MIT OpenCourseWare
http://ocw.mit.edu

6.641 Electromagnetic Fields, Forces, and Motion

Spring 2005

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Problem Set 1 - Solutions

Problem 1.1

A

$$
\vec{F}=q(\vec{E}+\vec{v} \times \vec{B}) \leftarrow \text { Lorentz Force Law }
$$

In the steady state $\vec{F}=0$, so

$$
\begin{aligned}
& q \vec{E}=-q \vec{v} \times \vec{B} \Rightarrow \vec{E}=-\vec{v} \times \vec{B} \\
& \vec{v}= \begin{cases}v_{y} \hat{i}_{y} & \text { pos. charge carriers } \\
-v_{y} \hat{i}_{y} & \text { neg. charge carriers }\end{cases} \\
& \vec{B}=B_{0} \hat{i}_{z}
\end{aligned}
$$

so

$$
\vec{E}= \begin{cases}-v_{y} B_{0} \hat{i}_{x} & \text { pos. charge carriers } \\ v_{y} B_{0} \hat{i}_{x} & \text { neg. charge carriers }\end{cases}
$$

B

$$
\begin{aligned}
& v_{H}=\Phi(x=d)-\Phi(x=0)=-\int_{0}^{d} E_{x} d x=\int_{d}^{0} E_{x} d x \\
& v_{H}= \begin{cases}v_{y} B_{0} d & \text { pos. charges } \\
-v_{y} B_{0} d & \text { neg. charges }\end{cases}
\end{aligned}
$$

C
As seen in part (b), positive and negative charge carriers give opposite polarity voltages, so answer is "yes."

Problem 1.2

By problem:

$$
\rho= \begin{cases}\rho_{b} & r<b \\ \rho_{a} & b<r<a\end{cases}
$$

Also, no σ_{s} at $r=b$, but nonzero σ_{s} at $r=a$ such that $\vec{E}=0$ for $r>a$.

Figure 1: Figure for 1C. Opposite polarity voltages between holes and electrons (Image by MIT OpenCourseWare.)

A
By Gauss's Law

$$
\begin{equation*}
\oint_{S_{R}} \varepsilon_{0} \vec{E} \cdot d \vec{a}=\int_{V_{R}} \rho d V \quad S_{R}=\text { sphere with radius } r \tag{1}
\end{equation*}
$$

As shown in class, symmetry ensures \vec{E} has only radial component: $\vec{E}=E_{r} \hat{i}_{r}$.
LHS of (11):

$$
\begin{aligned}
& \oint_{S_{R}} \varepsilon_{0} \vec{E} \cdot d \vec{a}=\int_{0}^{2 \pi} \int_{0}^{\pi} \epsilon_{0}\left(E_{r} \hat{i}_{r}\right) \cdot \underbrace{r^{2} \sin \theta d \theta d \phi \hat{i}_{r}}_{d \vec{a} \text { in spherical coordinates }} \\
& =\underbrace{4 \pi r^{2}}_{\text {surface area of sphere of radius } r}
\end{aligned}
$$

RHS of (1):
For $r<b$:

$$
\begin{aligned}
& \int_{V_{R}} \rho d V=\int_{0}^{r} \int_{0}^{2 \pi} \int_{0}^{\pi} \rho_{b} \underbrace{r^{2} \sin \theta d \theta d \phi d r}_{d V: \text { diff vol. element }} \\
& =\underbrace{\frac{4}{3} \pi r^{3}}_{\text {vol of sphere }} \rho_{b}
\end{aligned}
$$

For $r>b$ and $r<a:(b<r<a)$:

$$
\begin{aligned}
\int_{V_{R}} \rho d V & =\int_{0}^{b} \int_{0}^{2 \pi} \int_{0}^{\pi} \rho_{b} r^{2} \sin \theta d \theta d \phi d r \\
& +\int_{b}^{r} \int_{0}^{2 \pi} \int_{0}^{\pi} \rho_{a} r^{2} \sin \theta d \theta d \phi d r \\
& =\frac{4 \pi \rho_{b} b^{3}}{3}+\frac{4 \pi \rho_{a}\left(r^{3}-b^{3}\right)}{3}
\end{aligned}
$$

