MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

6.632 Electromagnetic Wave Theory Quiz No. 1 _____

Problem 1(40%)

Consider a plane wave incident on a planar boundary at x = 0 from a dielectric medium with $\epsilon = 9\epsilon_o$ as shown in the Fig. 1. The right-hand circularly polarized incident electric field is

$$\overline{E}_i = E_0 \left[2\hat{y}\sin(k_x x + k_z z - \omega t) + (\sqrt{3}\hat{z} - \hat{x})\cos(k_x x + k_z z - \omega t) \right]$$

where E_0 is a real constant. The reflected field is

$$\overline{E}_{r} = E_{0}[R^{TE}2\hat{y}\sin(-k_{x}x + k_{z}z - \omega t) + R^{TM}(-\sqrt{3}\hat{z} - \hat{x})\cos(-k_{x}x + k_{z}z - \omega t)]$$

- (a) Show that the incident angle is 30° .
- (b) For $k_z = 1 \text{ m}^{-1}$, find the frequency (in Hz) and the wavelength (in m) in region 1. (c) Find the value of ϵ_t ($0 < \epsilon_t/\epsilon_o < \infty$) for which the incident angle is equal to the critical angle.
- (d) In the case of $\epsilon_t = 3\epsilon_o$, find the polarization of the reflected field.

Problem 2(40%)

Consider a circularly polarized electromagnetic wave normally incident upon a slab as shown in Fig. 2. The incident electric field is expressed by

$$\overline{E}_i = E_o \hat{x} \cos\left(k_y y - \omega t\right) + \alpha E_o \hat{z} \cos\left(k_y y - \omega t + \beta\right).$$

In this problem, neglect the reflection of the slab.

- (a) Let the incident wave be left-hand circularly polarized and assume that both α and β are positive, what is α and what is β ?
- (b) Let the slab be a uniaxial medium with the permittivity tensor

$$\overline{\overline{\epsilon}} = \begin{bmatrix} \epsilon_x & 0 & 0\\ 0 & \epsilon_y & 0\\ 0 & 0 & \epsilon_z \end{bmatrix}$$

where $\epsilon_x = \epsilon_y = 4\epsilon_o$, $\epsilon_z = 9\epsilon_o$ and the permeability $\mu = \mu_o$. Inside the uniaxial slab, what is the wave number k_y for the \hat{x} -polarized electric wave in terms of the wave number in free space k_o , where $k_o = \omega \sqrt{\mu_o \epsilon_o}$?

(c) For the uniaxial slab as in Part (b), let the incident wave be left-hand circularly polarized, what is the minimum thickness d in terms of the wavelength in free space λ_o , where $\lambda_o = 2\pi/k_o = 2\pi/\omega\sqrt{\mu_o\epsilon_o}$, such that the output electric field is right-hand circularly polarized?

Problem 3(20%)

Consider a rectangular waveguide with dimensions $1 \text{ cm} \times 0.5 \text{ cm}$.

- (a) What are the cutoff frequencies for the first five modes?
- (b) If the waveguide is excited at 20 GHz, what are the propagation modes? What are the corresponding propagation constants k_z ?