MIT OpenCourseWare
http://ocw.mit.edu

6.641 Electromagnetic Fields, Forces, and Motion

Spring 2005

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Problem Set 10 - Solutions

Prof. Markus Zahn
MIT OpenCourseWare

Problem 10.1

The equation of motion for a static rod is

$$
0=E \frac{\partial^{2} \delta}{\partial x^{2}}+F_{x} \text { where } F_{x}=\rho g
$$

We can integrate this equation directly and get

$$
\delta(x)=-\frac{\rho g}{E}\left(\frac{x^{2}}{2}\right)+C x+D
$$

where C and D are arbitrary constants.

A

The stress function is $T(x)=E \frac{d \delta}{d x}$, and therefore

$$
T(x)=-\rho g x+C E
$$

We have a free end at $x=l$ and this implies $T(x=l)=0$. Now we can write the stress as

$$
T(x)=-\rho g x+\rho g l
$$

The maximum stress occurs at $x=0$ and is $T_{\max }=\rho g l$. Equating this to the maximum allowable stress, we have

$$
2 \times 10^{9}=\left(7.8 \times 10^{3}\right)(9.8) l
$$

hence

$$
l=2.6 \times 10^{4} \text { meters }
$$

B

From part (a)

$$
T(x)=-\rho g x+\rho g l
$$

The fixed end at $x=0$ implies that $D=0$, so now we can write the displacement

$$
\delta(x)=-\frac{\rho g}{E}\left(\frac{x^{2}}{2}\right)+\frac{\rho g l}{E}(x)
$$

C

$$
\delta(l)=-\frac{\rho g}{E} \frac{l^{2}}{2}+\frac{\rho g l}{E}(l)=\frac{\rho g l^{2}}{2 E}
$$

For $l=2.6 \times 10^{4}$ meters, $\delta(l)=129$ meters. This appears to be a large displacement, but note that the total unstressed length is 26,000 meters.

Problem 10.2

From the characteristic equations

$$
\begin{aligned}
& \rho \frac{\partial v}{\partial t}=\frac{\partial T}{\partial x}, \quad v=\frac{C_{+}+C_{-}}{2} \\
& \frac{\partial T}{\partial t}=E \frac{\partial v}{\partial x}, \quad \frac{T}{\sqrt{\rho E}}=\frac{C_{-}-C_{+}}{2} \\
& v+\frac{1}{\sqrt{\rho E}} T=C_{-} \\
& v-\frac{1}{\sqrt{\rho E}} T=C_{+}
\end{aligned}
$$

A

Figure 1: Tension and medium velocity in $x-t$ space for an infinite extent elastic medium (Image by MIT OpenCourseWare.)

$$
\begin{aligned}
& I: C_{+}=C_{-}=v_{m} \\
& I I: C_{+}=v_{m}, C_{-}=0 \\
& I I I: C_{+}=0, C_{-}=v_{m}
\end{aligned}
$$

B

$$
\begin{aligned}
& I: C_{+}=C_{-}=v_{m} \\
& I I: C_{+}=v_{m}, C_{-}=-v_{m} \\
& I I I: C_{+}=-v_{m}, C_{-}=v_{m} \\
& I V: C_{+}=-v_{m}, C_{-}=-v_{m} \\
& V: C_{+}=-v_{m}, C_{-}=v_{m} \\
& V I: C_{+}=v_{m}, C_{-}=-v_{m}
\end{aligned}
$$

Figure 2: Tension and medium velocity in $x-t$ space for an elastic rod of length a. (Image by MIT OpenCourseWare.)

$$
\begin{aligned}
& \text { At } x=0, x=l \text { fixed boundary } v=0 \\
& \qquad C_{-}=-C_{+}
\end{aligned}
$$

Problem 10.3

First, we can calculate the force of magnetic origin, f_{x}, on the rod. If we define $\delta(l, t)$ to be the a.c. deflection on the rod at $x=l$, then using Ampere's law and the Maxwell stress tensor (Eq. 8.5.41 with magnetostriction ignored) we find

$$
f_{x}=\frac{\mu_{0} A N^{2} I^{2}}{2(d-\delta(l, t))^{2}}
$$

This result can also be obtained using the energy methods of Chap. 3 (See Appendix E, Table 3.1). Since $d \gg \delta(l, t)$, we may linearize f_{x}

$$
f_{x}=\frac{\mu_{0} A N^{2} I^{2}}{2 d^{2}}+\frac{\mu_{0} A N^{2} I^{2}}{d^{3}} \delta(l, t)
$$

The first term represents a constant force which is balanced by a static deflection on the rod. If we assume that this static deflection is included in the equilibrium length l, then we need only use the last term of f_{x} to compute the dynamic deflection $\delta(l, t)$. In the bulk of the rod we have the wave equation; for sinusoidal variations

$$
\delta(x, t)=\operatorname{Re}\left[\hat{\delta}(x) e^{j \omega t}\right]
$$

we can write the complex amplitude $\hat{\delta}(x)$ as

$$
\hat{\delta}(x)=C_{1} \sin \beta x+C_{2} \cos \beta x
$$

where $\beta=\omega \sqrt{\frac{\rho}{E}}$. At $x=0$ we have a fixed end, so $\delta(0)=0$ and $C_{2}=0$. At $x=l$ the boundary condition is

$$
0=f_{x}-A E \frac{\partial \delta}{\partial x}(l, t)
$$

or

$$
0=\frac{\mu_{0} A N^{2} I^{2}}{d^{3}} \hat{\delta}(x=l)-A E \frac{d \hat{\delta}}{d x}(x=l)
$$

