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6.642 — Continuum Electromechanics Fall 2008 

Problem Set 6 - Solutions 

Prof. Markus Zahn MIT OpenCourseWare 

Problem 8.10.1


Figure 1: A planar layer of insulating liquid separates infinite half-spaces of perfectly conducting liquid 
(Image by MIT OpenCourseWare.) 

With the designations indicated in the figure, first consider the bulk relations. The perturbation electric 
field is confined to the insulating layer, where 

êd − coth kd 1 Φ̂d 
x sinh kd 

ê
= k 

−1 coth kd Φ̂e 
. (1) e 

x sinh kd 

The transfer relation for the mechanics are applied three times. Perhaps it is best to first write the second 
of the following relations, because the transfer relations for the infinite half space (with it understood that 
k > 0) follow as limiting cases of the general relations. 

jωρ ω2ρ 
p̂c = ϑ̂c

x = − ξ̂a (2) 
k k 

p̂d jωρs − coth kd 1 ϑ̂d
x ω2ρs − coth kd 1 ξ̂a 

e = 
−1 

sinh kd 

ϑ̂e 
= − 

−1 
sinh kd 

ξ̂b 
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p̂ k sinh kd 
coth kd 

x k sinh kd 
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jωρ ω2ρ 
ϑ̂f p̂f = − = ξ̂b (4) 

k k 

Now, consider the boundary conditions. The interfaces are perfectly conducting, so 

∂ξ 
n × E = 0 ⇒ −E0 = ez. (5) 

∂z 

In terms of the potential, this becomes


Φ̂a = E0ξ̂
a . (6)
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Similarly, 

Φ̂b = E0ξ̂
b . (7) 

Stress equilibrium for the x direction is 

[p]nx = [Txj ]nj − γ� · nnx. (8) 

In particular, 

� ∂2ξ ∂2ξ 
(Πc + p �c) − (Πd + p �d) = − 

2 ∂y2 ∂z2 
. (9) (E0 + ex)2 + γ + 

Hence, in terms of complex amplitudes, stress equilibrium for the upper interface is 

−p̂c + p̂ d 
− �E0êx

d 
− k2γξ̂a = 0. (10) 

Similarly, for the lower interface, 

−p̂e + p̂ f + �E0ê
e
x − k2γξ̂b = 0. (11) 

Now, to put these relations together and obtain a dispersion equation, insert Eqs. 5 and 6 into Eq. 1. Then, 
Eqs. 1-4 can be substituted into Eqs. 9 and 10, which become 

ω2ρ ω2ρs −ω2ρs �E
0

2 � � 

+ coth kd + �E0
2k coth kd − k2γ − 

k 
ξ̂a 

k k k sinh kd sinh kd = 0. (12) 
−ω2ρs − 

�0E
0

2k ω2ρ + ω
2ρs coth kd + �0E0

2k coth kd − k2γ ξ̂b 

k sinh kd sinh kd k k 

For the kink mode (ξa = ξb), both of these expressions are satisfied if 

ω2 ρs 1 
ρ + ρs coth kd − + �E0

2k coth kd − − k2γ = 0. (13) 
k sinh kd sinh kd 

With the use of the identity (coshu − 1)/ sinh u = tanhu/2, this expression reduces to 

ω2 � 

kd 
� 

kd 
ρ + ρs tanh = γk2 

− �E0
2k tanh . (14) 

k 2 2 

For the sausage mode (ξa = −ξb), both are satisfied if 

ω2 ρs 

� 

1 
� 

ρ + ρs coth kd + + �E0
2k coth kd + − k2γ = 0, (15) 

k sinh kd sinh kd 

and because (cosh u + 1)/ sinh u = cothu/2, 

ω2 � 

kd 
� 

kd 
ρ + ρs coth = γk2 

− �E0
2k coth . (16) 

k 2 2 

In the limit kd � 1, Eqs. 14 and 16 become 

ω2 � 

kd 
� � 

�E2 � 

ρ + ρs = γ − 
0 d k2 , (17) 

k 2 2 

ω2 � 

2ρs 

� 

= γk2 
− 

2�E0
2 

. (18) ρ + 
k kd d 

Thus, the effect of the electric field on the kink mode is equivalent to having a field dependent surface tension 
with γ → γ − �E0

2d/2. The sausage mode is unstable at k → 0 (infinite wavelength) with E0 = 0 while the 
kink mode is unstable at E0 = 2γ/�d. If the insulating liquid filled in a hole between regions filled by 
high conductivity liquid, the hole boundaries would limit the values of possible k’s. Then there would be a 
threshold value of E0. 

Courtesy of James R. Melcher. Used with permission.
 
