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6.641 — Electromagnetic Fields, Forces, and Motion Spring 2005 

Problem Set 10 - Questions 

Prof. Markus Zahn MIT OpenCourseWare 
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Problem 10.1 (W&M Prob 9.1) 

A long thin steel cable of unstressed length l is hanging from a fixed support, as illustrated in Fig. 9P.1. 
Assume that the origin of coordinates is at the support and that x measures positive as shown. Assume that 
the steel cable has the following constants. 

Cross-sectional area A = 10−4m2 

Young’s modulus E = 2.0 × 1011N/m2 

Mass density ρ = 7.8 × 103kg/m3 

Maximum allowable stress Tmax = 2 × 109N/m2 

Figure 1: A long thin steel cable 

A 

Find the length of cable l for which the maximum stress in the cable just equals the maximum allowable 
stress. 

B 

Find the displacement δ and stress T in the cable as functions of x. 

Find the total elongation of the cable. 

Courtesy of Herbert Woodson and James Melcher. Used with permission.

Woodson, Herbert H., and James R. Melcher. Electromechanical Dynamics,

Part 2: Fields, Forces, and Motion. Malabar, FL: Kreiger Publishing Company, 1968. ISBN: 9780894644597.


Problem 10.2 

A thin elastic rod has an initial velocity and stress distribution: 

vm 0 < x < a 
v(x, t = 0) = 

0 x > a, x < 0 
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Figure 2: Velocity distribution at time t = 0. 

T (x, t = 0) = 0 −∞ < x < ∞


The rod has Young’s modulus E, mass density ρ, and cross-sectional area A.


A 

If the rod is of infinite length, −∞ < x < ∞, plot the time and space solutions of v(x, t) and T (x, t) in a 
similar way as shown in Fig. 9.18 of the Woodson/Melcher text. 

B 

If the rod is of finite length a, 0 < x < a, with fixed boundaries at x = 0 and x = a, plot v(x, t) and T (x, t). 

Problem 10.3 (W&M Prob 9.6) 

Figure 3: A thin, circular magnetic rod 

A thin, circular magnetic rod is fixed at one end and constrained at the other end by a transducer 
(Fig 9P.6). In the absence of an excitation, the transducer is simply biased by the constant current source 
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I. When the rod is in static equilibrium, its length is l and the gap spacing is d. Compute the natural 
frequencies of the system under the assumption that the magnetization force on the rod acts on the end 
surface. A graphical representation of the eigenfrequencies is an adequate solution. 

Courtesy of Herbert Woodson and James Melcher. Used with permission.

Woodson, Herbert H., and James R. Melcher. Electromechanical Dynamics,

Part 2: Fields, Forces, and Motion. Malabar, FL: Kreiger Publishing Company, 1968. ISBN: 9780894644597.


Problem 10.4 (W&M Prob 9.10) 

A long thin rod is fixed at x = 0 and driven at x = l, as shown in Fig. 9P.10. The driving transducer consists 
of a rigid plate with area A attached to the end of the rod, where it undergoes the displacement δ(l, t) from 
an equilibrium position exactly between two fixed plates. These fixed plates are biased by potentials V0 and 
driven by the voltage v = Re(V̂ ejωt) as shown. (|V̂ | � V0) 

A 

Derive a boundary condition relating δ(l, t), ( ∂δ )(l, t) and v(t). 
∂x

B 

Compute the driven deflection of the rod δ(x, t). 

Figure 4: A long thin rod fixed at x = 0 and driven by imposed voltages at x = l + δ(l, t) 

Courtesy of Herbert Woodson and James Melcher. Used with permission.

Woodson, Herbert H., and James R. Melcher. Electromechanical Dynamics,

Part 2: Fields, Forces, and Motion. Malabar, FL: Kreiger Publishing Company, 1968. ISBN: 9780894644597.


An unusual type of distributed system is             

Problem 10.5 (Zahn Chap. 8, Prob. 5) 

formed by series capacitors and shunt inductors. 

A 

What are the governing partial differential equations relating the voltage and current? 
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Figure 5: Unusual distributed system 
B 

What is the dispersion relation between ω and k for signals of the form ej(ωt−kx)? 

C 

What are the group and phase velocities of the waves? Why are such systems called “backward waves”? 

D 

A voltage V0 cos ωt is applied at z = −l with the z = 0 end short circuited. What are the voltage and current 
distributions along the line? 

E 

What are the resonant frequencies of the system? 

Used with permission.

Zahn, Markus. From Electromagnetic Field Theory: A Problem Solving Approach, 1987.

Problem 10.6 (Zahn Chap. 8, Prob. 8) 

The dc steady state is reached for a transmission line loaded at z = l with a resistor RL and excited at z = 0 
by a dc voltage V0 applied through a source resistor Rs. The voltage source is suddenly set to zero at t = 0. 

A 

What is the initial voltage and current along the line? 

Figure 6: Transmission line system. 
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B 

Find the voltage at the z = l end as a function of time. (Hint: Use difference equations.) 

Used with permission.

Zahn, Markus. From Electromagnetic Field Theory: A Problem Solving Approach, 1987.
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