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6.641 — Electromagnetic Fields, Forces, and Motion Spring 2005 

Problem Set 10 - Solutions 

Prof. Markus Zahn MIT OpenCourseWare 

Problem 10.1 

The equation of motion for a static rod is 

∂2δ 
0 = E + Fx where Fx = ρg 

∂x2 

We can integrate this equation directly and get 

ρg 
� 

x2 � 

δ(x) = −
E 2

+ Cx + D 

where C and D are arbitrary constants. 

A 

The stress function is T (x) = E dδ , and therefore 
dx

T (x) = −ρgx + CE 

We have a free end at x = l and this implies T (x = l) = 0. Now we can write the stress as 

T (x) = −ρgx + ρgl 

The maximum stress occurs at x = 0 and is Tmax = ρgl. Equating this to the maximum allowable stress, we 
have 

2 × 109 = (7.8 × 103)(9.8)l 

hence 

l = 2.6 × 104 meters 

B 

From part (a) 

T (x) = −ρgx + ρgl 

The fixed end at x = 0 implies that D = 0, so now we can write the displacement 

ρg x 2 ρgl 
δ(x) = −

E 2
+ 

E 
(x) 

ρg l2 ρgl ρgl2 

δ(l) = −
E 2

+ 
E 

(l) =
2E 

For l = 2.6×104 meters, δ(l) = 129 meters. This appears to be a large displacement, but note that the total 
unstressed length is 26,000 meters. 
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Problem 10.2 

From the characteristic equations 

∂v ∂T C+ + C−

ρ = , v = 
∂t ∂x 2 

∂T ∂v 
, 

T 
= 

C− − C+ 

∂t 
= E

∂x
√

ρE 2 

1 
v + T = C−

√
ρE 

1 
v − √

ρE 
T = C+ 
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Figure 1: Tension and medium velocity in x − t space for an infinite extent elastic medium (Image by MIT 
OpenCourseWare.) 

I : C+ = C− = vm 

II : C+ = vm, C− = 0 

III : C+ = 0, C− = vm 
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B 

I : C+ = C− = vm 

II : C+ = vm, C− = −vm 

III : C+ = −vm, C− = vm 

IV : C+ = −vm, C− = −vm 

V : C+ = −vm, C− = vm 

V I : C+ = vm, C− = −vm 

C+ = C- = V

T  = ρE •m
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Figure 2: Tension and medium velocity in x − t space for an elastic rod of length a. (Image by MIT 
OpenCourseWare.) 

At x = 0, x = l fixed boundary v = 0 

C− = −C+ 

Problem 10.3 

First, we can calculate the force of magnetic origin, fx, on the rod. If we define δ(l, t) to be the a.c. deflection 
on the rod at x = l, then using Ampere’s law and the Maxwell stress tensor (Eq. 8.5.41 with magnetostriction 
ignored) we find 

µ0AN2I2


fx = 2

2 (d − δ(l, t))
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This result can also be obtained using the energy methods of Chap. 3 (See Appendix E, Table 3.1). Since 
d � δ(l, t), we may linearize fx 

µ0AN2I2 µ0AN2I2 

fx = + δ(l, t)
2d2 d3 

The first term represents a constant force which is balanced by a static deflection on the rod. If we assume 
that this static deflection is included in the equilibrium length l, then we need only use the last term of fx 

to compute the dynamic deflection δ(l, t). In the bulk of the rod we have the wave equation; for sinusoidal 
variations 

δ(x, t) = Re δ̂(x)ejωt 

we can write the complex amplitude δ̂(x) as 

δ̂(x) = C1 sin βx + C2 cos βx 

where β = ω ρ . At x = 0 we have a fixed end, so δ(0)ˆ = 0 and C2 = 0. At x = l the boundary condition is 
E

∂δ 
0 = fx − AE (l, t)

∂x

or 

µ0AN2I2 
ˆ dδ̂

0 = δ(x = l) − AE (x = l)
d3 dx

Substituting we obtain 

µ0AN2I2 

C1 sin βl = C1AEβ cos βl (1) 
d3 

Our solution is δ̂(x) = C1 sin βx and for a non-trivial solution we must have C1 = 0. So, divide (1) by C1 to 
obtain the resonance condition: 

µ0AN2I2 

sin βl = AEβ cos βl 
d3 

Substituting β = 
E
ρ and rearranging, we have 

Ed3 �
� 

ρ 
� �

� 

ρ 
�


ωl
 = tan ωl (2) 
µ0N2I2l E E 

which, when solved for ω, yields the eigenfrequencies. Graphically, the first two eigenfrequencies are found 
from the sketch. Notice that as the current I is increased, the slope of the straight line decreases and the 
first eigenfrequency (denoted by ω1) goes to zero and then seemingly disappears for still higher currents. 
Actually ω1 now becomes imaginary and can be found from the equation 

Ed3 �
� 

ρ 
� �

� 

ρ 
�


µ0N2I2l 
|ω1|l

E 
= tanh |ω1|l

E


Just as there are negative solutions to (2), −ω1,−ω2, . . . etc., so there are now solutions ±j|ω1|. Thus, 
because ω1 is imaginary, the system is unstable, (amplitude of one solution growing in time). 

