MIT OpenCourseWare
http://ocw.mit.edu

6.641 Electromagnetic Fields, Forces, and Motion

Spring 2005

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Quiz 1 - Solutions 2004

Prof. Markus Zahn
MIT OpenCourseWare

Problem 1

A
Question: What is the general form of the solution for $\chi(x, y)$ in the regions $x<0$ and $0<x<d$?

Solution:

$$
\chi(x, y)= \begin{cases}A \cos (a y) e^{a x} & x<0 \\ B \cos (a y) \cosh (a(x-d)) & 0<x<d\end{cases}
$$

B

Question: What boundary conditions must be satisfied?

Solution:

$$
\begin{aligned}
& H_{y}\left(x=0_{+}\right)-H_{y}\left(x=0_{-}\right)=K_{z} \\
& \mu H_{x}\left(x=0_{-}\right)=\mu_{0} H_{x}\left(x=0_{+}\right) \\
& H_{x}(x=d)=0
\end{aligned}
$$

C

Question: Solve $\chi(x, y)$ for $x<0$ and $0<x<d$.
Hint: To minimize algebraic complexity, think about the best way to write the general form of the solution for $\chi(x, y)$ to automatically satisfy one of the boundary conditions for part (b).

Solution:

$$
\begin{aligned}
& H_{y}=-\frac{\partial \chi}{\partial y}= \begin{cases}a A \sin (a y) e^{a x} & x<0 \\
a B \sin (a y) \cosh (a(x-d)) & 0<x<d\end{cases} \\
& H_{x}=-\frac{\partial \chi}{\partial x}= \begin{cases}-a A \cos (a y) e^{a x} & x<0 \\
-a B \cos (a y) \sinh (a(x-d)) & 0<x<d\end{cases}
\end{aligned}
$$

$\not \alpha B \underline{\sin (a y)} \cosh (a d)-\not a A \underline{\sin (a y)}=\frac{K_{0}}{a} \underline{\sin }(a y)$
$-\mu \phi A \cos (a y)=+\mu_{0} \phi B \cos (a y) \sinh (a d)$
$A=-\frac{\mu_{0}}{\mu} B \sinh (a d)$
$B\left[\cosh (a d)+\frac{\mu_{0}}{\mu} \sinh (a d)\right]=\frac{K_{0}}{a}$
$B=\frac{K_{0}}{a\left[\cosh (a d)+\frac{\mu_{0}}{\mu} \sinh (a d)\right]}$
$A=-\frac{\mu_{0} \sinh (a d) K_{0}}{\mu a\left[\cosh (a d)+\frac{\mu_{0}}{\mu} \sinh (a d)\right]}$
$\chi(x, y)= \begin{cases}-\frac{\mu_{0} K_{0} \sinh (a d) \cos (a y) e^{a x}}{\mu a\left[\cosh (a d)+\frac{\mu_{0}}{\mu} \sinh (a d)\right]} & x<0 \\ \frac{K_{0} \cos (a y) \cosh (a(x-d))}{a\left[\cosh (a d)+\frac{\mu_{0}}{\mu} \sinh (a d)\right]} & 0<x<d\end{cases}$

D

Question: What is the surface current that flows on the $x=d$ interface?

Solution:

$$
\begin{aligned}
K_{z}(x=d)=-H_{y}(x=d) & =-B a \sin (a y) \\
& =\frac{-K_{0} \sin (a y)}{\left[\cosh (a d)+\frac{\mu_{0}}{\mu} \sinh (a d)\right]}
\end{aligned}
$$

E
Question: What is the force per unit $y-z$ area on the $x=d$ interface?

Solution:

$$
\begin{aligned}
\frac{\bar{f}}{\text { area }}=\left.\frac{1}{2}\left[\bar{K} \times \mu_{0} \bar{H}\right]\right|_{x=d} & =\frac{1}{2} \mu_{0} K_{z}(x=d) H_{y}(x=d) \overline{i_{z}} \times \overline{i_{y}} \\
& =-\overline{i_{x}} \frac{\mu_{0}}{2} K_{z}(x=d)\left(-K_{z}(x=d)\right) \\
& =+\frac{\mu_{0}}{2} K_{z}^{2}(x=d) \overline{i_{x}} \\
& =\frac{\mu_{0}}{2} \frac{K_{0}^{2} \sin ^{2}(a y)}{\left[\cosh (a d)+\frac{\mu_{0}}{\mu} \sinh (a d)\right]^{2}}
\end{aligned}
$$

Problem 2

A
Question: What is the general form of solution for the electric scalar potential $\Phi(r, \phi)$ for $r<R_{1}$ and $R_{1}<r<R_{2}$?

