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6.641 — Electromagnetic Fields, Forces, and Motion Spring 2005 

Problem Set 11 - Questions 

Prof. Markus Zahn MIT OpenCourseWare 

Problem 11.1 (W&M Prob 10.8) 

An electromagnetic wave can be transmitted through or reflected by a plasma, depending on the frequency 
of the wave relative to the plasma frequency ωp. This phenomenon, which is fundamental to the propagation 
of radio signals in the ionosphere, is illustrated by the following simple example of a cutoff wave. In dealing 
with electromagnetic waves, we require that both the electric displacement current in Ampere’s law and 
the magnetic induction in Faraday’s law (See Section B.2.1) be accounted for. We consider one-dimensional 
plane waves in which E = ixEx(z, t) and H = iyHy(z, t). 

Figure 1: An electromagnetic wave incident onto a plasma. 

A 

Show that Maxwell’s equations require that 

∂Ex ∂µ0Hy ∂Hy ∂ε0Ex 
= − , − = + Jx

∂z ∂t ∂z ∂t 

. 

B 

The space is filled with plasma composed of equal numbers of ions and electrons. Assume that the more 
massive ions remain fixed and that ne is the electron number density, whereas e and m are the electronic 
charge and mass. Use a linearized force equation to relate Ex and vx, where vx is the average electron 
velocity in the x-direction. 

Relate vx and Jx to linear terms. 
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D 

Use the equations of (a)-(c) to find the dispersion equation for waves in the form of ej(ωt−kz). 

E 

Define the plasma frequency as ωp = n e2 
e and describe the dynamics of a wave with ω < ωp.ε0m 

F 

Suppose that a wave in free space were to be normally incident on a layer of plasma (such as the ionosphere). 
What would you expect to happen? (See Problem 10.9 for a similar situation.) 

Courtesy of Herbert Woodson and James Melcher. Used with permission.

Woodson, Herbert H., and James R. Melcher. Electromechanical Dynamics,

Part 2: Fields, Forces, and Motion. Malabar, FL: Kreiger Publishing Company, 1968. ISBN: 9780894644597.

Problem 11.2 (W&M Prob 10.10) 

Figure 2: A charged insulating string is below an oppositely charged rigid rod. 

A rigid straight rod supports a charge Q coulombs per unit length and is fixed. Just below this rod 
an insulating string is stretched between fixed supports, as shown in Fig. 10P.10. This string, which has a 
tension f and mass per unit length m, supports a charge per unit length −q, where q � Q and both Q and 
q are positive. 

A 

What should qQ be in order that the string have the static equilibrium ξ = 0 in spite of the gravitational 
acceleration g? 

B 

What is the largest value of m that is consistent with the equilibrium of part (a) being stable? 

How would you alter this physical situation to make the static equilibrium stable even with m larger than 
given by (b)? 

Courtesy of Herbert Woodson and James Melcher. Used with permission.

Woodson, Herbert H., and James R. Melcher. Electromechanical Dynamics,

Part 2: Fields, Forces, and Motion. Malabar, FL: Kreiger Publishing Company, 1968. ISBN: 9780894644597.
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Problem 11.3 (W&M Prob 10.13) 

A pair of perfectly conducting membranes are stretched between rigid supports at x = 0 and x = L, as shown 
in FIg. 10P.13. The membranes have the applied voltage Vθ with respect to each other and with respect to 
plane-parallel electrodes. 

Figure 3: A pair of perfectly conducting membranes at voltage differences V0 with respect to each other and 
with respect to plane-parallel electrodes. 

A 

Write a pair of differential equations in ξ1(x, t) and ξ2(x, t) which describe the membrane motions. Assume 
that ξ1 and ξ2 are small enough to warrant linearization and that the wavelengths are long enough that the 
membranes appear flat to the electric field at any one value of x. 

