MIT OpenCourseWare
http://ocw.mit.edu

6.642 Continuum Electromechanics

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Problem 1

A

Figure 1: Two superposed fluids surround and wet a cylindrical rod of radius R.
Two superposed fluids surround and wet a cylindrical rod of radius R. The interfacial surface tension is γ and fluid/rod contact angle is θ. The lower fluid has mass density ρ_{b} and the upper fluid has mass density ρ_{a} where $\rho_{b}>\rho_{a}$. The vertical displacement of the fluid interface $\xi(r)$ is a function of the radial position r rising to a height h at the rod surface at $r=R$. Thus the fluid/rod interface at $r=R$ has the interface height h and contact angle relationships
$\xi(r=R)=h,\left.\frac{d \xi}{d r}\right|_{r=R}=-\cot (\theta)$
We assume that there is no variation with the angle ϕ and that the maximum interfacial displayment h is small enough that a linear analysis for $\xi(r)$ can be assumed. Gravity is $\bar{g}=-g \overline{i_{z}}$.

Question: Far from the cylinder $(r \gg R)$ the fluid interface is at $z=0$. For $r=\infty$ what is the difference in pressures just below and just above the interface, $\Delta P(r=\infty, z=0)=P_{b}\left(r=\infty, z=0_{-}\right)-P_{a}\left(r=\infty, z=0_{+}\right) ?$

Solution:

Interfacial Force Balance at $r=\infty, z=0$:
$P_{b}\left(r=\infty, z=0_{-}\right)=P_{a}\left(r=\infty, z=0_{+}\right)$
$\Delta P(r=\infty, z=0)=P_{b}\left(r=\infty, z=0_{-}\right)-P_{a}\left(r=\infty, z=0_{+}\right)=0$

B

Question: Defining the function $F(r, z)=z-\xi(r)$, the interface between the two fluids is located where $F(r, z)=0$. To linear terms in $\xi(r)$ what is the unit interfacial normal \bar{n} ?

Solution:
$F(r, z)=z-\xi(r)$
$\bar{n}=\left.\frac{\nabla F}{|\nabla F|}\right|_{F(r, z)=0}=\frac{\frac{\partial F}{\partial r} \bar{i}_{r}+\frac{1}{r} \frac{\partial F}{\partial \phi} \bar{i}_{\phi}+\frac{\partial F}{\partial z} \bar{i}_{z}}{\left[\left(\frac{\partial F}{\partial r}\right)^{2}+\left(\frac{1}{r} \frac{\partial F}{\partial \phi}\right)^{2}+\left(\frac{\partial F}{\partial z}\right)^{2}\right]^{1 / 2}}=\bar{i}_{z}-\frac{\partial \xi}{\partial r} \bar{i}_{r}$
C
Question: The surface tension force per unit area is given by $\overline{T_{s}}=-\gamma(\nabla \bullet \bar{n}) \bar{n}$. What is $\overline{T_{s}}$?

Solution:

$\overline{T_{s}}=-\gamma(\nabla \bullet \bar{n}) \bar{n}=-\gamma\left[\frac{1}{r} \frac{\partial\left(r n_{r}\right)}{\partial r}+\frac{1}{r} \frac{\partial n_{\phi}}{\partial \phi}+\frac{\partial n_{z}}{\partial z}\right] \bar{n}$
$n_{r}=-\frac{\partial \xi}{\partial r}, n_{\phi}=0, n_{z}=1$
$\bar{T}_{s}=+\gamma\left[\frac{1}{r} \frac{\partial\left(r \frac{\partial \xi}{\partial r}\right)}{\partial r}\right]\left(\bar{i}_{z}-\frac{\partial \xi}{\partial r} \bar{i}_{r}\right)$
D
Question: Using Bernoulli's law and interfacial force balance the governing linear equation for interfacial shape $\xi(r)$ can be written in the form
$A(r) \frac{d^{2} \xi(r)}{d r^{2}}+B(r) \frac{d \xi(r)}{d r}+C(r, \xi(r))=0$
What are $A(r), B(r)$ and $C(r)$?

