MASSACHUSETTS INSTITUTE OF TECHNOLOGY

 Department of Electrical Engineering and Computer ScienceProblem Set No. $5 \quad$ 6.632 Electromagnetic Wave Theory
Spring Term 2003
Reading assignment: Section 3.3, 3.4 J. A. Kong, "Electromagnetic Wave Theory"

Problem P5.1

Let a plane wave be incident on a plane boundary from the inside of a negative uniaxial crystal (see textbook, page 147). Consider the special case in which the optic axis is perpendicular to the plane of incidence. Find the range of θ such that there is only total internal reflection for the ordinary wave and the transmitted waves are extraordinary waves.

Problem P5.2

For a highly conducting earth, assume $\sigma / \omega \epsilon \gg 1$, where σ is the conductivity of the earth. Consider a TM wave incident upon the boundary of the earth surface.
(a) Write the magnetic and electric field components for $R^{\mathrm{TM}} \neq 0$ and then set $R^{\mathrm{TM}}=0$. Show that

$$
k_{z}=k_{z R}+i k_{z I}=\frac{\omega \epsilon}{\sigma} \sqrt{\frac{\omega \mu \sigma}{2}}(1-i)
$$

which propagates towards the surface and attenuates away from the surface. This is known as the Zenneck wave. Is the Zenneck wave a fast wave? A fast wave has $\operatorname{Re}\left(k_{x}\right)<k$.
(b) Define a surface impedance

$$
R_{s}-i X_{s}=k_{z} / \omega \epsilon
$$

What is R_{s} and X_{s} ?
(c) For an inductive surface characterized by $R_{s}=0$, write down \bar{H} with $R^{\mathrm{TM}}=0$ and discuss the behavior of the resulting wave.

Problem P5.3

Consider a solid-state Fabry-Perot etalon filter made of an eight-layer stratified medium. Regions $1,3,5$, and 7 are made of magnesium fluoride (refractive index $n=1.35$) and are a quarter-wavelength thick. Regions 2, 4 , and 6 are made of zinc sulfide (refractive index $n=2.3$). Regions 2 and 6 are a quarter-wavelength thick, but region 4 is a halfwavelength thick. What are the reflectivity and transmissivity for a plane wave normally incident upon this stratified medium? Explain why the structure can be used for filtering purposes.

Problem P5.4

(a) A plane wave in free space is incident at an angle θ on a half-space. For large $\epsilon \gg \epsilon_{o}$ show that the transmitted wave is almost perpendicular to the boundary by finding θ_{t}.
(b) A plane wave in free space is incident at an angle θ on a conducting half-space. For large $\sigma / \omega \epsilon_{o}$ show that the transmitted wave is almost perpendicular to the boundary by finding θ_{t}.