Equating LHS and RHS:

$$
\begin{aligned}
& 4 \pi r^{2} E_{r} \varepsilon_{0}= \begin{cases}\frac{4 \pi r^{3}}{3} \rho_{b} & r<b \\
\frac{4 \pi \rho_{b} b^{3}}{3}+\frac{4 \pi \rho_{a}\left(r^{3}-b^{3}\right)}{3} & b<r<a\end{cases} \\
& E_{r}= \begin{cases}\frac{r \rho_{b}}{3 \varepsilon_{0}} & r<b \\
\frac{b^{3}\left(\rho_{b}-\rho_{a}\right)}{3 \varepsilon_{0} r^{2}}+\frac{\rho_{a} r}{3 \varepsilon_{0}} & b<r<a\end{cases}
\end{aligned}
$$

B
Again: $\hat{n} \cdot\left(\varepsilon_{0} E^{a}-\varepsilon_{0} E^{b}\right)=\sigma_{s}$

$$
\begin{aligned}
& \vec{E}\left(r=a^{+}\right)=0 \\
& \vec{E}\left(r=a^{-}\right)=+\left[\frac{b^{3}\left(\rho_{b}-\rho_{a}\right)}{3 \varepsilon_{0} a^{2}}+\frac{\rho_{a} a}{3 \varepsilon_{0}}\right] \hat{i}_{r} \quad \text { by part (a) } \\
& \sigma_{s}=\hat{i}_{r} \cdot\left(-\varepsilon_{0} \vec{E}\left(r=a^{-}\right)\right)
\end{aligned}
$$

so

$$
\sigma_{s}=-\left(\frac{b^{3}\left(\rho_{b}-\rho_{a}\right)}{3 a^{2}}+\frac{\rho_{a} a}{3}\right)
$$

C

$$
\begin{aligned}
& r<b \quad Q_{b}=\frac{4}{3} \pi b^{3} \rho_{b} \quad Q_{\sigma}(r=a)=\sigma_{s} 4 \pi a^{2} \\
& b<r<a \quad Q_{a}=\frac{4}{3} \pi\left(a^{3}-b^{3}\right) \rho_{a} \\
& Q_{T}=Q_{b}+Q_{a}+Q_{\sigma}=0
\end{aligned}
$$

Problem 1.3

a
We are told current going in $+z$ direction inside cylinder $r<b$. Current going through cylinder

$$
\begin{aligned}
& =I_{\text {total }}=\int_{S} \vec{J} \cdot d \vec{a} \\
& =\int_{0}^{b} \int_{0}^{2 \pi} \underbrace{\left(J_{0} \hat{i}_{z}\right)}_{\vec{J}} \cdot \underbrace{\left.r d \phi d r \hat{i}_{z}\right)}_{d \vec{a}} \\
& =J_{0} \pi b^{2}
\end{aligned}
$$

$$
|\vec{K}|=\frac{\text { Total current in sheet }}{\text { length of sheet (i.e. circumference of circle of radius } a \text {) }}
$$

Thus, \vec{K} 's units are $\frac{\mathrm{Amps}}{m}$, whereas \vec{J} 's units are $\frac{\mathrm{Amps}}{m^{2}}$

$$
\begin{aligned}
& |\vec{K}|=\frac{J_{0} \pi b^{2}}{2 \pi a}=\frac{J_{0} b^{2}}{2 a} \\
& \vec{K}=-\frac{J_{0} b^{2}}{2 a} \hat{i}_{z}
\end{aligned}
$$

Figure 2: Figure for Problem 1.3 Part A. A cylinder with volume current going in the $+z$ direction for $r<b$. (Image by MIT OpenCourseWare)

B

$$
\begin{equation*}
\oint_{C} \vec{H} \cdot d \vec{s}=\int_{S} \vec{J} \cdot d \vec{a}+\underbrace{\frac{d}{d t} \int_{S} \varepsilon_{0} \vec{E} \cdot d \vec{a}}_{\text {no } \vec{E} \text { field, so this term is } 0} \tag{2}
\end{equation*}
$$

Choose C as a circle and S as the minimum surface that circle bounds. Now, solve LHS of Ampere's Law