Melcher, James R. Solutions Manual for Continuum Electromechanics
, 1982. 
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Problem 8.12.1 

In the vacuum regions to either side of the center perfectly conducting fluid layer the magnetic fields take 
the form 

H = −H0iz + h, (19) 

H = H0iz + h, (20) 

where h = −�Ψ. 

Figure 2: A middle layer of perfectly conducting fluid separates two vacuum regions having oppositely 
directed magnetic fields ±H0iz (Image by MIT OpenCourseWare.) 

In the regions to either side, the mass density is negligible, and so the pressure there can be taken as 
zero. In the fluid, the pressure is therefore 

1 
µ0H0

2 + �ˆ j(ωt−ky y−kz z),p = pe (21) 
2

where p is the perturbation associated with departures of the fluid from static equilibrium. Boundary 
conditions reflect the electromechanical coupling and are consistent with fields governed by Laplace’s equation 
in the vacuum regions and fluid motions governed by Laplace’s equation in the layer. That is, one boundary 
condition on the magnetic field at the surfaces bounding the vacuum, and one boundary condition on the 
fluid mechanics at each of the deformable interfaces. First, because n · B = 0 on the perfectly counducting 
interfaces, 

ĥc
x = 0 (22) 

∂ξ ∂ξ 
ix − iy − iz · [−H0iz + h] = 0 ⇒ ĥx

d = jkz ξ̂
aH0 (23) 

∂y ∂z 

ĥg = −jkz ξ̂
bH0 (24) x 
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ĥh
x = 0 (25) 

In the absence of surface tension, stress balance requires that 

[p]nx = [Txj ]nj . (26) 

In particular, to linear terms at the right interface 

p̂e = −µ0H0 ̂hz
d = −jkzµ0H0Ψ̂

d . (27) 

Similarly, at the left interface 

p̂f = µ0H0ĥz
g = jkzµ0H0Ψ̂

g . (28) 

In evaluating these boundary conditions, the amplitudes are evaluated at the unperturbed position of the 
interface. Hence, the coupling between interfaces through the bulk regions can be represented by the transfer 
relations. For the fields, Eqs. (a) of Table 2.16.1 (in the magnetic analogue) give 

Ψ̂c 1 − coth ka 1 ĥc 
sinh ka x= 

Ψ̂d k − sinh 
1 

ka 
coth ka ĥd

x 

, (29) 

Ψ̂g 1 − coth ka 1 ĥg 
sinh ka x= 

Ψ̂h k − sinh 
1 

ka 
coth ka ĥx

h 
. (30) 

For the fluid layer, Eqs. (c) of Table 7.9.1 become 

p̂e jωρ − coth kd 1 ϑ̂e 

1 
sinh kd 

ϑ̂f
x . (31) = 

p̂f k − sinh kd 
coth kd 

x 

Because the fluid has a static equilibrium, at the interfaces, ϑ̂x
e = jωξ̂a , ϑ̂x

f = jωξ̂b . It sounds more 
complicated than it really is to make the following substitutions. First. Eqs. 22-25 are substituted into Eqs. 
29 and 30. In turn, Eqs. 29b and 30a are used in Eqs. 27 and 28. Finally these relations are entered into 
Eqs. 31 which are arranged to give 

−
ω2ρ coth kd + µ0 

H
0

2k
z 
2 

coth ka ω2ρ 1 
� 

ξ̂a 
� 

k k k sinh kd 

−
ω2ρ 1 ω2ρ µ0H2k2 

ξ̂b 
= 0. (32) 

coth kd − 0 z coth ka 
k sinh kd k k 

For the kink mode, note that setting ξ̂a = ξ̂b insures that both of Eqs. 32 are satisfied if 1 

ω2ρ kd µ0H0
2kz 

2 

tanh = coth ka. (33) 
k 2 k 

Similarly, if ξ̂a = −ξ̂b, so that a sausage mode is considered, both equations are satisfied if 

ω2ρ kd µ0H0
2kz 

2 

coth = coth ka. (34) 
k 2 k 

These last two expression comprise the dispersion equations for the respective modes. It is clear that both 
of the modes are stable. Note however that perturbations propagating in the y direction (kz = 0) are only 
neutrally stable. This is the “interchange” direction discussed with Fig. 8.12.3. Such perturbations result in 
no change in the magnetic field between the fluid and the walls and in no change in the surface currect. As 
a result, there is no perturbation magnetic surface force density tending to restore the interface. 

1
tanh 1 

u = cosh u−1 
= sinh u 

.
2 sinh u cosh u+1 
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Courtesy of James R. Melcher. Used with permission.
Melcher, James R. Solutions Manual for Continuum Electromechanics
, 1982. 
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