MIT OpenCourseWare
http://ocw.mit.edu

6.641 Electromagnetic Fields, Forces, and Motion

Spring 2005

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Problem 1

A
Question: Calculate the electric scalar potential inside and outside the cylinder at time $t=0$.

Solution:

$$
\begin{aligned}
& \Phi(r, \phi, t=0)= \begin{cases}A(t=0) r^{3} \sin 3 \phi & 0 \leq r \leq R \\
\frac{B(t=0)}{r^{3}} \sin 3 \phi & r \geq R\end{cases} \\
& E_{r}(r, \phi, t=0)=-\frac{\partial \Phi(r, \phi, t=0)}{\partial r}= \begin{cases}-3 A(t=0) r^{2} \sin 3 \phi & 0 \leq r<R \\
\frac{3 B(t=0)}{r^{4}} \sin 3 \phi & r>R\end{cases} \\
& \epsilon_{2} E_{r}\left(r=R_{+}, \phi, t=0\right)-\epsilon_{1} E_{r}\left(r=R_{-}, \phi, t=0\right)=\left.\rho_{s}(t=0)\right|_{r=R}=\rho_{s_{0}} \sin 3 \phi \\
& \frac{3 \epsilon_{2} B(t=0)}{R^{4}} \sin 3 \phi+3 \epsilon_{1} A(t=0) R^{2} \sin 3 \phi=\rho_{s_{0}} \sin 3 \phi \\
& \Phi\left(r=R_{+}, \phi, t=0\right)=\Phi\left(r=R_{-}, \phi, t=0\right) \Rightarrow A(t=0) R^{3}=\frac{B(t=0)}{R^{3}} \\
& B(t=0)=A(t=0) R^{6} \\
& 3 R^{2} A(t=0)\left[\epsilon_{1}+\epsilon_{2}\right]=\rho_{s_{0}} \\
& A(t=0)=\frac{B(t=0)}{R^{6}}=\frac{\rho_{s_{0}}}{3 R^{2}\left(\epsilon_{1}+\epsilon_{2}\right)} \\
& \Phi(r, \phi, t=0)= \begin{cases}\frac{\rho_{s_{0}}}{3 R^{2}\left(\epsilon_{1}+\epsilon_{2}\right)} r^{3} \sin 3 \phi & 0 \leq r \leq R \\
\frac{\rho_{s_{0}} R^{4}}{3\left(\epsilon_{1}+\epsilon_{2}\right)} \frac{\sin 3 \phi}{r^{3}} & r \geq R\end{cases}
\end{aligned}
$$

B

Question: Calculate the electric scalar potential inside and outside the cylinder for $t \geq 0$.
Solution:

$$
\Phi(R, \phi, t)= \begin{cases}A(t) r^{3} \sin 3 \phi & 0 \leq r \leq R \\ \frac{B(t)}{r^{3}} \sin 3 \phi & r \geq R\end{cases}
$$

$$
\begin{aligned}
& \Phi\left(r=R_{+}, \phi, t\right)=\Phi\left(r=R_{-}, \phi, t\right) \Rightarrow A(t) R^{3}=\frac{B(t)}{R^{3}} \\
& B(t)=A(t) R^{6} \\
& \sigma_{1} E_{r}\left(r=R_{-}, \phi, t\right)+\epsilon_{1} \frac{\partial E_{r}\left(r=R_{-}, \phi, t\right)}{\partial t}=\sigma_{2} E_{r}\left(r=R_{+}, \phi, t\right)+\epsilon_{2} \frac{\partial E_{r}\left(r=R_{+}, \phi, t\right)}{\partial t} \\
& E_{r}(r, \phi, t)=-\frac{\partial \Phi(r, \phi, t)}{\partial r}= \begin{cases}-3 A(t) r^{2} \sin 3 \phi & 0 \leq r<R \\
\frac{3 B(t)}{r^{4}} \sin 3 \phi & r>R\end{cases} \\
& -3 \sigma_{1} R^{2} A(t)-3 R^{2} \epsilon_{1} \frac{d A}{d t}=\frac{3 \sigma_{2}}{R^{4}} B(t)+\frac{3 \epsilon_{2}}{R^{4}} \frac{d B}{d t} \\
& =3 R^{2}\left(\sigma_{2} A(t)+\epsilon_{2} \frac{d A}{d t}\right) \\
& -\sigma_{1} A(t)-\epsilon_{1} \frac{d A}{d t}=\sigma_{2} A(t)+\epsilon_{2} \frac{d A}{d t} \\
& \left(\epsilon_{1}+\epsilon_{2}\right) \frac{d A}{d t}+\left(\sigma_{1}+\sigma_{2}\right) A(t)=0 \\
& \frac{d A}{d t}+\frac{A(t)}{\tau}=0 ; \tau=\frac{\epsilon_{1}+\epsilon_{2}}{\sigma_{1}+\sigma_{2}} \\
& A(t)=A(t=0) e^{-\frac{t}{\tau}}=\frac{\rho_{s_{0}}}{3 R^{2}\left(\epsilon_{1}+\epsilon_{2}\right)} e^{-\frac{t}{\tau}} \\
& \Phi(r, \phi, t)= \begin{cases}\frac{\rho_{s_{0}}}{3 R_{0}^{2}\left(\epsilon_{1}+\epsilon_{2}\right)} r^{3} \sin 3 \phi e^{-\frac{t}{\tau}} & 0 \leq r \leq R \\
\frac{\rho_{s_{0}}^{4}}{3\left(\epsilon_{1}+\epsilon_{2}\right)} \frac{\sin 3 \phi}{r^{3}} e^{-\frac{t}{\tau}} & r \geq R\end{cases}
\end{aligned}
$$