Figure 3: Choice of contour C and surface S (Image by MIT OpenCourseWare).
(2)

$$
\oint_{C} \vec{H} \cdot d \vec{s}=\int_{0}^{2 \pi} \underbrace{\left(H_{\phi} \hat{i}_{\phi}\right)}_{\vec{H}} \cdot \underbrace{\left(r d \phi \hat{i}_{\phi}\right)}_{d \vec{s}}=2 \pi r H_{\phi}
$$

We assumed $H_{z}=H_{r}=0$. This follows from the symmetry of the problem. $H_{r}=0$ because $\oint_{S} \mu_{0} \vec{H} \cdot d \vec{a}=0$. In particular, choose S as shown in Figure 3. H_{z} is more difficult to see. It is discussed in Haus \& Melcher. The basic idea is to use the contour, C, to show that if $H_{z} \neq 0$ it would have to be nonzero even at ∞, which is not possible without sources at ∞. Now for RHS of Ampere:
$r<b:$

Figure 4: Illustration of the contour C (Image by MIT OpenCourseWare).

Figure 5: Diagram showing surface S (Image by MIT OpenCourseWare).

$$
\begin{aligned}
& \int_{S} \vec{J} \cdot d \vec{a}=\int_{0}^{2 \pi} \int_{0}^{r} \underbrace{\left(J_{0} \cdot \hat{i}_{z}\right)}_{\vec{J}} \cdot \underbrace{\left(r^{\prime} d r^{\prime} d \phi \hat{i}_{z}\right)}_{d \vec{a}} \\
& =J_{0} r^{2} \pi \\
& a>r>b: \\
& \int_{S} \vec{J} \cdot d \vec{a}=\int_{0}^{2 \pi} \int_{0}^{b}\left(J_{0} \hat{i}_{z}\right) \cdot(r^{\prime} d r^{\prime} d \phi \hat{i}_{z}+\underbrace{\int_{0}^{2 \pi} \int_{b}^{r}\left(0 \cdot \hat{i}_{z}\right) \cdot\left(r^{\prime} d r^{\prime} d \phi \hat{i}_{z}\right)}_{0} \\
& =J_{0} b^{2} \pi
\end{aligned}
$$

Equating LHS and RHS:

$$
\begin{aligned}
& 2 \pi r H_{\phi}= \begin{cases}J_{0} r^{2} \pi & r<b \\
J_{0} b^{2} \pi & a>r>b\end{cases} \\
& \vec{H}= \begin{cases}\frac{J_{0} r}{2} \hat{i}_{\phi} & r<b \\
\frac{J_{0} b^{2}}{2 r} \hat{i}_{\phi} & a>r>b\end{cases}
\end{aligned}
$$

C
From text, Ampere's continuity condition:

$$
\hat{n} \times\left(\vec{H}^{a}-\vec{H}^{b}\right)=\vec{K}
$$

Figure 6: Ampere's continuity condition for Problem 1.3 Part C (Image by MIT OpenCourseWare)

$$
\begin{aligned}
& H_{\phi}\left(r=a_{-}\right)=-K_{z} \\
& \frac{J_{0} b^{2}}{2 a}=-K_{z}=\frac{J_{0} b^{2}}{2 a}
\end{aligned}
$$

Problem 1.4

A
We can simply add the fields of the two point charges. Start with the field of a point charge q at origin and let S_{R} be sphere of radius R centered at the origin. By Gauss:

$$
\oint_{S_{R}} \varepsilon_{0} \vec{E} \cdot d \vec{a}=\int \rho d V
$$

In this case $\rho=\delta(\vec{r}) q$, so RHS is

$$
\int \rho d V=\iiint \delta(\vec{r}) q d x d y d z=q
$$

LHS is

$$
\begin{aligned}
& \oint_{S_{R}} \varepsilon_{0} \overrightarrow{E_{r}} \cdot d \vec{a}=(\varepsilon_{0} \underbrace{E_{r}}_{\text {symmetry again }})\left(\text { surface area of } S_{r}\right) \\
& =4 \pi r^{2} \varepsilon_{0} E_{r}
\end{aligned}
$$

Equate LHS and RHS

$$
\begin{aligned}
& 4 \pi r^{2} \varepsilon_{0} E_{r}=q \\
& \vec{E}=\frac{q}{4 \pi r^{2} \varepsilon_{0}} \hat{i}_{r}
\end{aligned}
$$

