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6.641 — Electromagnetic Fields, Forces, and Motion Spring 2005 

Problem Set 9 - Solutions 

Prof. Markus Zahn MIT OpenCourseWare 

Problem 9.1 

A 
¯∂B¯�× E = −

∂t

¯
�× B = µσE 

So 

¯∂B¯�×�× B = −µσ 
∂t 

But 

�× (�× B̄) = �(� · B̄) −� 2B̄ = −� 2B̄

So 

¯∂B2 ¯� B = µσ 
∂t 

B 

Since B̄ only has a z component 

2Bz = µσ 
∂Bz �
∂t 

In cylindrical coordinates 

1 ∂ 
� 

∂ 
� 

1 ∂2 ∂2 
2 r + +� = 

r ∂r ∂r r2 ∂θ2 ∂z2 

Here Bz = Bz(r, t), so 

1 ∂ 
� 

∂B̂
� 

r + µσαB̂ = 0 
r ∂r ∂r 

We want the magnetic field to remain finite at r = 0, hence C2 = 0. 

D 

At r = a 

B(a, t) = µ0H0 − C1J0(
√

µ0σαa) = µ0H0 

Hence if C1 = 0 

J0(
√

µ0σαa) = 0 

1 
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E 

Multiply both sides of expression for B(r, t = 0) = 0 by rJ0(vj a
r ) and integrate from 0 to a. Then, 

� a 2r a
µ0H0rJ0(vj )dr = µ0H0 J1(vj) 

a vj0 

� a ∞ 2� r r a
J1

2(vj))rJ0(vj )dr = CjCiJ0(vi 
0 a a 2 

i=1 

from which it follows that 

2µ0H0
Cj = 

vjJ1(vj) 

The values of vj and J1(vj) given in the table lead to the coefficients 

C1 C2 C3 

2µ0H0 
= .802; 

2µ0H0 
= −.535; 

2µ0H0 
= .425 

F 
1 �v1 

�2 
α1 = 

µ0σ a


µ0σa2


τ1 = 2 = 0.174µ0σa2 

v1


104


τ1 = (0.174)(4π × 10−7) (25) × 10−4 

4π


≈ 4.35 × 10−7 seconds


Problem 9.2 

(1)a 
(3) b 

X1 = L 
X3 

X2 

X1 

X1 = -L 

(2) 

(4) 

Figure 1: Diagram of surfaces (1), (2), (3), and (4) to evaluate the force on the lower plate using the Maxwell 
Stress Tensor. (Image by MIT OpenCourseWare.) 

Before finding the force, we must calculate the H̄ field at x1 = L. To find this field let us use 

B̄ ¯ = 0 (1) nda · 

over the dotted surface. At x1 = +L, 

H̄(x1 = L) = H0 ̄i1 
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over surface (4) H̄ = 0, and over surface (2), H̄ is in the ī1 direction, where n̄ = ī2. Thus over surface (2), 
B̄ n̄ = 0. Hence, the integral in (1) reduces to · 

− 
(1) 

µ0H0da + 
(3) 

µ0H(x1 = +L)da = 0 

−µ0H0a + µ0Hb = 0 per unit length 

Thus: 

H̄(x1 = +L) = (a/b)H0 ̄i1 

δij 
µ0HkHkTij = µ0HiHj − 

2 

Hence, the stress tensor over surfaces (1), (2), and (3) is: 

⎡ 
H2 0 0 

⎤ 
1 

µ0 
2 

H2 
10 µ0 0Tij = −⎣ ⎦

2 
H2 

1 
µ00 0 − 2 

Over surface (4) 

Tij = [0] 

Thus the force in the 1 direction is 

f1 = Tijnj da · 

f1 = T11da + T11da + T12da
− 
(1) (3) (2)


Thus, since the last integral makes no contribution, 

f1 = − µ
2 
0 
H0

2(a) +
µ

2 
0 
H2 
�a

b 

�2 
· b = 

µ

2 
0 
H0

2 a 
� a

b 
− 1 
� 

(2) 0 

Since Tij = 0 over surface (4) there is no contribution to the force from this surface and, by symmetry, there 
is no contribution to the force from the surfaces perpendicular to the xj axis. Thus, the force per unit depth 
in 1 direction is (2). 

Problem 9.3 

First, let us note the Ē fields on each of the surfaces of the figure over surfaces (1), (3), (5), and (7), E1 = 0. 
Over surface 

V0
(6) E2 = E1 = 0 

a 

V0
(4) E2 = E1 = 0 

b


V0

(2) E2 = E1 = 0 

c 

From Eq. 8.3.10, 

δij 
ε0EkEkTij = ε0EiEj − 

2 

3 
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depth D 
A 

-	 V0a-b 
+ 

B3 2 c 

8 

7 

aa 6 
5 

1 
4 bb

X3 X1 

X2 

Figure 2: Diagram of surfaces (1)-(8) used to find force on the lower electrode using the Maxwell Stress 
Tensor. (Image by MIT OpenCourseWare.) 

