MIT OpenCourseWare
http://ocw.mit.edu

6.641 Electromagnetic Fields, Forces, and Motion

Spring 2005

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Problem Set 8 - Solutions

Prof. Markus Zahn
MIT OpenCourseWare

Problem 8.1

A
From Fig. 6P. 1 we see the geometric relations

$$
r^{\prime}=r, \theta^{\prime}=\theta-\Omega t, z^{\prime}=z, t^{\prime}=t
$$

There is also a set of back transformations

$$
\begin{equation*}
r=r^{\prime}, \theta=\theta^{\prime}+\Omega t, z=z^{\prime}, t=t^{\prime} \tag{1}
\end{equation*}
$$

B

Using the chain rule for partial derivatives

$$
\frac{\partial \Psi}{\partial t^{\prime}}=\left(\frac{\partial \Psi}{\partial r}\right)\left(\frac{\partial r}{\partial t^{\prime}}\right)+\left(\frac{\partial \Psi}{\partial \theta}\right)\left(\frac{\partial \theta}{\partial t^{\prime}}\right)+\left(\frac{\partial \Psi}{\partial z}\right)\left(\frac{\partial z}{\partial t^{\prime}}\right)+\left(\frac{\partial \Psi}{\partial t}\right)\left(\frac{\partial t}{\partial t^{\prime}}\right)
$$

From (1) we learn that

$$
\frac{\partial r}{\partial t^{\prime}}=0, \frac{\partial \theta}{\partial t^{\prime}}=\Omega, \frac{\partial z}{\partial t^{\prime}}=0, \frac{\partial t}{\partial t^{\prime}}=1
$$

Hence,

$$
\frac{\partial \Psi}{\partial t^{\prime}}=\frac{\partial \Psi}{\partial t}+\Omega \frac{\partial \Psi}{\partial \theta}
$$

We note that the remaining partial derivatives of Ψ are

$$
\frac{\partial \Psi}{\partial r^{\prime}}=\frac{\partial \Psi}{\partial r}, \frac{\partial \Psi}{\partial \theta^{\prime}}=\frac{\partial \Psi}{\partial \theta}, \frac{\partial \Psi}{\partial z^{\prime}}=\frac{\partial \Psi}{\partial z}
$$

Problem 8.2

A
In the frame rotating with the cylinder

$$
\begin{aligned}
& \bar{E}^{\prime}\left(r^{\prime}\right)=\frac{K}{r^{\prime}} \bar{i}_{r} \\
& \bar{H}^{\prime}=0, \bar{B}^{\prime}=\mu_{0} \bar{H}^{\prime}=0
\end{aligned}
$$

But then since $r^{\prime}=r, \bar{v}_{r}(r)=r \omega \bar{i}_{\theta}$

$$
\bar{E}=\bar{E}^{\prime}-\bar{v}_{r} \times \bar{B}^{\prime}=\bar{E}^{\prime}=\frac{K}{r} \bar{i}_{r}
$$

$$
\begin{aligned}
V & =\int_{a}^{b} \bar{E} \cdot d \bar{l}=\int_{a}^{b} \frac{K}{r} d r=K \ln \left(\frac{b}{a}\right) \\
\bar{E} & =\frac{V}{\ln \left(\frac{b}{a}\right)} \frac{1}{r} \overrightarrow{i_{r}}=\bar{E}^{\prime}=\frac{V}{\ln \left(\frac{b}{a}\right)} \frac{1}{r^{\prime}} \overrightarrow{i_{r}}
\end{aligned}
$$

The surface charge density is then

$$
\begin{aligned}
& \sigma_{a}^{\prime}=\overrightarrow{i_{r}} \cdot \varepsilon_{0} \bar{E}^{\prime}=\frac{\varepsilon_{0} V}{\ln \frac{b}{a}} \frac{1}{a}=\sigma_{a} \\
& \sigma_{b}^{\prime}=-\overrightarrow{i_{r}} \cdot \varepsilon_{0} \bar{E}^{\prime}=\frac{\varepsilon_{0} V}{\ln \frac{b}{a}} \frac{1}{b}=\sigma_{b}
\end{aligned}
$$

