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6.642 — Continuum Electromechanics Fall 2008 

Problem Set 8 - Solutions 

Prof. Markus Zahn MIT OpenCourseWare 

Problem 8.18.2 

The basic equations for the magnetizable but insulating inhomogeneous fluid are 

∂v 1 
ρ + v · �v = −�p − ρgi − H2�µ, (1) 

∂t 
x 

2 

� · v = 0, (2) 

� · µh = 0, (3) 

�× h = 0, (4) 

Dµ 
= 0, (5) 

Dt 

Dρ 
= 0, (6) 

Dt 

where H = Hs(x)iz + h. 

In view of Eq. 4, h = −�χ. This means that ĥz = jkz χ̂ and for the present purposes it is more convenient 
to use ĥz as a scalar “potential” 

ˆĥx = − 
1 

Dĥz; hy = 
ky 

ĥz. (7) 
jkz kz 

With the definitions µ = µs(x) + µ� and ρ = ρs(x) + ρ�, Eqs. 5 and 6 link the perturbations in properties to 
the fluid displacement 

v̂xDµs v̂xDρ̂s 
µ̂ = − ; ρ̂ = − . (8) 

jω jω 

Thus, with the use of Eq. 8a and Eqs. 7, the linearized version of Eq. 3 is 

k2 
zD(µsDĥz) = k2 µsĥz + j

ω
Hs(Dµs)v̂x; k2 ≡ ky 

2 + kz 
2 , (9) 

and this represents the magnetic field, given the mechanical deformation. 
To represent the mechanics, Eq. 2 is written in terms of complex amplitudes: 

Dv̂x = jky v̂y + jkz v̂z , (10) 

and, with the use of Eq. 8b, the x component of Eq. 1 is written in the linearized form 

1 1 
ω2ρs + gDρs + Hs 

2D2 µs ϑ̂x + Hs 
2(Dµs)Dv̂x − jωHs(Dµs)ĥz = jωDp. ˆ (11) 

2 2 

1 
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Similarly, the y and z components of Eq. 1 become 

1 ky
jωρsv̂y = jky p̂ − H2(Dµs)v̂x, (12) 

2 ω s 

1 kz
jωρsv̂z = jkz p̂ − Hs 

2(Dµs)v̂x. (13) 
2 ω 

With the objective of making v̂x a scalar function representing the mechanics, these last two expressions are 
solved for v̂y and v̂z and substituted into Eq. 10: 

1 k2 

ωρsDv̂x = jk2 p̂ − Hs 
2(Dµs)v̂x. (14) 

2 ω 

This expression is then solved for p̂, and the derivative taken with respect to x. This derivative can then be 
used to eliminate the pressure from Eq. 11: 

D[ρs(Dv̂x)] − k2 ρs −
N k2Hs(Dµs) ˆv̂x + j hz = 0, (15) 
ω2 ω 

1 
)D(H2) ∼N ≡ −gDρs + (Dµs s = −gDρs. 

2

Equations 9 and 15 comprise the desired relations. 
In an imposed field approximation where Hs = H0 = constant and the properties have the profiles 

ρs = ρm expβx and µs = µm expβx, Eqs. 9 and 15 become 

L + 
k2N 

v̂x + 
jk2H0βµm 

ĥz = 0, (16) 
ρsω2 ρmω 

[L]ĥz + 

� 
jkz 

2H0β 
� 

v̂x = 0, (17) 
ω 

where L ≡ D2 + βD − k2 . 
For these constant coefficient equations, solutions take the form exp γx and L → γ2 + βγ − k2 . From 

Eqs. 16 and 17 it follows that 

L2 + 
k2N 

L + 
k2kz 

2 H0
2β2µm 

= 0. (18) 
ρsω2 ω2 ρm 

Solution for L results in 

1
2 

⎡ ⎤ 
� �2 

gβk2 � 
gβk2 �2 

kkz H0β 
L = a ± b; a ≡ ; b ≡ ⎣ − (19) .⎦ 

2ω2 2ω2 ω ρm/µm 

From the definition of L, the γ’s representing the x dependence follow as 

1
2� �2

β β 
γ = − ± c±; c± ≡ + k2 + a ± b (20) . 

2 2 

In terms of these γ’s, 

β 

Â1e 
c+x + Â2e 

−c+x + Â3e 
c 
− x + Â4e 

− −cx x v̂x = e (21) 2 − . 