Hence, over surfaces (1), (3), (5) and (7) 

T12 = 0 (3) 

and over surfaces 

ε0 
�

V0 
�2 

(6) T11 = −	
2 a


ε0 
�

V0 
�2


(4) T11 = −	
2 b


ε0 
�

V0 
�2


(2) T11 = −
2 c 

Now 

f1 = Tijnjda = T11n1da + T12n2da + T13n3da 

T13n3da = 0 because the problem is two dimensional 

Let us consider each of the other integrals: 

T12n2da = 0 

because the surfaces that have normal n2 are (1),(3),(5), and (7) and by (3) we have shown that T12 = 0 
over these surfaces. Also, we get no contribution to the force over surface (8), because Ē 0 faster than→
the area → ∞. Hence the calculation of the force reduces to 

f1 = T
(6)

da6 − T
(4)

da4 − T
(2)

da211 11 11 
(6)	 (4) (2)


ε0DV0
2 � 

1 1 1
�


f1 = − 
2 a 

−
b 

+ 
c 

Note: by symmetry, there is no contribution to the force from the surfaces perpendicular to the x3 axis. 

4 
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σ ͚ 

σ ͚ 

σ 0 
φ = φ0 sin 

π x2 

a 

1 

a 

n 

0 

X2 

X1 

X3 

ε0 , μ0 

n 

Figure 3: Diagram of grounded electrodes and distributed electric potential source at x1 = 0. (Image by 
MIT OpenCourseWare.) 

Problem 9.4 

A 

From elementary field theory, we find that 

πx1πx2 − 
aφ = φ0 sin e 

a 

satisfies �2φ = 0 in the region between the plates and the required boundary conditions. The distribution 
of Ē follows from 

Ē = −�φ 

Hence, 

πx1 
Ē = 

πφ0 
e − 

a 

� 
sin 

πx2 ̄
i1 − cos 

πx2 ̄
i2 

� 

a a a 

The sketch of the Ē field is obtained by recognizing that Ē is directed perpendicular to contours of constant 
φ. 

Figure 4: Sketch of the Ē field and equipotential lines. (Image by MIT OpenCourseWare.) 

B 
¯To find the force at the bottom plate, we use surface (2). E = 0 everywhere except on the upper side where 

the normal n̄ = ī2 and the field is 

πx1 
Ē = 

πφ0 
e − 

a ī2− 
a 

5 
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Hence, 

f1 = Tijnjda = 0 

f2 = T2jnjda = T22n2da2 

per unit x3. This reduces to 
� 

∞ 

f2 = T22dx1

0


π2φ2 2πx1 
abut, T22 = 12 ε0E2E2 = 2

1 ε0 a2

0 e− and thus 

ε0π
2φ2 � 

∞ 

0 − 
2πx1


f2 = e dx1
a 

2a2
0 

ε0πφ2
0f2 = 

4a 

On the top plate, use surface (1). Only the sign of the normal changes, and the result is 

f1 = 0 

ε0πφ2
0f2 = − 

4a 

or the force is equal and opposite to that on the bottom plate. 

Problem 9.5 

A 

Since J � = J 

K	 = izK0 cos(kUt − kx)


= izK0 cos(ωt − kx); ω = kU


B 

The track can be taken as large in the y direction when it is many skin depths thick 

2 2 
L = track thickness � δ = 

ωµ0σ 
= 

kUµ0σ 

In the track we have the diffusion equation 

1 
= 

µ0σ
�2B 

∂

∂t 

B 

ˆor, with B = ReB exp j(ωt − kx), 

1 
� 

∂2B̂x 

� 

µ0σ ∂y2 
− k2B̂x = jωB̂x 

6 
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Let B̂x(y) = Ceαy, then 
1 k2 

α2 = jω + 
µ0σ µ0σ 

� ωµ0σ Uµ0σ 
α = k 1 + jS; S = = 

k2 k 
Since the track is modeled as infinitely thick 

Bx = Ceαyej(ωt−kx) 

The gap between track and train is very thin; thus, 

B 
= K = K0e

j(ωt−kx)iz−iy ×
µ0 

which yields 
Bx(x, y, t) = µ0K0e

αyej(ωt−kx) 

x +We must also have � B = ∂B ∂By = 0 or · 
∂x ∂y 

jk 
Bx(x, y, t)By = 

α 

To compute the current in the track we note that 
� 

∂By ∂Bx 

� 

�× B = iz 
∂x 

− 
∂y 

= µ0J 

� 
S 

� 
Bx

J = − j
α

k2 

µ0 
(x, y, t)iz 

The time average force density in the track is 

1 �Fy�
2
Re(JzBx

∗)= 

Hence the time average lifting force per unit x − z area on the train is 
� 0 � 0 1 �Ty� = − 
−∞ 

�Fy� dy = −Re 
−∞ 

2 
JzBx

∗dy 

1 
µ0K

2 

� √
1 + S2 − 1 

� 

> 0= 
4 0 √

1 + S2 

D 

The time average force density in the track in the x direction is 

1 �Fx� −
2
Re(JzBy

∗)= 

The force on the train in the x direction is then 
� 0 � 01 �Tx� = − 
−∞ 

�Fx� dy = Re 
−∞ 

JzBy
∗dy 

2 

µ0K0
2 S 

= < 0− 
4 

√
1 + S2Re

√
1 + jS 

The problem is that this force drags the train instead of propelling it in the x direction. To make matters 
worse, if the train stops, the magnetic levitation force becomes zero. 