Solution:

$$
\Phi(r, \phi)= \begin{cases}A r^{2} \sin (2 \phi) & r<R_{1} \\ \left(B r^{2}+\frac{C}{r^{2}}\right) \sin (2 \phi) & R_{1}<r<R_{2}\end{cases}
$$

B

Question: What boundary conditions must be satisfied?
Solution:

$$
\begin{aligned}
& \Phi(r=0, \phi) \text { is finite } \\
& \Phi\left(r=R_{1-}, \phi\right)=\Phi\left(r=R_{1+}, \phi\right)=V_{0} \sin (2 \phi) \\
& \Phi\left(r=R_{2}, \phi\right)=0
\end{aligned}
$$

C
Question: What is the potential distribution for $r<R_{1}$ and $R_{1}<r<R_{2}$?

Solution:

$$
\begin{aligned}
& A R_{1}^{2} \sin (2 \phi)=V_{0} \sin (2 \phi) \Rightarrow A=\frac{V_{0}}{R_{1}^{2}} \\
& \left(B R_{2}^{2}+\frac{C}{R_{2}^{2}}\right) \sin (2 \phi)=0 \Rightarrow B=-\frac{C}{R_{2}^{4}} \\
& \left(B R_{1}^{2}+\frac{C}{R_{1}^{2}}\right) \underline{\sin (2 \phi)=V_{0} \sin (2 \phi) \Rightarrow C\left(\frac{1}{R_{1}^{2}}-\frac{R_{1}^{2}}{R_{2}^{4}}\right)=V_{0}} \\
& \Phi(r, \phi)= \begin{cases}\frac{V_{0} r^{2}}{R_{1}^{2}} \sin (2 \phi) \\
C\left(-\frac{r^{2}}{R_{2}^{4}}+\frac{1}{r^{2}}\right) \sin (2 \phi)=\frac{V_{0} R_{1}^{2} R_{2}^{4}}{R_{2}^{4}-R_{1}^{4}} \sin (2 \phi)\left(\frac{1}{r^{2}}-\frac{r^{2}}{R_{2}^{4}}\right) & R_{1}<r<R_{1}\end{cases}
\end{aligned}
$$

D

Question: What are the surface charge distributions at $r=R_{1}$ and $r=R_{2}$?
Solution:

$$
\begin{array}{r}
\sigma_{s}\left(r=R_{1}\right)=-\left[\left.\epsilon_{2} \frac{\partial \Phi}{\partial r}\right|_{r=R_{1+}}-\left.\epsilon_{1} \frac{\partial \Phi}{\partial r}\right|_{r=R_{1-}}\right]=\left[-\frac{\epsilon_{2} V_{0} R_{1}^{2} R_{2}^{4}}{R_{2}^{4}-R_{1}^{4}}\left(-\frac{2}{R_{1}^{3}}-\frac{2 R_{1}}{R_{2}^{4}}\right)+\frac{\epsilon_{1} V_{0} 2 R_{1}}{R_{1}^{2}}\right] \sin (2 \phi) \\
\\
=\frac{2 V_{0} \sin (2 \phi)}{R_{1}}\left[\epsilon_{1}+\epsilon_{2} \frac{\left(R_{1}^{4}+R_{2}^{4}\right)}{\left.-R_{1}^{4}+R_{2}^{4}\right)}\right]
\end{array}
$$

$$
\sigma_{2}\left(r=R_{2}\right)=+\left.\epsilon_{2} \frac{\partial \Phi}{\partial r}\right|_{r=R_{2}}=\frac{\epsilon_{2} V_{0} R_{1}^{2} R_{2}^{4}}{R_{2}^{4}-R_{1}^{4}}\left(-\frac{2}{R_{2}^{3}}-\frac{2 R_{2}}{R_{2}^{4}}\right)=\frac{-4 \epsilon_{2} V_{0} R_{1}^{2} R_{2}}{R_{2}^{4}-R_{1}^{4}}
$$