B

$$
\bar{J}=\bar{J}^{\prime}+\bar{v}_{r} \rho^{\prime}
$$

But in this problem we have only surface currents and charges

$$
\begin{aligned}
& \bar{K}=\bar{K}^{\prime}+\bar{v}_{r} \sigma^{\prime}=\bar{v}_{r} \sigma^{\prime} \\
& \bar{K}(a)=\frac{a \omega \varepsilon_{0} V}{a \ln \left(\frac{b}{a}\right)} \overrightarrow{i_{\theta}}=\frac{\omega \varepsilon_{0} V}{\ln \frac{b}{a}} \overrightarrow{i_{\theta}} \\
& \bar{K}(b)=-\frac{b \omega \varepsilon_{0} V}{b \ln \frac{b}{a}} \overrightarrow{i_{\theta}}=-\frac{\omega \varepsilon_{0} V}{\ln \frac{b}{a}} \overrightarrow{i_{\theta}}
\end{aligned}
$$

C

$$
\bar{H}=-\frac{\omega \varepsilon_{0} V}{\ln \frac{b}{a}} \overrightarrow{i_{z}}
$$

D

$$
\begin{aligned}
& \bar{H}=\bar{H}^{\prime}+\bar{v}_{r} \times \bar{D}^{\prime}=\bar{v}_{r} \times \bar{D}^{\prime} \\
& \bar{H}=r^{\prime} \omega\left(\frac{\varepsilon_{0} V}{\ln \frac{b}{a}} \frac{1}{r^{\prime}}\right)\left(\overrightarrow{i_{\theta}} \times \overrightarrow{i_{r}}\right) \\
& \bar{H}=-\frac{\omega \varepsilon_{0} V}{\ln \frac{b}{a}} \overrightarrow{i_{z}}
\end{aligned}
$$

This result checks with the calculation of part (c).

Problem 8.3

A
We assume the simple magnetic field

$$
\begin{aligned}
& \bar{H}= \begin{cases}-\frac{i}{D} \overrightarrow{i_{3}} & 0<x_{1}<x \\
0 & x<x_{1}\end{cases} \\
& \lambda(x)=\int \bar{B} \cdot \bar{d} a=\frac{\mu_{0} W x}{D} i
\end{aligned}
$$

B

$$
L(x)=\frac{\lambda(x, i)}{i}=\frac{\mu_{0} W x}{D}
$$

Since the system is linear

$$
W^{\prime}(i, x)=\frac{1}{2} L(x) i^{2}=\frac{1}{2} \frac{\mu_{0} W x}{D} i^{2}
$$

C

$$
\begin{equation*}
f^{e}=\frac{\partial W_{m}^{\prime}}{\partial x}=\frac{1}{2} \frac{\mu_{0} W}{D} i^{2} \tag{2}
\end{equation*}
$$

D
The mechanical equation is

$$
\begin{equation*}
M \frac{d^{2} x}{d t^{2}}+B \frac{d x}{d t}=\frac{1}{2} \frac{\mu_{0} W}{D} i^{2} \tag{3}
\end{equation*}
$$

The electrical circuit equation is

$$
\begin{equation*}
\frac{d \lambda}{d t}=\frac{d}{d t}\left(\frac{\mu_{0} W x}{D} i\right)=V_{0} \tag{4}
\end{equation*}
$$

E

From (3) we learn that

$$
\frac{d x}{d t}=\frac{\mu_{0} W}{2 B D} i^{2}=\mathrm{constant}
$$

while from (4) with i constant, we learn that

$$
\frac{\mu_{0} W i}{D} \frac{d x}{d t}=V_{0}
$$

Solving these two simultaneously

$$
\frac{d x}{d t}=\left[\frac{D V_{0}^{2}}{2 \mu_{0} W B}\right]^{\frac{1}{3}}
$$

F

From (2)

$$
i=\sqrt{\frac{2 B D}{\mu_{0} W} \frac{d x}{d t}}=\left(\frac{D}{\mu_{0} W}\right)^{\frac{2}{3}}(2 B)^{\frac{1}{3}} V_{0}^{\frac{1}{3}}
$$

G
As in part A,

$$
\bar{H}= \begin{cases}-\frac{i}{D} \overrightarrow{i_{3}} & 0<x_{1}<x \\ 0 & x<x_{1}\end{cases}
$$