7 
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Problem 9.6 

A 

From Eq. 8.1.11, 

⎡ 
1 (Bx 

2 − By
2) 

BxBy 0 
⎤ 

2µ0 µ0


Tij = 
⎢ BxBy 1 (−B2 + B2) 0 

⎥

⎣ 

µ0 2µ0 x y ⎦ 
0 0 1 (−Bx 

2 − By
2)2µ0 

¯where the components of B are given in the problem. 

B 

The appropriate surface of integration, which is fixed with respect to the fixed frame, is shown in Figure (5). 
We compute the time average force, and hence contributions from surfaces (1) and (3) cancel. Fields go to 
zero on surface (2), which is at y → ∞. Thus, there remains the stress on surface (4). The time average 
value of the surface force density T̄ is independent of x. Hence, 

train 

s 

1 

2 

3 

4 

track 

y 

xz 

Figure 5: Diagram of the Maxwell Stress Tensor surface to find the levitation force on a train. (Image by 
MIT OpenCourseWare.) 

Ty = − < Tyy(y = 0) > 

+ B2 > (4) Ty = −
2µ

1 

0 
< −Bx 

2 
y 

Observe that 

� � 1 
Re ˆ Be−jkUtAe−jkUtRe ˆ ≡

2
Re ÂB̂∗ 

where B̂∗ is complex conjugate of B̂, and (4) becomes 

1 
Ty = −

4µ0 
Re −(µ0K0e

jkx)(µ0K0e 
−jkx) +

(−jkµ

α 
0K0) 

ejkx (jkµ

α
0

∗ 

K0) 
e −jkx


µ0K0
2 � 

k2 �


= 1 − (5) 
4 αα∗ 

8 
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Finally, use the given definition of α to write (5) as 

⎡ ⎤ 

Ty = 
µ0

4 

K0
2 
⎢
⎢

⎣ 1 − �
� 
1 

�2 
⎥
⎥

⎦

1 + µ0σU


k


Note that Ty is positive so that the train is supported by the magnetic field. However, as U 0 (the train →
is stopped) the levitation force goes to zero. 

For the force per unit area in the x direction 

1 −
2µ0 

< BxBy(y = 0) >Tx = 

1 
� 

jkx 

� 
jkµ0 

� 
−jkx 

� 

= −
2µ0 

Re µ0K0e K0e 
α∗ 

Thus 

µ0K
2 � 

µ0σU 
� 

Tx = − � � 
0 

�2
� 1 Rej 1 − j (6) 

k2 

2 1 + µ0σU 
k 

As must be expected, the force on the train in the x direction vanishes as U 0. Note that in any case the →
force always tends to retard the motion and hence could hardly be used to propel the train. 

The identity sin(θ/2) = ± (1 − cos θ)/2 is helpful in reducing (6) to the form 

� ⎛� ⎞

−µ0K

2 �
1 

� 
µ0σU 

�2


Tx = 0 �

� � �2

� 1 �2 
⎝ 1 + 

k 
− 1⎠


2


2 1 + µ0σU

k 

Problem 9.7 

A 

From Ampere’s Law, 

µ0NiF
Bz = 

D 

B 
µ0N

2WT 
λ = NWTBz ≡ LiF ⇒ L = 

D 

9 
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Apply Faraday’s Law to the armature circuit and assume perfectly conducting wires. 

� 
d 
�


E dl =
 B dS = 0
→ −→ −→

C 

−→ · − −
dt S 

� �� · 
� 

zero 

� (−) � (+) 

Eydy + dl = 0 EyW = vA
→

(+) (−) 
−�φ · − ⇒

� �� � � �� � 
fluid terminals 

Ohm’s Law J = σ(E + v × B) Ey = 
J

σ 
y + vBz⇒ ⇒

iA
Ey = + vBz

σDT 

W µ0NW 
vA = iA + viF

σDT D 
� �� � � �� � 

R G 

D 

Force density = 

µ0NiF iA
J × B = JyBzx̂ = 

TD 
x̂

Power = 

µ0NW 
JyBzU TDW = iF iAU = GiF iAU· 

� �� � D 
volume 

E 

vA = RiA + GUiF


diF

vF = L 

dt

vF = vA


iF = −iA


Putting everything together, 

diF
L = −RiF + GUiF

dt 

Self excitation implies 

1 
GU > R U > ⇒

µ0σNT 

10 
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