B 

Assume that 

ξ1 = Reξ̂  
1e

j(ωt−kx) 

ξ2 = Reξ̂  
2e

j(ωt−kx) 

and find a dispersion equation relating ω and k. 

Make an ω− k plot showing the results of part (b), including imaginary values of ω for real values of k. (This 
equation should be biquadratic in ω). 

D 

At what potential V0 will the static equilibrium ξ1 = 0 and ξ2 = 0 first become unstable? Describe the mode 
of instability. 

Courtesy of Herbert Woodson and James Melcher. Used with permission.

Woodson, Herbert H., and James R. Melcher. Electromechanical Dynamics,

Part 2: Fields, Forces, and Motion. Malabar, FL: Kreiger Publishing Company, 1968. ISBN: 9780894644597.

Problem 11.4 (W&M Prob 10.23) 

A pair of perfectly conducting membranes move in the x-direction with the velocity U . The membranes have 
the applied voltage V0 with respect to one another and to plane-parallel electrodes. They enter the region 
between the plates from rollers at x = 0. 
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Figure 4: A pair of perfectly conducting membranes at respective voltages V0 moving with velocity U . 

A 

Write a pair of differential equations in ξ1(x, t) and ξ2(x, t) to describe the membrane motions. Assume 
that ξ1 and ξ2 are small enough to warrant linearization and that the wavelengths are long enough for the 
membrane to appear flat to the electric field at any one value of x. 

B 

Assume that 

ξ1 = Reξ̂  
1e

j(ωt−kx) 

ξ2 = Reξ̂  
2e

j(ωt−kx) 

and find a dispersion equation relating ω and k. 

Make an ω − k plot to show the results of part (b), including complex values of k for real values of ω. This 
equation can be factored into two quadratic equations for k. Assume that U > S/σm. 

D 

One of the quadratic factors in part (c) describes motions in which ξ1(x, t) = ξ2(x, t), whereas the other 
describes motions in which ξ1(x, t) = −ξ2(x, t). Show that this is true by assuming first that ξ1 = ξ2 and 
then that ξ1 = −ξ2 in parts (a) and (b). 

E 

ξejωt Now suppose that the rollers at x = 0 are given the sinusoidal excitation ξ1(0, t) = Reˆ = −ξ2(0, t), 
∂ξ1 = ∂ξ2where ξ̂ is the same real constant for each excitation. Also, 0 = 
∂x ∂x 

at x = 0. Find ξ1(x, t) and 
ξ2(x, t). 

F 

What voltage V0 is required to make the waves excited in part (e) amplify? 
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G 

Sketch the spatial dependence of ξ1 and ξ2 at an instant in time with V0 = 0 and with V0 large enough to 
produce amplifying waves. 

Courtesy of Herbert Woodson and James Melcher. Used with permission.

Woodson, Herbert H., and James R. Melcher. Electromechanical Dynamics,

Part 2: Fields, Forces, and Motion. Malabar, FL: Kreiger Publishing Company, 1968. ISBN: 9780894644597.

Problem 11.5 (W&M Prob 10.21) 

A perfectly conducting membrane with the tension S and mass per unit area σm is ejected from a nozzle 
along the x-axis with velocity U . Gravity acts as shown in Fig. 10P.21. 

Figure 5: A perfectly conducting membrane moving at velocity U . 

A planar electrode above the membrane has the constant potential V0 relative to the membrane. 

A 

What value of V0 is required to make the membrane assume an equilibrium parallel to the electrode? 

B 

Now, under the conditions in (a), the membrane is excited at the frequency ωd; what is the lowest frequency 
of excitation that will not lead to spatially growing deflections? Assume that U > S/σm. 

Courtesy of Herbert Woodson and James Melcher. Used with permission.

Woodson, Herbert H., and James R. Melcher. Electromechanical Dynamics,

Part 2: Fields, Forces, and Motion. Malabar, FL: Kreiger Publishing Company, 1968. ISBN: 9780894644597.
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