Hence when the slope of the straight line becomes less than unity, the system is unstable. This condition 
can be stated as 

Ed3 

STABLE −→ 
µ0N2I2l

> 1 

Ed3 

UNSTABLE −→ 
µ0N2I2l

< 1 
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Figure 3: Sketch used to find eigenfrequencies in Problem 10.3. (Image by MIT OpenCourseWare.) 

Problem 10.4 

A 

At the outset, we can write the equation of motion for the massless plate: 

∂2δ −aT (l, t) + fe(t) = M 
∂t2 

(l, t) ≈ 0 

Using the maxwell stress tensor we find the force of electrical origin fe(t) to be 

fe(t) = 
ε0A 

� 

(V0 + v(t))2 (V0 − v(t))2 �


2 (d − δ(l, t))2 
−

(d − δ(l, t))2


Since v(t) � V0 and δ(l, t) � d, we can linearize fe(t): 

fe(t) =
2ε0AV0

2 

δ(l, t) + 
2ε0AV0 

v(t)
d3 d2 

∂δ Recognizing that T (l, t) = E
∂x

(l, t) we can write our boundary condition at x = l in the desired form 

∂δ 2ε0AV 2 2ε0AV0
aE (l, t) = 0 δ(l, t) + v(t)

∂x d3 d2 

Longitudinal displacements in the rod obey the wave equation and for an assumed form of δ(x, t) = 

Re δ̂(x)ejωt we can write δ̂(x) = C1 sin βx + C2 cos βx, where β = ω 
� 

E
ρ . At x = 0 we have a fixed 

end, thus δ̂(x = 0) = 0 and C2 = 0. From part (a) and assuming sinusoidal time dependence, we can write 
our boundary condition at x = l as 

aE 
dδ̂

(l) =
2ε0AV0

2 

δ̂(l) + 
2ε0AV0 

V̂
dx d3 d2 
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C1 = 
2ε AV 2

aEd2β cos βl − 0 0 sin βl 
d 

Finally, we can write our solution as 

� 

2ε0AV0 sin βx 
δ , t Re V̂(x ) = ejωt 

2ε AV 2

aEd2β cos βl − 0 0 sin βl 
d 

� 

� � 

Problem 10.5 

A 
C ∂ L ∂ 

i(z, t) = [v(z 
Δz ∂t 

− Δz) − v(z)] ; v(z, t) = [i
Δz ∂t 

∂2v ∂2i 
lim i(z, t) = −C ; v(z, t) = L 
z→0 ∂t∂z

−
∂t∂z 

B 

i(z, t) = Rêiej(ωt−kz) , v(z, t) = Rev̂ej(ωt−kz) 

î = −Cωkv̂; v̂ = −Lωkî 

1 ˆ  i = +LCω2k2 î → LCω2k2 = 1 → k = ±
ω
√

LC 

C 
ω 

vp = = ω2
√

LC 
k


dω

vg = = −ω2

√
LC

dk 

Such systems are called backward wave because the group v
velocity. 

D 

� 
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Solving 

2ε0AV0V̂

(z) − i(z + Δz)] 

elocity is opposite in direction to the phase 

v̂(z) = V1 sin kz + V2 cos kz

v̂(z = 0) = 0 = V2 

v̂(z = −l) = V0 = −V1 sin kl v̂(z) = 
−V0 

sin kz →
sin kl 

dv̂ jωCV0k cos kz C cos kz 
î(z) = −Cjω = = j V0

dz sin kl L sin kl 

E 
1 

Resonance sin kl = 0 kl = nπ ωn = � 
nπ 

�→ → → √
LC

l 
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Problem 10.6 

A 
V0RL V0 (RL + Z0) 

v(t = 0) = = V+ + V V+ = 
RL + R

− 

s 2 (RL + Rs) 

V0 V0 (RL Z0)
i(t = 0) = = Y0(V+ V = 

R
− 

L 

− V−) 
−

+ Rs 2 (RL + RS) 

B 

n Rs 
V+n = A(ΓsΓL) ; Γs = 

− Z0 RL Z
, ΓL = 

− 0 

Rs + Z0 RL + Z0 

V n 
−n = ΓLV+n = AΓL(ΓSΓL)

V0 RL + Z0
V+n=0 = A = 

2 

� 

RL + Rs 

� 

V0 
Vn = V+n + V−n = 

2 

� 

RL + Z0 
� � 

RL 
1 + 

− Z0 
� 

0RL 
ΓsΓL)n V

( = (ΓsΓ
n

L)
RL + Rs RL + Z0 RL + Rs 
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