Substituting we obtain

$$
\begin{equation*}
\frac{\mu_{0} A N^{2} I^{2}}{d^{3}} C_{1} \sin \beta l=C_{1} A E \beta \cos \beta l \tag{1}
\end{equation*}
$$

Our solution is $\hat{\delta}(x)=C_{1} \sin \beta x$ and for a non-trivial solution we must have $C_{1} \neq 0$. So, divide (1) by C_{1} to obtain the resonance condition:

$$
\left(\frac{\mu_{0} A N^{2} I^{2}}{d^{3}}\right) \sin \beta l=A E \beta \cos \beta l
$$

Substituting $\beta=\sqrt{\frac{\rho}{E}}$ and rearranging, we have

$$
\begin{equation*}
\frac{E d^{3}}{\mu_{0} N^{2} I^{2} l}\left(\omega l \sqrt{\frac{\rho}{E}}\right)=\tan \left(\omega l \sqrt{\frac{\rho}{E}}\right) \tag{2}
\end{equation*}
$$

which, when solved for ω, yields the eigenfrequencies. Graphically, the first two eigenfrequencies are found from the sketch. Notice that as the current I is increased, the slope of the straight line decreases and the first eigenfrequency (denoted by ω_{1}) goes to zero and then seemingly disappears for still higher currents. Actually ω_{1} now becomes imaginary and can be found from the equation

$$
\frac{E d^{3}}{\mu_{0} N^{2} I^{2} l}\left(\left|\omega_{1}\right| l \sqrt{\frac{\rho}{E}}\right)=\tanh \left(\left|\omega_{1}\right| l \sqrt{\frac{\rho}{E}}\right)
$$

Just as there are negative solutions to (2), $-\omega_{1},-\omega_{2}, \ldots$ etc., so there are now solutions $\pm j\left|\omega_{1}\right|$. Thus, because ω_{1} is imaginary, the system is unstable, (amplitude of one solution growing in time).

Hence when the slope of the straight line becomes less than unity, the system is unstable. This condition can be stated as

$$
\begin{aligned}
& \operatorname{STABLE} \longrightarrow \frac{E d^{3}}{\mu_{0} N^{2} I^{2} l}>1 \\
& \text { UNSTABLE } \longrightarrow \frac{E d^{3}}{\mu_{0} N^{2} I^{2} l}<1
\end{aligned}
$$

Figure 3: Sketch used to find eigenfrequencies in Problem 10.3. (Image by MIT OpenCourseWare.)

Problem 10.4

A

At the outset, we can write the equation of motion for the massless plate:

$$
-a T(l, t)+f^{e}(t)=M \frac{\partial^{2} \delta}{\partial t^{2}}(l, t) \approx 0
$$

Using the maxwell stress tensor we find the force of electrical origin $f^{e}(t)$ to be

$$
f^{e}(t)=\frac{\varepsilon_{0} A}{2}\left[\frac{\left(V_{0}+v(t)\right)^{2}}{(d-\delta(l, t))^{2}}-\frac{\left(V_{0}-v(t)\right)^{2}}{(d-\delta(l, t))^{2}}\right]
$$

Since $v(t) \ll V_{0}$ and $\delta(l, t) \ll d$, we can linearize $f^{e}(t)$:

$$
f^{e}(t)=\left[\frac{2 \varepsilon_{0} A V_{0}^{2}}{d^{3}}\right] \delta(l, t)+\left[\frac{2 \varepsilon_{0} A V_{0}}{d^{2}}\right] v(t)
$$

Recognizing that $T(l, t)=E \frac{\partial \delta}{\partial x}(l, t)$ we can write our boundary condition at $x=l$ in the desired form

$$
a E \frac{\partial \delta}{\partial x}(l, t)=\frac{2 \varepsilon_{0} A V_{0}^{2}}{d^{3}} \delta(l, t)+\frac{2 \varepsilon_{0} A V_{0}}{d^{2}} v(t)
$$

Longitudinal displacements in the rod obey the wave equation and for an assumed form of $\delta(x, t)=$ $\operatorname{Re}\left[\hat{\delta}(x) e^{j \omega t}\right]$ we can write $\hat{\delta}(x)=C_{1} \sin \beta x+C_{2} \cos \beta x$, where $\beta=\omega \sqrt{\frac{\rho}{E}}$. At $x=0$ we have a fixed end, thus $\hat{\delta}(x=0)=0$ and $C_{2}=0$. From part (a) and assuming sinusoidal time dependence, we can write our boundary condition at $x=l$ as

$$
a E \frac{d \hat{\delta}}{d x}(l)=\frac{2 \varepsilon_{0} A V_{0}^{2}}{d^{3}} \hat{\delta}(l)+\frac{2 \varepsilon_{0} A V_{0}}{d^{2}} \hat{V}
$$

