MIT OpenCourseWare
http://ocw.mit.edu

[6.642 Continuum Electromechanics

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science
6.642 Continuum Electromechanics

Problem 1

A sphere of radius R and infinite magnetic permeability is placed within a uniform magnetic field at infinity,

$$
\bar{H}(r \quad \infty, \theta) \quad H_{0}{\overline{i_{z}}}_{z} \quad H_{0}\left(\overline{i_{r}} \cos \theta-\bar{i}_{\theta} \sin \theta\right) .
$$

The medium outside the sphere is free space.
a) Find the magnetic flux density $\bar{B}(r, \theta)$ for $r>R$.
b) Find the equation of the magnetic field lines

$$
\frac{d r}{r d \theta}=\frac{B_{r}}{B_{\theta=}}
$$

c) Find the vector potential $\bar{A}(r, \theta)$.
d) For $r>R$, the governing equation for the vector potential is $\nabla^{2} \bar{A} \quad 0$. Show that the solution of part (c) satisfies $\nabla^{2} \bar{A} \quad 0$.
e) For the separation magnetic field line that passes through the point ($r \quad R, \theta \quad \pi / 2$) find its distance D from $x \quad 0$ at ($r \quad \infty, \theta \quad \pi$).
f) Draw the magnetic field lines similar to those shown above.

Problem 2

The Kelvin force density for charged dielectric media is

$$
\bar{F} \quad(\bar{P} \cdot \nabla) \bar{E}+\rho_{f} \bar{E}
$$

where $\bar{P} \quad \bar{D}-\varepsilon_{0} \bar{E}$ is the polarization field, \bar{E} is the electric field, \bar{D} is the displacement field, and $\rho_{f} \nabla \cdot \bar{D}$ is the free charge density. Do not assume that the dielectric has a linear permittivity. Find the stress tensor $T_{i j}$ for this force density in the form

$$
F_{i} \frac{\partial T_{i j}}{\partial x_{j}}
$$

Problem 3

The Kelvin force density for current carrying magnetic media with magnetization \bar{M} is $\bar{F} \quad \mu_{0}(\bar{M} \cdot \nabla) \bar{H}+\bar{J} \times \mu_{0} \bar{H}$
where $\bar{M} \frac{\bar{B}}{\mu_{0}}-\bar{H}$ is the magnetization field, \bar{B} is the magnetic flux density, \bar{H} is the magnetic field intensity, and $\bar{J} \nabla \times \bar{H}$ is the current density. Do not assume that the magnetic media has a linear magnetic permeability. Find the stress tensor $T_{i j}$ for this force density in the form

$$
F_{i} \frac{\partial T_{i j}}{\partial x_{j}}
$$

