MIT OpenCourseWare http://ocw.mit.edu

6.642 Continuum Electromechanics Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.642 Continuum Electromechanics

Problem Set #4	Issued: 9/24/08
Fall Term 2008	Due: 10/03/08

Problem 1

A sphere of radius R and infinite magnetic permeability is placed within a uniform magnetic field at infinity,

 $\overline{H}(r \quad \infty, \theta) \quad H_0 \overline{i_z} \quad H_0(\overline{i_r} \cos \theta - \overline{i_\theta} \sin \theta).$ The medium outside the sphere is free space.

- a) Find the magnetic flux density $\overline{B}(r,\theta)$ for r > R.
- b) Find the equation of the magnetic field lines

$$\frac{dr}{rd\theta} = \frac{B_r}{B_{\theta}}$$

- c) Find the vector potential $\overline{A}(r,\theta)$.
- d) For r > R, the governing equation for the vector potential is ∇²A 0. Show that the solution of part (c) satisfies ∇²A 0.
- e) For the separation magnetic field line that passes through the point $(r \ R, \theta \ \pi/2)$ find its distance D from x 0 at $(r \ \infty, \theta \ \pi)$.
- f) Draw the magnetic field lines similar to those shown above.

Problem 2

The Kelvin force density for charged dielectric media is

 \overline{F} $(\overline{P} \cdot \nabla)\overline{E} + \rho_f \overline{E}$ where \overline{P} $\overline{D} - \varepsilon_0 \overline{E}$ is the polarization field, \overline{E} is the electric field, \overline{D} is the displacement field, and ρ_f $\nabla \cdot \overline{D}$ is the free charge density. Do not assume that the dielectric has a linear permittivity. Find the stress tensor T_{ij} for this force density in the form

$$F_i \quad \frac{\partial T_{ij}}{\partial x_i}$$

Problem 3

The Kelvin force density for current carrying magnetic media with magnetization $\, \overline{M} \,$ is

 $\overline{F} \quad \mu_0(\overline{M} \cdot \nabla)\overline{H} + \overline{J} \times \mu_0\overline{H}$ where $\overline{M} \quad \frac{\overline{B}}{\mu_0} - \overline{H}$ is the magnetization field, \overline{B} is the magnetic flux density, \overline{H} is the magnetic field intensity, and $\overline{J} \quad \nabla \times \overline{H}$ is the current density. Do not assume that the magnetic media has a linear magnetic permeability. Find the stress tensor T_{ij} for this force density in the form

$$F_i \quad \frac{\partial T_{ij}}{\partial x_j}$$