2 
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The corresponding ĥz is written in terms of these same coefficients with the help of Eq. 17: 

ˆ kz 
2H0β Â1e

c+x Â2e
−c+x Â3e

c
−

x Â4e
−c

−
x 

−
β 

2hz = −j + + + e x . (22) 
ω a + b a + b a − b a − b 

Thus, the four boundary conditions require that 

⎡ c+� −c+� c
−

� −c
−

� ⎤⎡ ˆ ⎤ 
e e e e A1 

⎢ 1 1 1 1 ⎥⎢ Â2 
⎥ 

⎢ c � −c � c � −c � ⎥⎢ ⎥ 
+ + − − 

⎦⎣ Â3 
⎦ = 0. (23) 

⎣ e e e e

a+b a+b a−b a−b

1 1 1 1 ˆ


a+b a+b a−b a−b A4


This determinant is easily reduced by first subtracting the second and fourth columns from the first and 
third respectively and then expanding by minors: 

2b 
sinh(c+�) sinh(c−�) = 0. (24) 

a2 − b2 

Thus, eigenmodes are c+� = jnπ and c−� = jnπ. The eigenfrequencies follow from Eqs. 19 and 20: 

� �2 
ωn 

2 = 
k2kz 

2H0
2β2µm 

− 
gβk2 

; Kn ≡ 
nπ 

+ 

� 
β 
�2 

+ k2 . (25) 
Kn

4ρm Kn 
2 � 2 

For perturbations with peaks and valleys running perpendicular to the imposed fields, the magnetic field 
stiffens the fluid. Internal electromechanical waves propagate along the lines of magnetic field intensity. If 
the fluid were confined between parallel plates in the x − z planes, so that the fluid were indeed forced to 
undergo only two dimensional motions, the field could be used to balance a heavy fluid on top of a light 
one.... to prevent the gravitational form of Rayleigh-Taylor instability. However, for perturbations with hills 
and valleys running parallel to the imposed field, the magnetic field remains undisturbed, and there is no 
magnetic restoring force to prevent the instability. The role of the magnetic field, here in the context of an 
internal coupling, is similar to that for the hydromagnetic system described in Sec. 8.12 where interchange 
modes of instability for a surface coupled system were found. 

The electric polarization analogue to this configuration might be as shown in Fig. 8.11.1, but with a 
smooth distribution of � and ρ in the x direction. 

Courtesy of James R. Melcher. Used with permission.

Solution to Problem 8.18.2 in Melcher, James R. Solutions Manual for Continuum Electromechanics, 1982, pp. 8.52-8.55.


Problem 8.18.3 

Starting with Eqs. 9 and 15 from Prob. 8.18.2, multiply the first by ĥ∗ 
z and integrate from 0 to �. 

� � � k2

z
h ∗ k2ˆ

z D(µsDĥz )dx − µsĥz ĥ
∗ 

z dx − j z(Dµs)Hsv̂x ̂h ∗ dx = 0. (26) 
ω0 0 0 

Integration of the first term by parts and use of the boundary conditions on ĥz gives integrals on the left 
that are positive definite: 

� � k2 � 

− µs(Dĥz)(Dĥz) 
∗ dx − k2 µsĥzĥ

∗ 

z dx − j z (Dµs)Hsv̂xĥz 
∗ dx = 0. (27) 

ω0 0 0 

In summary, 

k2 � � � � 

I1 = −j z Î∗ ; I1 ≡ [µs|Dĥz |
2 + k2 µs|ĥz|

2]dx, Î4 ≡ Hs(Dµs)v̂ 
∗ ĥzdx. (28) 

ω 4
0 0 

x 

3 
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Now, multiply Eq. 15 from Prob. 8.18.2 by v̂ x 
∗ and integrate: 

k2 k2


v̂x 
∗ Dρs(Dv̂x)dx − k2 ρsv̂xv̂x 

∗ dx + x 
∗ 

x 
∗
N v̂xv̂ dx + j HsDµsv̂ ĥz dx = 0. (29) 

ω2 ω0 0 0 0 

Integration of the first term by parts and the boundary conditions on v̂x gives 

− ρsDv̂xDv̂x
∗ dx − k2 ρsv̂xv̂x

∗ dx + 
ω

k2

2 
N v̂xv̂x

∗ dx + 
jk2 

Hs(Dµs)v̂x 
∗ ĥzdx = 0, (30) 

ω0 0 0 0 

and this expression takes the form 

I3 k2 � � � 

= j Î4; I2 ≡ (ρs|Dv̂x|
2 + k2ρs|v̂x|

2)dx; I3 = k2N|v̂x|
2dx. (31) 

ω2 ω 0 0 
I2 − 

Multiplication of Eq. 28 by Eq. 31 results in yet another positive definite quantity 

I1I2 − 
I1I3 

= 
k2kz 

2 

|Î4|
2 , (32) 

ω2 ω2 

and this expression can be solved for the frequency 

k2k2|Î4|2 + I1I3zω2 = . (33) 
I1I2 

Because the terms on the right are real, it follows that either the eigenfrequencies are real or they represent 
modes that grow and decay without oscillation. Thus, the search for eigenfrequencies in the general case can 
be restricted to the real and imaginary axes of the s plane. 

Note that a sufficient condition for stability is N > 0, because that insures that I3 is positive definite. 

Courtesy of James R. Melcher. Used with permission.

Solution to Problem 8.12.2 in Melcher, James R. Solutions Manual for Continuum Electromechanics, 1982, pp. 8.55-8.56.


4 

http:8.55-8.56

	Problem 8.18.2
	Problem 8.18.3