C

Question: What is the free surface charge density $\rho_{s}(r=R, t)$ for $t \geq 0$?
Solution:

$$
\begin{aligned}
\rho_{s}(r=R, t) & =\epsilon_{2} E_{r}\left(R_{+}, \phi, t\right)-\epsilon_{1} E_{r}\left(R_{-}, \phi, t\right) \\
& =\frac{3 A(t)}{R^{4}} R^{6} \epsilon_{2} \sin 3 \phi+3 A(t) R^{2} \epsilon_{1} \sin 3 \phi \\
& =3 R^{2} \sin 3 \phi\left(\epsilon_{1}+\epsilon_{2}\right) A(t) \\
& =3 R^{\natural} \sin 3 \phi\left(\epsilon_{1}+\epsilon_{1}\right) \frac{\rho_{s_{0}}}{3 R^{2}\left(\epsilon_{1}+\epsilon_{2}\right)} e^{-\frac{t}{\tau}} \\
& =\rho_{s_{0}} \sin 3 \phi e^{-\frac{t}{\tau}}
\end{aligned}
$$

Problem 2

A

Question: Determine the force of electric origin that acts on the upper capacitor plate in the direction of increasing x, as a function of the applied voltage V, the plate deflection x, and the parameters of the model.

Solution:

$$
C(x)=\frac{\epsilon_{0} A}{G-x}, f_{x}=\frac{1}{2} V^{2} \frac{d C}{d x}=\frac{1}{2} \frac{V^{2} \epsilon_{0} A}{(G-x)^{2}}
$$

B

Question: Determine a differential equation that describes the time response of the deflection x as the upper capacitor plate is deflected by the force of electric origin. Neglect gravity.

Solution:

$$
M \frac{d^{2} x}{d t^{2}}=-K x+\frac{\epsilon_{0} A V^{2}}{2(G-x)^{2}}
$$

C

Question: Assume that the deflection of the upper capacitor plate is in static equilibrium for a given voltage V. Determine a relation between the equilibrium deflection $x=X$, the applied voltage V, and the parameters of the model. You need not explicitly solve for X.

Solution: At equilibrium, $\frac{d x}{d t}=0 \Rightarrow K X=\frac{\epsilon_{0} A V^{2}}{2(G-X)^{2}}$.

D

Question: We wish to determine the voltage at which the equilibrium found in Part c becomes unstable. To do so, let $x=X+x^{\prime}$ and linearize the differential equation found in Part b for small displacements x^{\prime} from the equilibrium X, where $x^{\prime} \ll X$.

Solution:

$$
\begin{aligned}
x & =X+x^{\prime} \\
M \frac{d^{2} x^{\prime}}{d t^{2}} & =-K x^{\prime}+\frac{\epsilon_{0} A V^{2}}{\not 2} \frac{\not 2}{(G-X)^{3}} x^{\prime}=\left[-K+\frac{\epsilon_{0} A V^{2}}{(G-X)^{3}}\right] x^{\prime} \\
M \frac{d^{2} x^{\prime}}{d t^{2}} & =-K\left[1-\frac{2 X}{(G-X)}\right] \not x^{\prime} \\
& =-K \frac{[G-3 X]}{[G-X]} x^{\prime}
\end{aligned}
$$

E

Question: Combine the answers to Parts c and d to show that the deflection of the upper plate becomes unstable (as determined by the dynamics of the linearized differential equation found in Part d) when the upper plate deflects a fraction of the gap G. Also, determine this fraction.

Solution: Unstable if $G-3 X<0$. Incipience: $X=\frac{G}{3}$.

F

Question: Determine the voltage in terms of the parameters of the model at the onset of instability determined in Part e.

