MIT OpenCourseWare
http://ocw.mit.edu

6.642 Continuum Electromechanics

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Problem 1

Prob. 2.16.5

Gauss' law and $\mathbf{E}=-\nabla \Phi$ requires that if there is no free charge

$$
\begin{equation*}
\epsilon \nabla^{2} \Phi+\nabla \epsilon \cdot \nabla \Phi=0 \tag{1}
\end{equation*}
$$

For the given exponential dependence of the permittivity, the x dependence of the coefficients in this expression factors out and it again reduces to a constant coefficient expression

$$
\begin{equation*}
\frac{\partial^{2} \Phi}{\partial x^{2}}+\frac{\partial^{2} \Phi}{\partial y^{2}}+\frac{\partial^{2} \Phi}{\partial z^{2}}+2 \eta \frac{\partial \Phi}{\partial x}=0 \tag{2}
\end{equation*}
$$

In terms of the complex amplitude forms from Table 2.16.1, Eq. 2 requires that

$$
\begin{equation*}
\frac{d^{2} \tilde{\Phi}}{d x^{2}}+2 \eta \frac{d \tilde{\Phi}}{d x}-k^{2} \tilde{\Phi}=0 \tag{3}
\end{equation*}
$$

Thus, solutions have the form $\exp (p x)$ where $p=-\eta \pm \lambda, \lambda=\sqrt{ } \frac{k}{2} \neq \eta_{2}$.
The linear combination of these that satisfies the conditions that $\tilde{\Phi}$ be $\tilde{\Phi}^{\alpha}$ and $\tilde{\Phi}^{\beta}$ on the upper and lower surfaces respectively is as given in the problem. The displacement vector is then evaluated as

$$
\begin{equation*}
\tilde{D}=-\epsilon_{\beta}\left\{\tilde{\Phi}^{\alpha} e^{\eta(x+\Delta)} \frac{-\eta \sinh \lambda x+\lambda \cosh \lambda x}{\sinh \lambda \Delta}-\tilde{\Phi}^{\beta} e^{\eta x} \frac{-\eta \sinh \lambda(x-\Delta)+\lambda \cosh \lambda(x-\Delta)}{\sinh \lambda \Delta}\right\} \tag{4}
\end{equation*}
$$

Evaluation of this expression at the respective surfaces then gives the transfer relations summarized in the problem.

> Courtesy of James R. Melcher. Used with permission. Solution to problem 2.16.5 in
> Melcher, James. Solutions Manual for Continuum Electromechanics. 1982, p. 2.28.

Problem 2

Prob. 4.3.3

Figure 1: Force per unit area on middle charged surface (c/d) is found using the Maxwell stress tensor (Image by MIT OpenCourseWare.)

With positions as designated in the sketch, the total force per unit area is

$$
\begin{equation*}
<f_{z}>_{z}=<D_{x}^{c} E_{z}^{c}-D_{x}^{d} E_{z}^{d}>_{z}=\frac{1}{2} \Re\left(\tilde{D}_{x}^{c} \tilde{E}_{z}^{c *}-\tilde{D}_{x}^{d} \tilde{E}_{z}^{d *}\right) \tag{5}
\end{equation*}
$$

With the understanding that the surface charge on the sheet is a given quantity, boundary conditions reflecting the continuity of tangential electric field at the three surfaces and that Gauss' law be satisfied through the sheet are

$$
\begin{equation*}
\tilde{\Phi}^{a} \text { given; } \quad \tilde{\Phi}^{b} \text { given; } \quad \tilde{\Phi}^{c}=\tilde{\Phi}^{d} ; \quad \tilde{D}_{x}^{c}-\tilde{D}_{x}^{d}=\tilde{\sigma}_{f} \text { given } \tag{6}
\end{equation*}
$$

Bulk relations are given by Table 2.16.1. In the upper region

$$
\left[\begin{array}{c}
\tilde{D}_{x}^{a} \tag{7}\\
\tilde{D}_{x}^{c}
\end{array}\right]=\epsilon_{0} k\left[\begin{array}{cc}
-\operatorname{coth} k d & \frac{1}{\sinh k d} \\
-\frac{1}{\sinh k d} & \operatorname{coth} k d
\end{array}\right]\left[\begin{array}{c}
\tilde{\Phi}^{a} \\
\tilde{\Phi}^{c}
\end{array}\right]
$$

and in the lower

$$
\left[\begin{array}{c}
\tilde{D}_{x}^{d} \tag{8}\\
\tilde{D}_{x}^{b}
\end{array}\right]=\epsilon_{0} k\left[\begin{array}{cc}
-\operatorname{coth} k d & \frac{1}{\sinh k d} \\
-\frac{1}{\sinh k d} & \operatorname{coth} k d
\end{array}\right]\left[\begin{array}{c}
\tilde{\Phi}^{d} \\
\tilde{\Phi}^{b}
\end{array}\right]
$$