H

The surface current \bar{K} is

$$
\bar{K}=-\frac{i(t)}{D} \bar{i}_{2}
$$

The force on the short is

$$
\begin{align*}
\bar{F} & =\int \bar{J} \times \bar{B} d v=D W \bar{K} \times\left(\frac{\mu_{0} \bar{H}_{1}+\mu_{0} \bar{H}_{2}}{2}\right) \tag{5}\\
& =\frac{\mu_{0} W}{2} i^{2}(t) \overrightarrow{i_{1}} \tag{6}
\end{align*}
$$

I

$$
\begin{aligned}
\nabla \times \bar{E} & =\frac{\partial E_{2}}{\partial x_{1}} \overrightarrow{i_{3}}=-\frac{\partial \bar{B}}{\partial t}=\frac{\mu_{0}}{D} \frac{d i}{d t} \overrightarrow{i_{3}} \\
\bar{E} & =\left(\frac{\mu_{0} x}{D} \frac{d i}{d t}+C\right) \overrightarrow{i_{2}} \\
& =\left(\frac{\mu_{0} x}{D} \frac{d i}{d t}-\frac{V(t)}{W}\right) \overrightarrow{i_{2}}
\end{aligned}
$$

J

Choosing a contour with the right leg in the moving short, the left leg fixed at $x_{1}=0$

$$
\oint_{C} \vec{E}^{\prime} \cdot \overrightarrow{d l}=-\frac{d}{d t} \int_{S} \bar{B} \cdot d \bar{a}
$$

Since $E^{\prime}=0$ in the short and we are only considering quasistatic fields

$$
\begin{align*}
& \oint \vec{E}^{\prime} \cdot d \vec{l}=V(t)=W x \mu_{0} \frac{\partial H_{0}}{\partial t}+W \frac{d x}{d t} \mu_{0} H_{0} \\
& =\frac{d}{d t}\left(\frac{\mu_{0} W x}{D} i(t)\right) \tag{7}
\end{align*}
$$

K

$$
\bar{n} \times\left(\bar{E}^{b}\right)=V_{n} \bar{B}^{b}
$$

Here

$$
\begin{align*}
& \bar{n}=\overrightarrow{i_{1}}, V_{n}=\frac{d x}{d t}, \bar{B}^{b}=-\frac{\mu_{0} i}{D} \overrightarrow{i_{3}} \\
& \bar{E}_{b}=\left(\frac{\mu_{0} x}{D} \frac{d i}{d t}-\frac{V(t)}{W}\right) \overrightarrow{i_{2}}=\left(-\frac{d x}{d t} \frac{\mu_{0}}{D} i\right) \overrightarrow{i_{2}} \\
& V(t)=\frac{\mu_{0} x W}{D} \frac{d i}{d t}+\frac{\mu_{0} i W}{D} \frac{d x}{d t}=\frac{d}{d t}\left(\frac{\mu_{0} x W i}{D}\right) \tag{8}
\end{align*}
$$

L

Equations (6) and (22) are identical. Equations (8), (7), and (4) are identical if $V(t)=V_{0}$. Since we used (2) and (4) to solve the first part we would get the same answer using (6) and (7) in the second part.

M

Since $\frac{d i}{d t}=0$

$$
\bar{E}_{2}(x)=-\frac{V(t)}{w} \overrightarrow{i_{y}}=-\frac{V_{0}}{W} \overrightarrow{i_{y}}
$$

Problem 8.4

A
The electric field in the moving laminations is

$$
\overrightarrow{E^{\prime}}=\frac{\vec{J}^{\prime}}{\sigma}=\frac{\vec{J}}{\sigma}=\frac{i}{\sigma A} \overrightarrow{i_{z}}
$$

The electric field in the stationary frame is

$$
\begin{aligned}
& \vec{E}=\vec{E}^{\prime}-\bar{V} \times \bar{B}=\left(\frac{i}{\sigma A}+r \omega B_{y}\right) \overrightarrow{i_{z}} \\
& B_{y}=-\frac{\mu_{0} N i}{S} \\
& V=\left(\frac{2 D}{\sigma A}-\frac{\mu_{0} 2 D r \omega N}{S}\right) i
\end{aligned}
$$

Now we have the $V-i$ characteristic of the device. The device is in series with an inductance and a load resistor $R_{t}=R_{L}+R_{\mathrm{int}}$.

$$
\left[R_{t}+\frac{2 D}{\sigma A}-\frac{\mu_{0} 2 D r N}{S} \omega\right] i+\frac{\mu_{0} N^{2} a D}{S} \frac{d i}{d t}=0
$$

