6.641 Electromagnetic Fields, Forces, and Motion Spring 2005

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

6.641 — Electromagnetic Fields, Forces, and Motion	Spring 2005
Problem Set 10 - Questions	
Prof. Markus Zahn	MIT OpenCourseWare

Problem 10.1 (W&M Prob 9.1)

A long thin steel cable of unstressed length l is hanging from a fixed support, as illustrated in Fig. 9P.1. Assume that the origin of coordinates is at the support and that x measures positive as shown. Assume that the steel cable has the following constants.

 $\begin{array}{lll} \mbox{Cross-sectional area} & A = 10^{-4}m^2 \\ \mbox{Young's modulus} & E = 2.0 \times 10^{11}N/m^2 \\ \mbox{Mass density} & \rho = 7.8 \times 10^3 kg/m^3 \\ \mbox{Maximum allowable stress} & T_{\rm max} = 2 \times 10^9 N/m^2 \end{array}$

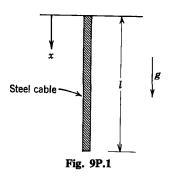


Figure 1: A long thin steel cable

Α

Find the length of cable l for which the maximum stress in the cable just equals the maximum allowable stress.

В

Find the displacement δ and stress T in the cable as functions of x.

С

Find the total elongation of the cable.

Courtesy of Herbert Woodson and James Melcher. Used with permission. Woodson, Herbert H., and James R. Melcher. *Electromechanical Dynamics, Part 2: Fields, Forces, and Motion.* Malabar, FL: Kreiger Publishing Company, 1968. ISBN: 9780894644597.

Problem 10.2

A thin elastic rod has an initial velocity and stress distribution:

$$v(x,t=0) = \begin{cases} v_m & 0 < x < a \\ 0 & x > a, x < 0 \end{cases}$$

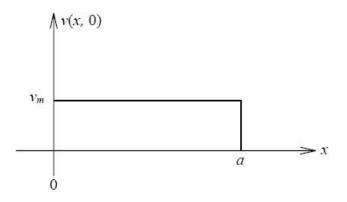


Figure 2: Velocity distribution at time t = 0.

 $T(x, t = 0) = 0 \qquad -\infty < x < \infty$

The rod has Young's modulus E, mass density ρ , and cross-sectional area A.

\mathbf{A}

If the rod is of infinite length, $-\infty < x < \infty$, plot the time and space solutions of v(x,t) and T(x,t) in a similar way as shown in Fig. 9.18 of the Woodson/Melcher text.

Β

If the rod is of finite length a, 0 < x < a, with fixed boundaries at x = 0 and x = a, plot v(x, t) and T(x, t).

Problem 10.3 (W&M Prob 9.6)

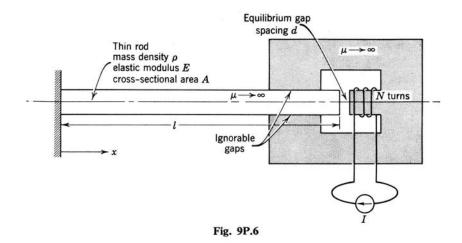


Figure 3: A thin, circular magnetic rod

A thin, circular magnetic rod is fixed at one end and constrained at the other end by a transducer (Fig 9P.6). In the absence of an excitation, the transducer is simply biased by the constant current source

I. When the rod is in static equilibrium, its length is l and the gap spacing is d. Compute the natural frequencies of the system under the assumption that the magnetization force on the rod acts on the end surface. A graphical representation of the eigenfrequencies is an adequate solution.

Courtesy of Herbert Woodson and James Melcher. Used with permission. Woodson, Herbert H., and James R. Melcher. *Electromechanical Dynamics*, *Part 2: Fields, Forces, and Motion.* Malabar, FL: Kreiger Publishing Company, 1968. ISBN: 9780894644597.

Problem 10.4 (W&M Prob 9.10)

A long thin rod is fixed at x = 0 and driven at x = l, as shown in Fig. 9P.10. The driving transducer consists of a rigid plate with area A attached to the end of the rod, where it undergoes the displacement $\delta(l, t)$ from an equilibrium position exactly between two fixed plates. These fixed plates are biased by potentials V_0 and driven by the voltage $v = \operatorname{Re}(\hat{V}e^{j\omega t})$ as shown. $(|\hat{V}| \ll V_0)$

Α

Derive a boundary condition relating $\delta(l,t)$, $(\frac{\partial \delta}{\partial x})(l,t)$ and v(t).

\mathbf{B}

Compute the driven deflection of the rod $\delta(x, t)$.

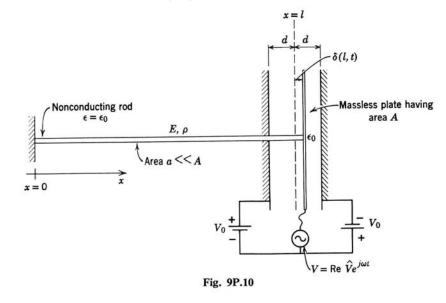


Figure 4: A long thin rod fixed at x = 0 and driven by imposed voltages at $x = l + \delta(l, t)$ Courtesy of Herbert Woodson and James Melcher. Used with permission. Woodson, Herbert H., and James R. Melcher. *Electromechanical Dynamics, Part 2: Fields, Forces, and Motion.* Malabar, FL: Kreiger Publishing Company, 1968. ISBN: 9780894644597.

Problem 10.5 (Zahn Chap. 8, Prob. 5)

An unusual type of distributed system is formed by series capacitors and shunt inductors.

Α

What are the governing partial differential equations relating the voltage and current?

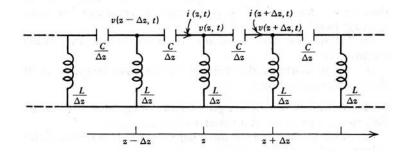


Figure 5: Unusual distributed system

В

What is the dispersion relation between ω and k for signals of the form $e^{j(\omega t - kx)}$?

С

What are the group and phase velocities of the waves? Why are such systems called "backward waves"?

D

A voltage $V_0 \cos \omega t$ is applied at z = -l with the z = 0 end short circuited. What are the voltage and current distributions along the line?

\mathbf{E}

What are the resonant frequencies of the system?

Used with permission. Zahn, Markus. From *Electromagnetic Field Theory: A Problem Solving Approach*, 1987.

Problem 10.6 (Zahn Chap. 8, Prob. 8)

The dc steady state is reached for a transmission line loaded at z = l with a resistor R_L and excited at z = 0by a dc voltage V_0 applied through a source resistor R_s . The voltage source is suddenly set to zero at t = 0.

Α

What is the initial voltage and current along the line?

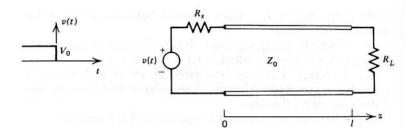


Figure 6: Transmission line system.

В

Find the voltage at the z = l end as a function of time. (Hint: Use difference equations.)

Used with permission. Zahn, Markus. From *Electromagnetic Field Theory: A Problem Solving Approach*, 1987.