Solution:
$P_{b}\left(r, z=\xi_{-}(r)\right)+\rho_{b} g \xi(r)=P_{b}\left(r=\infty, z=0_{-}\right)$
$P_{a}\left(r, z=\xi_{+}(r)\right)+\rho_{a} g \xi(r)=P_{a}\left(r=\infty, z=0_{+}\right)$
$P_{b}\left(r, z=\xi_{-}(r)\right)-P_{a}\left(r=\xi_{+}(r)\right)-\gamma \nabla \bullet \bar{n}=0$
$-g\left(\rho_{b}-\rho_{a}\right) \xi(r)+\frac{\gamma}{r} \frac{d\left(r \frac{d \xi}{d r}\right)}{d r}=0$
$\frac{d^{2} \xi(r)}{d r^{2}}+\frac{1}{r} \frac{d \xi(r)}{d r}-\frac{g\left(\rho_{b}-\rho_{a}\right) \xi(r)}{\gamma}=0$
$r^{2} \frac{d^{2} \xi(r)}{d r^{2}}+r \frac{d \xi(r)}{d r}-\frac{g\left(\rho_{b}-\rho_{a}\right)}{\gamma} r^{2} \xi(r)=0$
$A(r) \frac{d^{2} \xi(r)}{d r^{2}}+B(r) \frac{d \xi(r)}{d r}-\frac{g\left(\rho_{b}-\rho_{a}\right)}{\gamma} r^{2} \xi(r)=0$
$A(r)=r^{2}, B(r)=r, C(r, \xi(r))=-\frac{g\left(\rho_{b}-\rho_{a}\right)}{\gamma} r^{2} \xi(r)$

E
Question: Taking $\xi(r=R)=h$ and $\xi(r=\infty)=0$, solve for $\xi(r)$.
Solution:
$\xi(r)=C_{1} I_{0}(\alpha r)+C_{2} K_{0}(\alpha r), \alpha=\sqrt{\frac{g\left(\rho_{b}-\rho_{a}\right)}{\gamma}}$
$\xi(r=\infty)=0 \Rightarrow C_{1}=0$
$\xi(r=R)=C_{2} K_{0}(\alpha R)=h \Rightarrow C_{2}=\frac{h}{K_{0}(\alpha R)}$
$\xi(r)=h \frac{K_{0}(\alpha r)}{K_{0}(\alpha R)}=h \frac{K_{0}\left(\sqrt{\frac{g\left(\rho_{b}-\rho_{a}\right)}{\gamma}} r\right)}{K_{0}\left(\sqrt{\frac{g\left(\rho_{b}-\rho_{a}\right)}{\gamma}} R\right)}$

F

Question: How is h related to the contact angle θ ?
Solution:
$\left.\frac{d \xi}{d r}\right|_{r=R}=-\cot \theta=-\left.h \sqrt{\frac{g\left(\rho_{b}-\rho_{a}\right)}{\gamma}} \frac{K_{1}\left(\sqrt{\frac{g\left(\rho_{b}-\rho_{a}\right)}{\gamma}} r\right)}{K_{0}\left(\sqrt{\frac{g\left(\rho_{b}-\rho_{a}\right)}{\gamma}} R\right)}\right|_{r=R}$
$h=\frac{\cot \theta}{\sqrt{\frac{g\left(\rho_{b}-\rho_{a}\right)}{\gamma}}} \frac{K_{0}\left(\sqrt{\frac{g\left(\rho_{b}-\rho_{a}\right)}{\gamma}} R\right)}{K_{1}\left(\sqrt{\frac{g\left(\rho_{b}-\rho_{a}\right)}{\gamma}} R\right)}$

Problem 2

Figure 2: Two superposed and perfectly electrically insulating fluids are contained between parallel plate walls at $y= \pm d$ carrying surface currents $\pm K_{0} \overline{i_{x}}$.

Two superposed and perfectly electrically insulating fluids are contained between vertical plane walls at $y= \pm d$. The fluid interface has surface tension γ and the identical wall contact angles at $y= \pm d$ are θ. The lower fluid is a ferrofluid with mass density ρ_{b} and magnetic permeability μ and the upper fluid is non-magnetic with mass density ρ_{a} and magnetic permeability μ_{0} with $\rho_{b}>\rho_{a}$. The vertical displacement of the fluid interface $\xi(y)$ is a function of position y rising to a height h at $y= \pm d$. Thus the fluid/wall interface at $y= \pm d$ has the interface height h and contact angle relationships

$$
\begin{aligned}
& \xi(y=d)=\xi(y=-d)=h \\
& \left.\frac{d \xi}{d y}\right|_{y=d}=-\left.\frac{d \xi}{d y}\right|_{y=-d}=\cot (\theta)
\end{aligned}
$$

The vertical plane walls at $y= \pm d$ are perfectly conducting and carry oppositely directed surface currents $\bar{K}(y=d)=-\bar{K}(y=-d)=K_{0} \overline{i_{x}}$

We assume that there is no variation with the z coordinate and that the maximum interfacial displacement h is small enough that a linear analysis for $\xi(y)$ can be assumed. Gravity is $\bar{g}=-g \overline{i_{x}}$.