In view of Eq. 6, Eq. 5 becomes

$$
\begin{equation*}
<f_{z}>_{z}=\frac{1}{2} \Re\left[-j k \tilde{\sigma}_{f} \tilde{\Phi}^{c *}\right] \tag{9}
\end{equation*}
$$

so what is now required is the amplitude $\tilde{\Phi}^{c}$. The surface charge, given by Eq. 6, as the difference $\tilde{D}_{x}^{c}-\tilde{D}_{x}^{d}$, follows in terms of the potentials from taking the difference of Eqs. 7 (second row) and 8 (first row). The resulting expression is solved for

$$
\begin{equation*}
\tilde{\Phi}^{c}=\frac{\tilde{\sigma}_{f}}{2 \epsilon_{0} k \operatorname{coth} k d}+\frac{\tilde{\Phi}^{a}+\tilde{\Phi}^{b}}{2 \cosh k d} \tag{10}
\end{equation*}
$$

Substituted into Eq. 9 (where the self terms in $\tilde{\sigma}_{f} \tilde{\sigma}_{f}^{*}$ are imaginary and can therefore be dropped) the force is expressed in terms of the given excitations

$$
\begin{equation*}
<f_{z}>_{z}=\frac{1}{2} k \Re\left[-j \tilde{\sigma}_{f} \frac{\tilde{\Phi}^{a *}+\tilde{\Phi}^{b *}}{2 \cosh k d}\right] \tag{11}
\end{equation*}
$$

b)

Translation of the given excitations into complex amplitudes gives

$$
\begin{equation*}
\tilde{\sigma}_{f}=-\sigma_{0} e^{j \omega t} e^{j k \delta}, \quad \tilde{\Phi}^{a}=V_{0} e^{j \omega t}, \quad \tilde{\Phi}^{b}= \pm V_{0} e^{j \omega t} \tag{12}
\end{equation*}
$$

Thus, with the even excitation, where $\Phi^{a}=\Phi^{b}$

$$
\begin{equation*}
<f_{z}>_{z}=-\frac{k V_{0} \sigma_{0}}{2 \cosh k d} \sin k \delta \tag{13}
\end{equation*}
$$

and with the odd excitation, $<f_{z}>_{z}=0$.

c)

This is a specific case from part (b) with $\omega=0$ and $\delta=\lambda / 4$. Thus,

$$
\begin{equation*}
<f_{z}>_{z}=-\frac{k V_{0} \sigma_{0}}{2 \cosh k d} \tag{14}
\end{equation*}
$$

The sign is consistent with the sketch of charge distribution on the sheet and electric field due to the potentials on the walls sketched.

Figure 2: Potentials $\Phi_{a}=\Phi_{b}=-V_{0} \cos k z$ shown with surface charge $\sigma_{f}=\sigma_{0} \sin k z$ (Image by MIT OpenCourseWare.)

Problem 3 (Zahn, Problem 23, Chapter 1)

a)

Cartesian	Cylindrical	Spherical
$h_{x}=1$	$h_{r}=1$	$h_{r}=1$
$h_{y}=1$	$h_{\phi}=r$	$h_{\theta}=r$
$h_{z}=1$	$h_{z}=1$	$h_{\phi}=r \sin \theta$

b)

$$
\begin{aligned}
& d f=\frac{\partial f}{\partial u} d u+\frac{\partial f}{\partial v} d v+\frac{\partial f}{\partial w} d w \\
& =\nabla f \cdot \overline{d \ell} \\
& =\nabla f \cdot\left[h_{u} d u \bar{i}_{u}+h_{v} d v \bar{i}_{v}+h_{w} d w \bar{i}_{w}\right] \\
& (\nabla f)_{u}=\frac{1}{h_{u}} \frac{\partial f}{\partial u} ; \quad(\nabla f)_{v}=\frac{1}{h_{v}} \frac{\partial f}{\partial v} ; \quad(\nabla f)_{w}=\frac{1}{h_{w}} \frac{\partial f}{\partial w} \\
& \nabla f=\frac{1}{h_{u}} \frac{\partial f}{\partial u} \bar{i}_{u}+\frac{1}{h_{v}} \frac{\partial f}{\partial v} \bar{i}_{v}+\frac{1}{h_{w}} \frac{\partial f}{\partial w} \bar{i}_{w}
\end{aligned}
$$

c)

$$
\begin{aligned}
& d S_{u}=h_{v} h_{w} d v d w ; \quad d S_{v}=h_{u} h_{w} d u d w ; \quad d S_{w}=h_{u} h_{v} d u d v \\
& d V=h_{u} h_{v} h_{w} d u d v d w
\end{aligned}
$$

d)

