6.632 Electromagnetic Wave Theory Quiz No. 2

Problem 1(40%)

Consider the following two Hertzian dipoles as shown in Fig. 1 driven at an angular frequency ω and with the same dipole moment. The first dipole is located at the origin (0,0,0) and oriented in the \hat{y} direction. The second dipole is located at $(0,0,-3\lambda/4)$ and oriented in the \hat{x} direction.

- (a) Give the expression for the vector current moment $\overline{f}(\theta, \phi)$. What are f_{θ} and f_{ϕ} ?
- (b) Show that in the far field the electric field is given by

$$\overline{E} = ik\eta_0 I_0 l \frac{e^{ikr}}{4\pi r} \left[\hat{\theta} \cos\theta (\sin\phi + \cos\phi e^{i\cos\theta\frac{3\pi}{2}}) + \hat{\phi} (\cos\phi - \sin\phi e^{i\cos\theta\frac{3\pi}{2}}) \right]$$

(c) What is the polarization of the radiated wave in the $+\hat{z}$ direction? What is the polarization of the radiated wave in the $-\hat{z}$ direction?

(d) What is the polarization of the radiated wave in the $+\hat{x}$ direction? What is the polarization of the radiated wave in the $+\hat{y}$ direction?

Problem 2(20%)

In this problem, we consider several equivalent situations for a plane wave propagation in the \hat{z} direction. Let the electric field be \hat{x} directed.

$$\overline{E} = \hat{x} E_0 e^{ikz}, \qquad \qquad \overline{H} = \hat{y} \frac{1}{\eta} E_0 e^{ikz}$$

and the region of interest be z > 0.

- (a) Put an electric current sheet with $\overline{J}_s = A\hat{x}$. What is the value of A so that the same field is preserved in the region of interest?
- (b) Put a magnetic current sheet with $\overline{M}_s = B\hat{y}$. What is the value of B so that the same field is preserved in the region of interest?
- (c) Replace the region z < 0 with a perfect conductor. Place in front of the conductor an electric sheet with $\overline{J}_s = C\hat{x}$ and a magnetic current sheet with $\overline{M}_s = D\hat{y}$. What is the value of C and D so that the same field is preserved in the region of interest?

Problem 3(40%)

An electric dipole antenna with dipole moment $I\ell$ is oriented in the \hat{z} direction and is placed in the front of perfectly conducting wall as shown in the Fig. 2a. The wall is located at x = 0 and extends to infinity in both y and z directions. The dipole is located at (d, 0, 0), where $d = \lambda/4$.

- (a) Consider the case where the wall is removed in Fig. 2a. Plot the radiation pattern of the electric field $|\overline{E}|$ in the xz plane. Plot the radiation pattern of the electric field $|\overline{E}|$ in the xy plane.
- (b) The wall is still there as shown in the Fig. 2a. Plot the radiation pattern of the electric field $|\overline{E}|$ in the xz plane.
- In part (c), (d), (e), the dipole is oriented in x direction as shown in Fig. 2b.
- (c) Consider the case where the wall is removed in Fig. 2b. Plot the radiation pattern of the electric field $|\overline{E}|$ in the xz plane.
- (d) The wall is still there as shown in Fig. 2b. Plot the radiation pattern of the electric field $|\overline{E}|$ in the xz plane.
- (e) If the dipole is located at $d = 5\lambda/4$, give all the values of θ ($0 \le \theta \le \pi/2$) at which the null occurs for the far field.