MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Department of Electrical Engineering and Computer Science

6.632 Electromagnetic Wave Theory

Quiz No. 1

Problem 1(40\%)

Consider a plane wave incident on a planar boundary at $x=0$ from a dielectric medium with $\epsilon=9 \epsilon_{o}$ as shown in the Fig. 1. The right-hand circularly polarized incident electric field is

$$
\bar{E}_{i}=E_{0}\left[2 \hat{y} \sin \left(k_{x} x+k_{z} z-\omega t\right)+(\sqrt{3} \hat{z}-\hat{x}) \cos \left(k_{x} x+k_{z} z-\omega t\right)\right]
$$

where E_{0} is a real constant. The reflected field is

$$
\bar{E}_{r}=E_{0}\left[R^{T E} 2 \hat{y} \sin \left(-k_{x} x+k_{z} z-\omega t\right)+R^{T M}(-\sqrt{3} \hat{z}-\hat{x}) \cos \left(-k_{x} x+k_{z} z-\omega t\right)\right]
$$

Fig. 1
(a) Show that the incident angle is 30°.
(b) For $k_{z}=1 \mathrm{~m}^{-1}$, find the frequency (in Hz) and the wavelength (in m) in region 1.
(c) Find the value of $\epsilon_{t}\left(0<\epsilon_{t} / \epsilon_{o}<\infty\right)$ for which the incident angle is equal to the critical angle.
(d) In the case of $\epsilon_{t}=3 \epsilon_{o}$, find the polarization of the reflected field.

Problem 2(40\%)

Consider a circularly polarized electromagnetic wave normally incident upon a slab as shown in Fig. 2. The incident electric field is expressed by

$$
\bar{E}_{i}=E_{o} \hat{x} \cos \left(k_{y} y-\omega t\right)+\alpha E_{o} \hat{z} \cos \left(k_{y} y-\omega t+\beta\right) .
$$

In this problem, neglect the reflection of the slab.

Fig. 2
(a) Let the incident wave be left-hand circularly polarized and assume that both α and β are positive, what is α and what is β ?
(b) Let the slab be a uniaxial medium with the permittivity tensor

$$
\overline{\bar{\epsilon}}=\left[\begin{array}{ccc}
\epsilon_{x} & 0 & 0 \\
0 & \epsilon_{y} & 0 \\
0 & 0 & \epsilon_{z}
\end{array}\right]
$$

where $\epsilon_{x}=\epsilon_{y}=4 \epsilon_{o}, \epsilon_{z}=9 \epsilon_{o}$ and the permeability $\mu=\mu_{o}$. Inside the uniaxial slab, what is the wave number k_{y} for the \hat{x}-polarized electric wave in terms of the wave number in free space k_{o}, where $k_{o}=\omega \sqrt{\mu_{o} \epsilon_{o}}$?
(c) For the uniaxial slab as in Part (b), let the incident wave be left-hand circularly polarized, what is the minimum thickness d in terms of the wavelength in free space λ_{o}, where $\lambda_{o}=2 \pi / k_{o}=2 \pi / \omega \sqrt{\mu_{o} \epsilon_{o}}$, such that the output electric field is right-hand circularly polarized?

Problem 3(20\%)

Consider a rectangular waveguide with dimensions $1 \mathrm{~cm} \times 0.5 \mathrm{~cm}$.
(a) What are the cutoff frequencies for the first five modes?
(b) If the waveguide is excited at 20 GHz , what are the propagation modes? What are the corresponding propagation constants k_{z} ?