B
Let

$$
\begin{aligned}
& R_{1}=R_{t}+\frac{2 D}{\sigma A}-\frac{2 D \mu_{0} r N \omega}{S}, L=\frac{\mu_{0} N^{2} a D}{S} \\
& i=I_{0} e^{-\frac{R_{1}}{L} t} \\
& P_{d}=\frac{i^{2}}{R_{L}}=\frac{I_{0}^{2}}{R_{L}}\left[e^{-\frac{R_{1}}{L} t}\right]^{2}
\end{aligned}
$$

If

$$
R_{1}=R_{t}+\frac{2 D}{\sigma A}-\frac{2 D \mu_{0} r N \omega}{S}<0
$$

the power delivered is unbounded as $t \rightarrow \infty$.
C
As the current becomes large, the electrical nonlinearity of the magnetic circuit will limit the exponential growth and determine a level of stable steady state operation (see Fig. 6.4.12).

Problem 8.5

A
The armature circuit equation is

$$
\begin{equation*}
v_{A}=R_{a} i_{a}+G I_{f} \omega \tag{9}
\end{equation*}
$$

The equation of motion is

$$
J \frac{d \omega}{d t}=G I_{f} i_{a}
$$

Which may be integrated to yield

$$
\begin{equation*}
\omega(t)=\frac{G}{J} \int_{-\infty}^{t} i_{a}(t) \tag{10}
\end{equation*}
$$

Combining (10) with (9)

$$
v_{A}=R_{a} i_{a}+\frac{\left(G I_{f}\right)^{2}}{J_{r}} \int_{-\infty}^{t} i_{a}(t)
$$

We recognize that

$$
C=\frac{J_{r}}{\left(G I_{f}\right)^{2}}
$$

B

$$
C=\frac{J_{r}}{\left(G I_{f}\right)^{2}}=\frac{(0.5)}{(1.5)^{2}(1)}=0.22 \text { farads }
$$

Problem 8.6

$$
\begin{aligned}
& \left(L_{r}+L_{f}\right) \frac{d i_{f}}{d t}+i_{f}\left(R_{r}+R_{f}-G \omega\right)+\frac{1}{C} \int i_{f} d t=0 \\
& \frac{d^{2} i_{f}}{d t^{2}}+\frac{\left(R_{r}+R_{f}-G \omega\right)}{L_{r}+L_{f}} \frac{d i_{f}}{d t}+\frac{1}{\left(L_{r}+L_{f}\right) C} i_{f}=0 \\
& i_{f}=I e^{s t} \\
& s^{2}+\frac{\left(R_{r}+R_{f}-G \omega\right)}{\left(L_{r}+L_{f}\right)} s+\frac{1}{\left(L_{r}+L_{f}\right) C}=0 \\
& s=-\frac{R_{r}+R_{f}-G \omega}{2\left(L_{r}+L_{f}\right)} \pm\left[\left[\frac{R_{r}+R_{f}-G \omega}{2\left(L_{r}+L_{f}\right)}\right]^{2}-\frac{1}{\left(L_{r}+L_{f}\right) C}\right]^{\frac{1}{2}}
\end{aligned}
$$

A
Self excited if $-G \omega+R_{r}+R_{f}<0 \Rightarrow \omega>\frac{R_{r}+R_{f}}{G}$

B

dc self-excitation

$$
\left[\frac{R_{r}+R_{f}-G \omega}{2\left(L_{r}+L_{f}\right)}\right]^{2}-\frac{1}{\left(L_{r}+L_{f}\right) C}>0, C>\frac{4\left(L_{r}+L_{f}\right)}{\left[R_{r}+R_{f}-G \omega\right]^{2}}
$$

ac self-excitation

$$
\left[\frac{R_{r}+R_{f}-G \omega}{2\left(L_{r}+L_{f}\right)}\right]^{2}-\frac{1}{\left(L_{r}+L_{f}\right) C}<0 \Rightarrow C<\frac{4\left(L_{r}+L_{f}\right)}{\left[R_{r}+R_{f}-G \omega\right]^{2}}
$$

C
Frequency $\omega_{0}=\left[\frac{1}{\left(L_{r}+L_{f}\right) C}-\left[\frac{R_{r}+R_{f}-G \omega}{2\left(L_{r}+L_{f}\right)}\right]^{2}\right]^{\frac{1}{2}}$