Convert to cartesian: Any point is given by

$$
\vec{r}=x(r, \theta, \phi) \hat{i}_{x}+y(r, \theta, \phi) \hat{i}_{y}+z(r, \theta, \phi) \hat{i}_{z}
$$

By spherical coordinates

$$
\begin{aligned}
& x=r \sin \theta \cos \phi \\
& y=r \sin \theta \sin \phi
\end{aligned}
$$

$$
\begin{aligned}
& z=r \cos \theta \\
& \vec{r}=r \sin \theta \cos \phi \hat{i}_{x}+r \sin \theta \sin \phi \hat{i}_{y}+r \cos \theta \hat{i}_{z} \\
& \hat{i}_{r} \| \text { line formed by varying } r \text { and fixing } \phi \text { and } \theta \\
& \bar{r}=r \overline{i_{r}}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \overline{i_{r}}=\sin \theta \cos \phi \hat{i_{x}}+\sin \theta \sin \phi \hat{i}_{y}+\cos \theta \hat{i}_{z} \\
& =\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}} \hat{i_{x}}+\frac{y}{\sqrt{x^{2}+y^{2}+z^{2}}} \hat{i_{y}}+\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}} \hat{i_{z}}
\end{aligned}
$$

so,

$$
\begin{aligned}
& \vec{E}=\frac{q}{4 \pi \varepsilon_{0}\left(x^{2}+y^{2}+z^{2}\right)} \hat{i}_{r} \\
& \vec{E}_{\text {total }}=\vec{E}_{1}+\vec{E}_{2}
\end{aligned}
$$

\vec{E}_{1} is just \vec{E} with $y \rightarrow y-\frac{d}{2} . \vec{E}_{2}$ is just \vec{E} with $y \rightarrow y+\frac{d}{2}$. Problem has $y=0$
(i)

$$
\begin{aligned}
& \vec{E}_{\text {total }}=\vec{E}_{1}=\left[\frac{x}{\sqrt{x^{2}+\frac{d^{2}}{4}+z^{2}}} \hat{i}_{x}+\frac{z}{\sqrt{x^{2}+\frac{d^{2}}{4}+z^{2}}} \hat{i}_{z}-\frac{\frac{d}{2}}{\sqrt{x^{2}+\frac{d^{2}}{4}+z^{2}}} \hat{i}_{y}\right] \cdot\left[\frac{q}{4 \pi \varepsilon_{0}\left(x^{2}+\frac{d^{2}}{4}+z^{2}\right)}\right] \\
& =\frac{q}{4 \pi \varepsilon_{0}\left(x^{2}+\frac{d^{2}}{4}+z^{2}\right)^{\frac{3}{2}}}\left[x \hat{i}_{x}-\frac{d}{2} \hat{i}_{y}+z \hat{i}_{z}\right]
\end{aligned}
$$

(ii)
$\vec{E}_{\text {total }}=\vec{E}_{1}+\vec{E}_{2}$
$=q \frac{x \hat{i}_{x}+z \hat{i}_{z}}{2 \pi \varepsilon_{0}\left(x^{2}+\left(\frac{d}{2}\right)^{2}+z^{2}\right)^{\frac{3}{2}}}$
(iii)
$\vec{E}_{\text {total }}=\vec{E}_{1}+\vec{E}_{2}$
$=\frac{-d q \hat{i}_{y}}{4 \pi \varepsilon_{0}\left(x^{2}+\frac{d^{2}}{4}+z^{2}\right)^{\frac{3}{2}}}$
B

$$
\vec{F}=q_{1} \vec{E} \quad \vec{E} \text { doesn't include field of } q
$$

(i)
$\vec{F}=0$, by Newton's third law a body cannot exert a net force on itself.
(ii)

$$
\begin{aligned}
& \vec{F}=q_{1} \vec{E}=q \vec{E}_{2}\left(x=0, y=\frac{d}{2}, z=0\right) \\
& =\frac{q^{2} \overline{i_{y}}}{4 \pi \varepsilon_{0}\left(d^{2}\right)}=\frac{q^{2} \overline{i_{y}}}{4 \pi \varepsilon_{0} d^{2}}
\end{aligned}
$$

(iii)
$\vec{F}=-\frac{q^{2} \overline{i_{y}}}{4 \pi \varepsilon_{0} d^{2}}$

