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Prob. 8.12.1 (continued)

(a) Determine the equilibrium difference in pressure between the regions a and b and the fluid o.

(b) Show that deflections of the interfaces can be divided into kink modes [ a(y,z,t) = bb(y,z,t)],
and sausage modes [ga(y,z,t) = -_b(y,z,t)].

(c) Show that the dispersion equation for the kink modes is ,with k E k + k2
y z

2
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tanh(d oH2 coth(ka)
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while the dispersion equation for the sausage modes is

2
2 k
- coth( ) = oH2 coth(ka)

(d) Is the equilibrium, as modeled, stable? The same conclusion should follow from both the analytical
results and intuitive arguments.

Prob. 8.12.2 At equilibrium, a perfectly conducting fluid (plasma) occupies the annular region
R < r < a (Fig. P8.12.2.) It is bounded on the outside by a rigid wall at r = a and on the inside by
free space. Coaxial with the annulus is a "perfectly" conducting rod of radius b. Current passing
in the z direction on this inner rod is returned on the plasma interface in the -z direction. Hence,

so long as the interface is in equilibrium, the magnetic field in the free-space annulus b < r < R is

+4 R
H = H -i

or

(a) Define the pressure in the region occupied by the magnetic fielc
as zero. What is the equilibrium pressure II in the plasma?

(b) Find the dispersion equation for small-amplitude perturbations

of the fluid interface. (Write the equation in terms of the

functions F(a, ) and G(a,O).)

(c) Show that the equilibrium is stable.

Prob. 8.12.3 A "perfectly" conducting incompressible inviscid

liquid layer rests on a rigid support at x = -b and has a free
surface at x = E. At a distance a above the equilibrium inter-
f ace ý, =0% I s a t hi n con d uc "s i s ee 4 hd. av 

i1.1 4 ngý u 
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" y
as . This sheet is backed by "infinitely" permeable material.
The sheet and backing move in the y direction with the imposed Fig. P8.12.2
velocity U. With the liquid in static equilibrium, there is a
surface current Kz = -Ho in the conducting sheet that is returned on the interface of the liquid. Thus,

I = there is an equilibrium magnetic field intensity Hot in the gap between liquid and sheet. Include
in the model gravity acting in the -x direction and surface tension. Determine the dispersion equation
for temporal or spatial modes.

Prob. 8.12.4 In the pinch configuration of Fig. 8.12.1, the wall at r=a consists of a thin conducting
shell of surface conductivity os (as described in Sec. 6.3) surrounded by free space.

(a) Find the dispersion equation for the plasma column coupled to this lossy wall.

(b) Suppose that the frequencies of modes have been found under the assumption that the wall is
perfectly conducting. Under what condition would these frequencies be valid for the wall of
finite conductivity?

(c) Now suppose that the wall is very lossy. Show that the dispersion equation reduces to a quadratic
expression in (jw) and show that the wall tends to induce damping.

For Section 8.13:

Prob. 8.13.1 A cylindrical column of liquid, perhaps water, of equilibrium radius R, moves with uni-
elec-form equilibrium velocity U in the z direction, as shown in.Fig. P8.13.1. A coaxial cylindrical 

trode is used to impose a radially symmetric electric field intensity

coth kd - sinh kd tanh ( (7 ) ; coth kd + sinh kd E coth (sinh kd sinh kd - coh 7
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Prob. 8.13.1 (contlnued)

+ R
E=E - i

or r

in the region between the electrode and liquid.

Assume that the density of the liquid is large compared to that of
the surrounding gas. Moreover, consider the liquid to have a relaxation
time short compared to any other times of interest, and assume that the
cylindrical electrode is well removed from the surface of the liquid.

(a) Determine the equilibrium pressure jump at the interface.

(b) Show that the dispersion equation is

s E2R

(-kU) 3 [-Rfm (0,R) ] m2 -1+(kR) 2 + E [1-Rf(-,R) ]
pR3  r

by using the transfer relations of Tables 2.16.2 and 7.9.1.

Prob. 8.13.2 A spherical drop of insulating liquid is of radius R and
permittivity S. At its center is a metallic, spherical particle of
radius b < R supporting the charge q. Hence, in equilibrium, the
drop is stressed by a radial electric field.

(a) What is the equilibrium E in the drop (b < r < R) and in the surrounding gas, where the mass
density is considered negligible and E = ?7

(b) Determine the dispersion equation for perturbations from the equilibrium.

(c) What is the maximum q consistent with stability for b << R?

For Section 8.14:

Prob. 8.14.1 For a conducting drop, such as iwater in air, the model of Sec. 8.13, where the drop is
pictured as perfectly condhcting, is appropriate. Here, the drop is pictured as perfectly insulating
with charge distributed uniformly over its volume. The goal is to find the limit on the net drop
charge consistent with stability; i.e., the analogue of Rayleigh's limit. This model is of histor-
ical interest because it was used as a starting point in the formulation of the liquid drop model of
the nucleus.2 In fact, the term in that model from nuclear physics that accounts for fission is moti-
vated by the effect of a uniform charge density. Assume that the drop is uniformly charged, has a net
charge Q but has permittivity equal to that of free space. Find the maximum charge consistent with
stability.

Prob. 8.14.2 Consider the same configuration as developed in this section with the following general-
8ization. The fluids in the upper and lower regions have permittivities ea and b respectively.

(a) Write the equilibrium and perturbation bulk and boundary conditions.

(b) Find the dispersion equation and discuss the implications of the terms.

For Section 8.15:

Prob. 8.15.1 This problem is similar to that treated in the section. However, the magnetic field is
imposed and the motions are two-dimensional, so that it is possible to represent the magnetic force
density as the gradient of a scalar. This makes the analysis much simpler. A column of liquid-metal
carries the uniform current density Jo in the z direction but suffers deformations that are independent
of z. A wire at the center of the column also carries a net current I along the z axis. The field
associated with this current is presumed much greater than that due to Jo. Thus, self fields due to

Jo are ignored. Assume that the wire provides a negligible mechanical constraint on the motion and
that the mass density of the gas surrounding the column is much less than that of the column.

(a) Show that the magnetic force density is of the form -VC, where

2. I. Kaplan, Nuclear (Publishing Physics, Addison-esley Company, Reading, Mass., 1955, p. 425.

2. 1. Kaplan, Nuclear Physics, Addison-Wesley Publishing Company, Reading, Mass., 1955, p. 425.
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