ_{eff} . When is $\mu_{eff} < 0$?

Problem 4 (20%)

The result of a measurement of the voltage standing wave pattern on a transmission line with characteristic impedance $Z_o = 100\Omega$ is shown in Fig. 4.

- (a) What is the wavelength λ .
- (b) Calculate the VSWR.
- (c) Calculate the reflection coefficient Γ_L .
- (d) Determine the load impedance Z_L .

Problem 5 (30%)

Consider a $\frac{\lambda}{4}$ long transmission line, with characteristic impedance 50Ω , as shown in Fig. 5. One end is connected to a voltage source $V_g = 100 \sin \omega t$, which has a source impedance $Z_g = 50\Omega$, while the other end connected to a load impedance $Z_L = j50\Omega$. (a) Write out the complex expression for V(z), I(z).

(b) Solve the instantaneous power and time-averaged power dissipated in Z_L .

(c) Find Z_A , which is the input impedance at $z = -\lambda/4$.

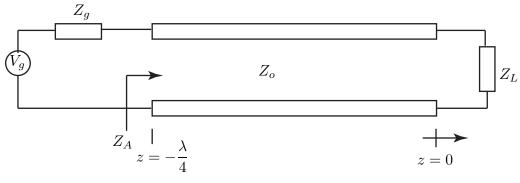


Fig.5

Problem 6 (26%)

Cosider a perfectly conducting parallel-plate waveguide with the plates seperated by d. The guided TM waves propagate in the \hat{z} direction. The operating frequency is 10 GHz.

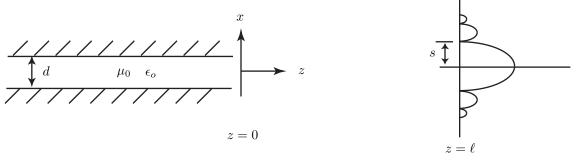


Fig.6

- (a) What's the relationship between d and the highest TM mode which can be guided in this waveguide?
- (b) If d is reduced to ensure that only one TM mode exists in this waveguide, write down the condition for d.
- (c) Under the condition where only one TM mode is propagating in this waveguide, the diffraction pattern is shown on a screen at $z = \ell$ ($\ell >> d$). The first null on the screen is at x = s. Write out s in terms of d and ℓ .