Divergence

$$
\begin{aligned}
& \Phi=\oint_{S} \bar{A} \cdot \overline{d S}=\int_{1, u} A_{u} h_{v} h_{w} d v d w-\int_{1^{\prime}, u-\Delta u} A_{u} h_{v} h_{w} d v d w \\
& +\int_{2, v+\Delta v} A_{v} h_{u} h_{w} d u d w-\int_{2^{\prime}, v} A_{v} h_{u} h_{w} d u d w
\end{aligned}
$$

$$
\begin{aligned}
& +\int_{3, w+\Delta w} A_{w} h_{u} h_{v} d u d v-\int_{3^{\prime}, w} A_{w} h_{u} h_{v} d u d v \\
& =\left\{\frac{\left.A_{u} h_{v} h_{w}\right|_{u}-\left.A_{u} h_{v} h_{w}\right|_{u-\Delta u}}{\Delta u}+\frac{\left.A_{v} h_{u} h_{w}\right|_{v+\Delta v}-\left.A_{v} h_{u} h_{w}\right|_{v}}{\Delta v}+\frac{\left.A_{w} h_{u} h_{v}\right|_{w+\Delta w}-\left.A_{w} h_{u} h_{v}\right|_{w}}{\Delta w}\right\} \Delta u \Delta v \Delta w \\
& \nabla \cdot \bar{A}=\lim _{\Delta u \rightarrow 0, \Delta v \rightarrow 0, \Delta w \rightarrow 0} \frac{\oint_{S} \bar{A} \cdot \overline{d S}}{\Delta V}=\frac{\oint_{S} \bar{A} \cdot \overline{d S}}{h_{u} h_{v} h_{w} \Delta u \Delta v \Delta w} \\
& =\frac{1}{h_{u} h_{v} h_{w}}\left[\frac{\partial\left(h_{v} h_{w} A_{u}\right)}{\partial u}+\frac{\partial\left(h_{u} h_{w} A_{v}\right)}{\partial v}+\frac{\partial\left(h_{u} h_{v} A_{w}\right)}{\partial w}\right]
\end{aligned}
$$

Figure 3: Contour for determining $(\nabla \times \bar{A})_{u}$ (Image by MIT OpenCourseWare.)
Curl

$$
\begin{aligned}
& (\nabla \times \bar{A})_{u}=\lim _{\Delta v \rightarrow 0, \Delta w \rightarrow 0} \frac{\oint_{L} \bar{A} \cdot \overline{d \ell}}{h_{v} h_{w} \Delta v \Delta w} \\
& \oint_{L} \bar{A} \cdot \overline{d \ell}=\left[\left.A_{v} h_{v} \Delta v\right|_{w}-\left.A_{v} h_{v} \Delta v\right|_{w+\Delta w}\right]+\left[\left.A_{w} h_{w} \Delta w\right|_{v+\Delta v}-\left.A_{w} h_{w} \Delta w\right|_{v}\right] \\
& (\nabla \times \bar{A})_{u}=\lim _{\Delta v \rightarrow 0, \Delta w \rightarrow 0} \frac{1}{h_{v} h_{w}}\left\{\frac{\left.A_{v} h_{v}\right|_{w}-\left.A_{v} h_{v}\right|_{w+\Delta w}}{\Delta w}+\frac{\left.A_{w} h_{w}\right|_{v+\Delta v}-\left.A_{w} h_{w}\right|_{v}}{\Delta v}\right\} \\
& =\frac{1}{h_{v} h_{w}}\left[\frac{\partial\left(h_{w} A_{w}\right)}{\partial v}-\frac{\partial\left(h_{v} A_{v}\right)}{\partial w}\right]
\end{aligned}
$$

Similarly

$$
\begin{aligned}
& (\nabla \times \bar{A})_{v}=\frac{1}{h_{u} h_{w}}\left[\frac{\partial\left(h_{u} A_{u}\right)}{\partial w}-\frac{\partial\left(h_{w} A_{w}\right)}{\partial u}\right] \\
& (\nabla \times \bar{A})_{w}=\frac{1}{h_{u} h_{v}}\left[\frac{\partial\left(h_{v} A_{v}\right)}{\partial u}-\frac{\partial\left(h_{u} A_{u}\right)}{\partial v}\right]
\end{aligned}
$$

e)

$$
\nabla^{2} f=\nabla \cdot(\nabla f)=\frac{1}{h_{u} h_{v} h_{w}}\left[\frac{\partial}{\partial u}\left(\frac{h_{v} h_{w}}{h_{u}} \frac{\partial f}{\partial u}\right)+\frac{\partial}{\partial v}\left(\frac{h_{u} h_{w}}{h_{v}} \frac{\partial f}{\partial v}\right)+\frac{\partial}{\partial w}\left(\frac{h_{u} h_{v}}{h_{w}} \frac{\partial f}{\partial w}\right)\right]
$$