A

Question: The magnetic field is assumed to be spatially uniform in both fluids given by

$$
\bar{H}= \begin{cases}\bar{H}_{a} & (\text { upperfluid }) \\ \bar{H}_{b} & (\text { lowerfluid })\end{cases}
$$

What are \bar{H}_{a} and \bar{H}_{b} (magnitude and direction)?
Solution:
$\overline{\bar{H}_{a}=\bar{H}_{b}}=-K_{0} \bar{i}_{z}$

B

Question: Defining the function $F(x, y)=x-\xi(y)$, the interface between the two fluids is located where $F(x, y)=0$. To linear terms in $\xi(y)$ what is the interfacial normal \bar{n} ?

Solution:
$F(x, y)=x-\xi(y)$
$\bar{n}=\nabla F=\overline{i_{x}}-\frac{\partial \xi}{\partial y} \overline{i_{y}}$

C

Question: The surface tension force per unit area is given by $\bar{T}_{s}=-\gamma(\nabla \bullet \bar{n}) \bar{n}$. What is \bar{T}_{s} ?

Solution:

$\bar{T}_{s}=-\gamma(\nabla \bullet \bar{n}) \bar{n}=-\gamma \bar{n}\left(-\frac{\partial^{2} \xi}{\partial y^{2}}\right)=\gamma \frac{\partial^{2} \xi}{\partial y^{2}} \bar{n}$

D

Question: Using Bernoulli's law within each region find the difference in the pressures just below and above the interface at any position $\xi(y)$,
$\Delta p(y)=P_{b}\left(\xi_{-}(y)\right)-P_{a}\left(\xi_{+}(y)\right)$
in terms of given parameters and the pressures just below and just above the interface at $y=0$ $\Delta p(y=0)=P_{b}\left(x=0_{-}, y=0\right)-P_{a}\left(x=0_{+}, y=0\right)$
Note: It is not yet possible to find the pressure difference $\Delta p(y=0)$. You will be able to find this in part(f).

Solution:

$$
\begin{aligned}
& P_{b}(y)+\rho_{b} g \xi=P_{b}\left(x=0_{-}, y=0\right) \\
& P_{a}(y)+\rho_{a} g \xi=P_{a}\left(x=0_{+}, y=0\right)
\end{aligned} \quad \Rightarrow \Delta p(y)=P_{b}(y)-P_{a}(y)=\Delta p(y=0)-g\left(\rho_{b}-\rho_{a}\right) \xi
$$

E

Question: Using the result of part (D) and interfacial force balance including the magnetic surface force the governing linear equation for $\xi(y)$ can be written in the form

$$
\frac{d^{2} \xi(y)}{d y^{2}}-A \xi(y)=-B
$$

What are A and B ?
Solution: $(\underbrace{P_{b}(y)-P_{a}(y)}_{\Delta p(y)}+\gamma \frac{\partial^{2} \xi}{\partial y^{2}}) n_{i}+\left\|T_{i j} n_{j}\right\|=0$
Take $i=x \Rightarrow n_{x}=1, n_{y}=-\frac{\partial \xi}{\partial y}, n_{z}=0$
$T_{i j} n_{j}=T_{x x} n_{x}+T_{x y} n_{y}+T_{x z} n_{z}^{0}$
$T_{x x}=\frac{\mu}{2}\left(H_{x}^{2^{0}}-H_{y}^{2^{0}}-H_{z}^{2}\right)=-\frac{\mu}{2} K_{0}^{2} ;\left\|T_{x x} n_{x}\right\|=-\frac{\left(\mu_{0}-\mu\right)}{2} K_{0}^{2}$
$T_{x y}=\mu H_{x} H_{y}=0$
$\Delta p_{y}+\gamma \frac{d^{2} \xi}{d y^{2}}+\frac{\mu-\mu_{0}}{2} K_{0}^{2}=0$
$\gamma \frac{d^{2} \xi}{d y^{2}}-g\left(\rho_{b}-\rho_{a}\right) \xi+\Delta p(y=0)+\frac{\left(\mu-\mu_{0}\right)}{2} K_{0}^{2}=0$
$\frac{d^{2} \xi}{d y^{2}}-\frac{\left(\rho_{b}-\rho_{a}\right)}{\gamma} \xi+\frac{1}{\gamma}\left[\Delta p(y=0)+\frac{\left(\mu-\mu_{0}\right)}{2} K_{0}^{2}\right]=0$
$A=\frac{g\left(\rho_{b}-\rho_{a}\right)}{\gamma}, B=\frac{1}{\gamma}\left[\Delta p(y=0)+\frac{\left(\mu-\mu_{0}\right)}{2} K_{0}^{2}\right]$
$\frac{d^{2} \xi}{d y^{2}}-A \xi=-B$

