MIT OpenCourseWare
http://ocw.mit.edu

6.641 Electromagnetic Fields, Forces, and Motion

Spring 2005

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Problem 10.1 (W\&M Prob 9.1)

A long thin steel cable of unstressed length l is hanging from a fixed support, as illustrated in Fig. 9P.1. Assume that the origin of coordinates is at the support and that x measures positive as shown. Assume that the steel cable has the following constants.

Cross-sectional area	$A=10^{-4} \mathrm{~m}^{2}$
Young's modulus	$E=2.0 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$
Mass density	$\rho=7.8 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
Maximum allowable stress	$T_{\max }=2 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$

Fig. 9P. 1

Figure 1: A long thin steel cable

A

Find the length of cable l for which the maximum stress in the cable just equals the maximum allowable stress.

B
Find the displacement δ and stress T in the cable as functions of x.

C

Find the total elongation of the cable.
Courtesy of Herbert Woodson and James Melcher. Used with permission. Woodson, Herbert H., and James R. Melcher. Electromechanical Dynamics,
Part 2: Fields, Forces, and Motion. Malabar, FL: Kreiger Publishing Company, 1968. ISBN: 9780894644597.

Problem 10.2

A thin elastic rod has an initial velocity and stress distribution:

$$
v(x, t=0)= \begin{cases}v_{m} & 0<x<a \\ 0 & x>a, x<0\end{cases}
$$

Figure 2: Velocity distribution at time $t=0$.

$$
T(x, t=0)=0 \quad-\infty<x<\infty
$$

The rod has Young's modulus E, mass density ρ, and cross-sectional area A.

A

If the rod is of infinite length, $-\infty<x<\infty$, plot the time and space solutions of $v(x, t)$ and $T(x, t)$ in a similar way as shown in Fig. 9.18 of the Woodson/Melcher text.

B

If the rod is of finite length $a, 0<x<a$, with fixed boundaries at $x=0$ and $x=a$, plot $v(x, t)$ and $T(x, t)$.

Problem 10.3 (W\&M Prob 9.6)

Fig. 9P. 6

Figure 3: A thin, circular magnetic rod
A thin, circular magnetic rod is fixed at one end and constrained at the other end by a transducer (Fig 9P.6). In the absence of an excitation, the transducer is simply biased by the constant current source
I. When the rod is in static equilibrium, its length is l and the gap spacing is d. Compute the natural frequencies of the system under the assumption that the magnetization force on the rod acts on the end surface. A graphical representation of the eigenfrequencies is an adequate solution.

Courtesy of Herbert Woodson and James Melcher. Used with permission.
Woodson, Herbert H., and James R. Melcher. Electromechanical Dynamics,
Part 2: Fields, Forces, and Motion. Malabar, FL: Kreiger Publishing Company, 1968. ISBN: 9780894644597.

Problem 10.4 (W\&M Prob 9.10)

A long thin rod is fixed at $x=0$ and driven at $x=l$, as shown in Fig. 9P.10. The driving transducer consists of a rigid plate with area A attached to the end of the rod, where it undergoes the displacement $\delta(l, t)$ from an equilibrium position exactly between two fixed plates. These fixed plates are biased by potentials V_{0} and driven by the voltage $v=\operatorname{Re}\left(\hat{V} e^{j \omega t}\right)$ as shown. $\left(|\hat{V}| \ll V_{0}\right)$

A

Derive a boundary condition relating $\delta(l, t),\left(\frac{\partial \delta}{\partial x}\right)(l, t)$ and $v(t)$.

B

Compute the driven deflection of the $\operatorname{rod} \delta(x, t)$.

Fig. 9P. 10

Figure 4: A long thin rod fixed at $x=0$ and driven by imposed voltages at $x=l+\delta(l, t)$
Courtesy of Herbert Woodson and James Melcher. Used with permission.
Woodson, Herbert H., and James R. Melcher. Electromechanical Dynamics,
Part 2: Fields, Forces, and Motion. Malabar, FL: Kreiger Publishing Company, 1968. ISBN: 9780894644597.

Problem 10.5 (Zahn Chap. 8, Prob. 5)

An unusual type of distributed system is formed by series capacitors and shunt inductors.

A

What are the governing partial differential equations relating the voltage and current?

Figure 5: Unusual distributed system

B

What is the dispersion relation between ω and k for signals of the form $e^{j(\omega t-k x)}$?

C

What are the group and phase velocities of the waves? Why are such systems called "backward waves"?

D

A voltage $V_{0} \cos \omega t$ is applied at $z=-l$ with the $z=0$ end short circuited. What are the voltage and current distributions along the line?

E

What are the resonant frequencies of the system?
Used with permission.
Zahn, Markus. From Electromagnetic Field Theory: A Problem Solving Approach, 1987.

Problem 10.6 (Zahn Chap. 8, Prob. 8)

The dc steady state is reached for a transmission line loaded at $z=l$ with a resistor R_{L} and excited at $z=0$ by a dc voltage V_{0} applied through a source resistor R_{s}. The voltage source is suddenly set to zero at $t=0$.

A

What is the initial voltage and current along the line?

Figure 6: Transmission line system.

B

Find the voltage at the $z=l$ end as a function of time. (Hint: Use difference equations.)

Used with permission.
Zahn, Markus. From Electromagnetic Field Theory: A Problem Solving Approach, 1987.