Solution:

$$
\begin{aligned}
& -K+\frac{\epsilon_{0} A V^{2}}{(G-X)^{3}}=0=-K+\frac{\epsilon_{0} A V^{2}}{\left(\frac{2}{3} G\right)^{3}}=-K+\frac{27}{8} \frac{\epsilon_{0} A V^{2}}{G^{3}} \\
& V=\left[\frac{8 K G^{3}}{27 \epsilon_{0} A}\right]^{\frac{1}{2}}
\end{aligned}
$$

Problem 3

A

Question: Find the magnetic field \bar{H} in each gap within the magnetic circuit. Neglect fringing field effects.

Solution:

$$
\begin{aligned}
H_{a} a & =N I \\
H_{b} b & =N I \\
H_{a} & =\frac{N I}{a}, H_{b}=\frac{N I}{b}
\end{aligned}
$$

B

Question: Find the self-inductance $L(x)$ of the coil as a function of block position x.
Solution:

$$
\begin{aligned}
\Phi & =\mu_{b} H_{b} s_{b} d+H_{a} d\left(\mu_{a} x+\mu_{0}\left(s_{a}-x\right)\right) \\
& =N I d\left(\frac{\mu_{b} s_{b}}{b}+\frac{1}{a}\left(\mu_{a} x+\mu_{0}\left(s_{a}-x\right)\right)\right) \\
\lambda & =N \Phi=N^{2} I d\left[\frac{\mu_{b} s_{b}}{b}+\frac{1}{a}\left(\mu_{a} x+\mu_{0}\left(s_{a}-x\right)\right)\right] \\
L(x) & =\frac{\lambda}{I}=N^{2} d\left[\frac{\mu_{b} s_{b}}{b}+\frac{1}{a}\left(\mu_{a} x+\mu_{0}\left(s_{a}-x\right)\right)\right]
\end{aligned}
$$

C
Question: Find the magnetic force on the movable block.

Solution:

$$
f_{x}=\frac{1}{2} I^{2} \frac{d L}{d x}=\frac{1}{2} \frac{N^{2} I^{2} d}{a}\left(\mu_{a}-\mu_{0}\right)
$$

D

Question: What is the governing differential equation for the position of the movable block?

Solution:

$$
M \frac{d^{2} x}{d t^{2}}=-K x+\frac{1}{2} N^{2} \frac{I^{2} d}{a}\left(\mu_{a}-\mu_{0}\right)=f_{T}(x)
$$

E

Question: Find the equilibrium position $x=x_{e q}$ of the movable block assuming $0<x<s_{a}$.

Solution:

$$
\begin{aligned}
& f_{T}(x)=f_{x}-K x_{e q}=0=\frac{1}{2} N^{2} \frac{I^{2} d}{a}\left(\mu_{a}-\mu_{0}\right)-K x_{e q} \\
& x_{e q}=\frac{1}{2} \frac{N^{2} I^{2} d}{K a}
\end{aligned}
$$

F

Question: Is this equilibrium stable or unstable?

Solution:

$$
\left.\frac{d f_{T}}{d x}\right|_{x=x_{e q}}=-K<0 \text { (stable) }
$$

G

Question: The movable block of mass M is slightly displaced from its equilibrium at $x_{e q}$ by an amount Δx and released with velocity $\left.\frac{d x}{d t}\right|_{t=0}=v_{0}$. To first order calculate $x^{\prime}(t)$ where $x(t)=x_{e q}+x^{\prime}(t)$ with $x^{\prime}(t) \ll x_{e q}$. Neglect friction.

Solution:

$$
\begin{aligned}
M \frac{d^{2} x^{\prime}}{d t^{2}} & =\left.\frac{d f_{T}}{d x}\right|_{x_{e q}} \quad x^{\prime}=-K x^{\prime} \Rightarrow \frac{d^{2} x^{\prime}}{d t^{2}}+\omega_{0}^{2} x^{\prime}=0, \omega_{0}^{2}=\frac{K}{M} \\
x^{\prime} & =A \sin \omega_{0} t+B \cos \omega_{0} t \\
\frac{d x^{\prime}}{d t} & =\omega_{0}\left[A \cos \omega_{0} t-B \sin \omega_{0} t\right] \\
x^{\prime}(t=0) & =B=\Delta x \\
\left.\frac{d x^{\prime}}{d t}\right|_{t=0} & =\omega_{0} A=v_{0} \Rightarrow A=\frac{v_{0}}{\omega_{0}} \\
x^{\prime}(t) & =\frac{v_{0}}{\omega_{0}} \sin \omega_{0} t+\Delta x \cos \omega_{0} t
\end{aligned}
$$

