MASSACHUSETTS INSTITUTE OF TECHNOLOGY

 Department of Electrical Engineering and Computer ScienceProblem Set No. $2 \quad$ 6.632 Electromagnetic Wave Theory
Spring Term 2003
Reading assignment: Section 3.2, 3.3 J. A. Kong, "Electromagnetic Wave Theory"
Problem P2.1
An electromagnetic wave with the following electric field

$$
\bar{E}=\hat{x} \sin \left[\frac{k}{\sqrt{2}}(y+z)-\omega t\right]+\frac{1}{\sqrt{2}}[A \hat{y}+\hat{z}] \cos \left[\frac{k}{\sqrt{2}}(y+z)-\omega t\right]
$$

is propagating in a plasma medium characterized by the dispersion relation

$$
k=\frac{1}{c} \sqrt{\omega^{2}-4 \pi^{2} \times 10^{12}}
$$

where ω is the frequency in $\mathrm{rad} / \mathrm{sec}$, and c is the speed of light in free space.
(a) What is the value of A ?
(b) In which direction is the wave propagating and what is wave vector \bar{k} ?
(c) What is the polarization of the wave?
(d) The permeability of the plasma medium is μ_{o} of free space, what is the permittivity ϵ of the medium in terms of ω and permittivity of free space ϵ_{o} ?
(e) What is the magnetic field vector of the wave?
(f) What is the Poynting power density vector of the wave ?
(g) Show that the plasma frequency is $f_{p}=10^{6} \mathrm{~Hz}$.
(h) If $\omega=\sqrt{5} \pi \times 10^{6} \mathrm{rad} / \mathrm{sec}$, what is k and what are the phase velocity v_{p} and group velocity v_{g} ?
(i) If $\omega=\sqrt{3} \pi \times 10^{6} \mathrm{rad} / \mathrm{sec}$, what is k and what is the expression for \bar{E} ?
(j) If $\omega=\sqrt{3} \pi \times 10^{6} \mathrm{rad} / \mathrm{sec}$, what is the time-averaged Poynting power density?

Problem P2.2

Consider an electromagnetic wave propagating in the \hat{z}-direction with

$$
\bar{E}=\hat{x} e_{x} \cos \left(k z-\omega t+\psi_{x}\right)+\hat{y} e_{y} \cos \left(k z-\omega t+\psi_{y}\right)
$$

where e_{x}, e_{y}, ψ_{x}, and ψ_{y} are all real numbers.
(a) Let $e_{x}=2, e_{y}=1, \psi_{x}=\pi / 2, \psi_{y}=\pi / 4$. What is the polarization?
(b) Let $e_{x}=1, e_{y}=\psi_{x}=0$. This is a linearly polarized wave. Prove that it can be expressed as the superposition of a right-hand circularly polarized wave and a lefthand circularly polarized wave.
(c) Let $e_{x}=1, \psi_{x}=\pi / 4, \psi_{y}=-\pi / 4, e_{y}=1$. This is a circularly polarized wave. Prove that it can be decomposed into two linearly polarized waves.

Problem P2.3

In a uniaxial medium with

$$
\bar{H}=\nu \bar{B}, \quad \bar{E}=\bar{\kappa} \cdot \bar{D}, \quad \overline{\bar{\kappa}}=\left[\begin{array}{ccc}
\kappa & 0 & 0 \\
0 & \kappa & 0 \\
0 & 0 & \kappa_{z}
\end{array}\right]
$$

a plane wave propagates in the \hat{y}-direction.
(a) Write down the electric field vector of an ordinary wave. What is its spatial frequency k and its speed of propagation?
(b) Write down the electric field vector of an extraordinary wave. What is its spatial frequency k and its speed of propagation?
(c) If κ is real and $\kappa_{z}=-i K$ is purely imaginary, $K \gg \kappa$, what are the penetration depths of the ordinary and extraordinary waves?