F

Question: Taking $\xi(y=d)=\xi(y=-d)=h$ and that $\xi(y=0)=0$ solve for $\xi(y)$ in terms of given parameters and $\Delta p(y=0)$.

Solution:

$\xi(y)=\frac{B}{A}+C_{1} \cosh \sqrt{A} y+C_{2} \sinh \sqrt{A} y$
$\xi(y=d)=h=\frac{B}{A}+C_{1} \cosh \sqrt{A} d+C_{2} \sinh \sqrt{A} d$
$\xi(y=-d)=h=\frac{B}{A}+C_{1} \cosh \sqrt{A} d-C_{2} \sinh \sqrt{A} d$
Substract:
$2 C_{2} \sinh \sqrt{A} d=0 \Rightarrow C_{2}=0$
$h=\frac{B}{A}+C_{1} \cosh \sqrt{A} d \Rightarrow C_{1}=\frac{h-\frac{B}{A}}{\cosh \sqrt{A} d}$
$\xi(y)=\frac{B}{A}+\frac{h-\frac{B}{A}}{\cosh \sqrt{A} d} \cosh \sqrt{A} y$

G

Question: Solve for the pressure difference just below and just above the interface at $y=0$, $\overline{\Delta p(y=0)}$.

Solution:

$\xi(y=0)=\frac{B}{A}+\frac{h-\frac{B}{A}}{\cosh \sqrt{A} d}=0 \Rightarrow h=\frac{B}{A}(1-\cosh \sqrt{A} d)$
$B=\frac{A h}{1-\cosh \sqrt{A} d}=\frac{1}{\gamma}[\left(\frac{\mu-\mu_{0}}{2}\right) K_{0}^{2}+\underbrace{P_{b}\left(x=0_{-}, y=0\right)-P_{a}\left(x=0_{+}, y=0\right)}_{\Delta p(y=0)}]$
$\Delta p(y=0)=P_{b}\left(x=0_{-}, y=0\right)-P_{a}\left(x=0_{+}, y=0\right)=-\left(\frac{\mu-\mu_{0}}{2}\right) K_{0}^{2}-\frac{A h \gamma}{\cosh \sqrt{A} d-1}$

H

Question: How is h related to the contact angle θ ?
Solution:

$$
\begin{aligned}
&\left.\frac{d \xi}{d y}\right|_{y=d}=\cot \theta=\frac{\sqrt{A}\left(h-\frac{B}{A}\right)}{\cosh \sqrt{A} d} \sinh \sqrt{A} d=\sqrt{A}\left(h-\frac{B}{A}\right) \tanh \sqrt{A} d \\
& \frac{B}{A}=\frac{1}{\gamma A}\left[\Delta p(y=0)+\frac{\left(\mu-\mu_{0}\right)}{2} K_{0}^{2}\right] \\
&=\frac{1}{\gamma A}\left[-\left(\mu-\mu_{0}\right) \frac{K_{0}^{2}}{2}+\frac{A h \gamma}{\cosh \sqrt{A} d-1}+\left(\frac{\mu-\mu_{0}}{2}\right) K_{0}^{2}\right] \\
&=\frac{h}{\cosh \sqrt{A} d-1} \\
& \cot \theta=\sqrt{A} h\left(1-\frac{1}{\cosh \sqrt{A} d-1}\right) \tanh \sqrt{A} d
\end{aligned}
$$

Problem 3

Figure 3: A point charge Q is located at the center of a perfectly insulating liquid spherical drop surrounded by a perfectly conducting liquid of infinite extent.