Solving

$$
C_{1}=\frac{2 \varepsilon_{0} A V_{0} \hat{V}}{a E d^{2} \beta \cos \beta l-\frac{2 \varepsilon_{0} A V_{0}^{2}}{d} \sin \beta l}
$$

Finally, we can write our solution as

$$
\delta(x, t)=\left[\frac{2 \varepsilon_{0} A V_{0} \sin \beta x}{a E d^{2} \beta \cos \beta l-\frac{2 \varepsilon_{0} A V_{0}^{2}}{d} \sin \beta l}\right] \operatorname{Re}\left[\hat{V} e^{j \omega t}\right]
$$

Problem 10.5

A

$$
\begin{aligned}
& i(z, t)=\frac{C}{\Delta z} \frac{\partial}{\partial t}[v(z-\Delta z)-v(z)] ; \quad v(z, t)=\frac{L}{\Delta z} \frac{\partial}{\partial t}[i(z)-i(z+\Delta z)] \\
& \lim _{z \rightarrow 0} i(z, t)=-C \frac{\partial^{2} v}{\partial t \partial z} ; \quad v(z, t)=-L \frac{\partial^{2} i}{\partial t \partial z}
\end{aligned}
$$

B

$$
\begin{aligned}
& i(z, t)=\operatorname{Re} \hat{i} e^{j(\omega t-k z)}, \quad v(z, t)=\operatorname{Re} \hat{v} e^{j(\omega t-k z)} \\
& \hat{i}=-C \omega k \hat{v} ; \quad \hat{v}=-L \omega k \hat{i} \\
& \hat{i}=+L C \omega^{2} k^{2} \hat{i} \rightarrow L C \omega^{2} k^{2}=1 \rightarrow k= \pm \frac{1}{\omega \sqrt{L C}}
\end{aligned}
$$

C

$$
\begin{aligned}
& v_{p}=\frac{\omega}{k}=\omega^{2} \sqrt{L C} \\
& v_{g}=\frac{d \omega}{d k}=-\omega^{2} \sqrt{L C}
\end{aligned}
$$

Such systems are called backward wave because the group velocity is opposite in direction to the phase velocity.

D

$$
\begin{aligned}
& \hat{v}(z)=V_{1} \sin k z+V_{2} \cos k z \\
& \hat{v}(z=0)=0=V_{2} \\
& \hat{v}(z=-l)=V_{0}=-V_{1} \sin k l \rightarrow \hat{v}(z)=\frac{-V_{0}}{\sin k l} \sin k z \\
& \hat{i}(z)=-C j \omega \frac{d \hat{v}}{d z}=\frac{j \omega C V_{0} k \cos k z}{\sin k l}=j \sqrt{\frac{C}{L}} V_{0} \frac{\cos k z}{\sin k l}
\end{aligned}
$$

E

$$
\text { Resonance } \rightarrow \sin k l=0 \rightarrow k l=n \pi \rightarrow \omega_{n}=\frac{1}{\left(\frac{n \pi}{l}\right) \sqrt{L C}}
$$

Problem 10.6

A

$$
\begin{aligned}
& v(t=0)=\frac{V_{0} R_{L}}{R_{L}+R_{s}}=V_{+}+V_{-} \quad V_{+}=\frac{V_{0}}{2} \frac{\left(R_{L}+Z_{0}\right)}{\left(R_{L}+R_{s}\right)} \\
& i(t=0)=\frac{V_{0}}{R_{L}+R_{s}}=Y_{0}\left(V_{+}-V_{-}\right) \quad V_{-}=\frac{V_{0}}{2} \frac{\left(R_{L}-Z_{0}\right)}{\left(R_{L}+R_{S}\right)}
\end{aligned}
$$

B

$$
\begin{aligned}
& V_{+n}=A\left(\Gamma_{s} \Gamma_{L}\right)^{n} ; \Gamma_{s}=\frac{R_{s}-Z_{0}}{R_{s}+Z_{0}}, \Gamma_{L}=\frac{R_{L}-Z_{0}}{R_{L}+Z_{0}} \\
& V_{-n}=\Gamma_{L} V_{+n}=A \Gamma_{L}\left(\Gamma_{S} \Gamma_{L}\right)^{n} \\
& V_{+n=0}=A=\frac{V_{0}}{2}\left(\frac{R_{L}+Z_{0}}{R_{L}+R_{s}}\right) \\
& V_{n}=V_{+n}+V_{-n}=\frac{V_{0}}{2}\left(\frac{R_{L}+Z_{0}}{R_{L}+R_{s}}\right)\left[1+\frac{R_{L}-Z_{0}}{R_{L}+Z_{0}}\right]\left(\Gamma_{s} \Gamma_{L}\right)^{n}=\frac{V_{0} R_{L}}{R_{L}+R_{s}}\left(\Gamma_{s} \Gamma_{L}\right)^{n}
\end{aligned}
$$