A point charge Q is located at the center of a perfectly insulating liquid spherical drop with mass density ρ_{1} with dielectric permittivity ϵ. This drop is surrounded by a perfectly conducting liquid of mass density ρ_{2} that extends to $r=\infty$. The point charge Q is fixed to $r=0$ and cannot move from this position. The fluid interface has surface tension γ. As the interface is radially perturbed by displacement $\xi(\theta, \phi, t)=\operatorname{Re}\left[\hat{\xi} P_{n}^{m}(\cos \theta) e^{j(\omega t-m \phi)}\right]$ all perturbation variables change as:
Fluid velocity: $\bar{v}(r, \theta, \phi, t)=\operatorname{Re}\left[\left(\hat{v}_{r}(r) \bar{i}_{r}+\hat{v}_{\theta}(r) \bar{i}_{\theta}+\hat{v}_{\phi}(r) \bar{i}_{\phi}\right) P_{n}^{m}(\cos \theta) e^{j(\omega t-m \phi)}\right] \quad 0<r<\infty \quad$ (both regions)
Pressure: $p(r, \theta, \phi, t)=\operatorname{Re}\left[\hat{p}(r) P_{n}^{m}(\cos \theta) e^{j(\omega t-m \phi)}\right] \quad 0<r<\infty \quad$ (both regions)
Electric field: $\bar{e}(r, \theta, \phi, t)=\operatorname{Re}\left[\left(\hat{e}_{r}(r) \bar{i}_{r}+\hat{e}_{\theta}(r) \bar{i}_{\theta}+\hat{e}_{\phi}(r) \bar{i}_{\phi}\right) P_{n}^{m}(\cos \theta) e^{j(\omega t-m \phi)}\right] \quad 0<r<R+\xi \quad$ (inner droplet)
Electric potential: $\bar{e}=-\nabla \Phi, \Phi(r, \theta, \phi, t)=R e\left[\hat{\Phi}(r) P_{n}^{m}(\cos \theta) e^{j(w t-m \phi)}\right] \quad 0<r<R+\xi \quad$ (inner droplet)
A position just inside the interface at $r=(R+\xi)_{-}$is labeled 1 and just outside the interface at $r=(R+\xi)_{+}$ is labeled 2.

A

Question: What is the equilibrium electric potential $\Phi(r)$, and electric field $\bar{E}(r)=-\nabla \Phi$ within the inner droplet for $0<r<R$.

Solution:

$\Phi(r)=\frac{Q}{4 \pi \epsilon r}, E_{r}(r)=\frac{Q}{4 \pi \epsilon r^{2}} \quad 0<r<R$

B

Question: What is the equilibrium jump in pressure across the spherical interface $\Delta p(r=R)=$
$p_{1}\left(r=R_{-}\right)-p_{2}\left(r=R_{+}\right) ?$
Solution: Equilibrium $(\xi(r=R)=0): p_{1}-p_{2}-\frac{2 \gamma}{R}-T_{r r 1}=0$
$T_{r r 1}=\left.\frac{\epsilon}{2}\left(E_{r}^{2}-E_{\theta}^{2^{\prime \prime}}-E_{\phi}^{2}\right)\right|_{r=R}=\frac{\epsilon}{2}\left[E_{r}(r=R)\right]^{2}=\left(\frac{Q}{4 \pi R^{2}}\right)^{2} \frac{1}{2 \epsilon}$
$\Delta p=p_{1}-p_{2}=\frac{2 \gamma}{R}+\frac{1}{2 \epsilon}\left(\frac{Q}{4 \pi R^{2}}\right)^{2}$

C

Question: What boundary condition must the total electric field satisfy at the $r=R+\xi$ interface? Apply this boundary condition to determine the perturbation electric scalar potential complex amplitude $\hat{\Phi}\left(r=R_{-}\right)$in terms of interfacial displacement complex amplitude $\hat{\xi}$.

Solution:
$\bar{n} \times \bar{E}(r=R+\xi)=0 \Rightarrow$
$\left[\bar{i}_{r}-\frac{1}{R} \frac{\partial \xi}{\partial \theta} \bar{i}_{\theta}-\frac{1}{R \sin \theta} \frac{\partial \xi}{\partial \phi} \bar{i}_{\phi}\right] \times\left[\left(E_{r}(r=R)+\left.\frac{d E_{r}}{d r}\right|_{r=R} \xi+e_{r 1}\right) \bar{i}_{r}+e_{\theta 1} \bar{i}_{\theta}+e_{\phi 1} \bar{i}_{\phi}\right]_{r=R} \xi=0$
$\bar{i}_{\phi}\left(e_{\theta 1}+\frac{1}{R} \frac{\partial \xi}{\partial \theta} E_{r}(r=R)\right)-\bar{i}_{\theta}\left(e_{\phi 1}+\frac{E_{r}(r=R)}{R \sin \theta} \frac{\partial \xi}{\partial \phi}\right)=0$
$\bar{e}=-\nabla \Phi^{\prime} \Rightarrow e_{\theta}=-\left.\frac{1}{r} \frac{\partial \Phi^{\prime}}{\partial \theta}\right|_{r=R}=-\left.\frac{1}{R} \frac{\partial \Phi^{\prime}}{\partial \theta}\right|_{r=R}$
$e_{\phi}=-\left.\frac{1}{r \sin \theta} \frac{\partial \Phi^{\prime}}{\partial \phi}\right|_{r=R}=-\left.\frac{1}{R \sin \theta} \frac{\partial \Phi^{\prime}}{\partial \phi}\right|_{r=R}$
$e_{\theta 1}+\frac{1}{R} \frac{\partial \xi}{\partial \theta} \frac{Q}{4 \pi \epsilon R^{2}}=-\frac{1}{R} \frac{\partial\left[\Phi^{\prime}(r=R)-\frac{Q \xi}{4 \pi \epsilon R^{2}}\right]}{\partial \theta}=0$
$\Phi^{\prime}(r=R)=\frac{Q \xi}{4 \pi \epsilon R^{2}}$
$e_{\phi 1}+\frac{E_{r}(r=R)}{R \sin \theta} \frac{\partial \xi}{\partial \phi}=-\frac{1}{R \sin \theta} \frac{\partial\left[\Phi^{\prime}(r=R)-\frac{Q \xi}{4 \pi \epsilon R^{2}}\right]}{\partial \phi}=0$
$\Phi^{\prime}(r=R)=\frac{Q \xi}{4 \pi \epsilon R^{2}}$
$\hat{\Phi}(r=R)=\frac{Q \hat{\xi}}{4 \pi \epsilon R^{2}}$

D

Question: What are the perturbation pressure complex amplitudes \hat{p}_{1} and \hat{p}_{2} at both sides of the $r=R+\xi$ interface in terms of interfacial displacement complex amplitude $\hat{\xi}$.

Solution:

$\hat{p_{1}}=j \omega \rho_{1}\left[F_{n}(0, R) \hat{\nu}_{r 1}+G_{n}(R, 0) \hat{\nu}_{r}(r=0)\right]$
$\hat{p_{2}}=j \omega \rho_{2}\left[G_{n}(R, \infty) \hat{\nu}_{r}(r=\infty)+F_{n}(\infty, R) \hat{\nu}_{r 2}\right]$
$\hat{\nu}_{r 1}=\hat{\nu}_{r 2}=j \omega \hat{\xi}$
$F_{n}[x, y]=\frac{\frac{y}{x}\left[\frac{1}{n}\left(\frac{y}{x}\right)^{n}+\frac{1}{n+1}\left(\frac{x}{y}\right)^{n+1}\right]}{\left[\frac{1}{y}\left(\frac{x}{y}\right)^{n}-\frac{1}{x}\left(\frac{y}{x}\right)^{n}\right]}$
$G_{n}[x, y]=\frac{y}{x} \frac{2 n+1}{n(n+1)} \frac{1}{\left[\frac{1}{y}\left(\frac{x}{y}\right)^{n}-\frac{1}{x}\left(\frac{y}{x}\right)^{n}\right]}$
$F_{n}[0, R]=-\frac{R}{n}, F_{n}[\infty, R]=\frac{R}{n+1}$
$G_{n}[R, 0]=0, G_{n}[R, \infty]=0(n \neq 0,1)$
$\hat{p_{1}}=j \omega \rho_{1} F_{n}(0, R)(j \omega \hat{\xi})=+\frac{\rho_{1} \omega^{2} R}{n} \hat{\xi}$
$\hat{p_{2}}=j \omega \rho_{2} F_{n}(\infty, R)(j \omega \hat{\xi})=-\frac{\rho_{2} \omega^{2} R}{n+1} \hat{\xi}$
E
Question: What is the radial component of the perturbation interfacial stress complex amplitude $\hat{T}_{s r}$ due to surface tension in terms of interfacial displacement complex amplitude $\hat{\xi}$?

Solution:

$\hat{T}_{s r}=-\frac{\gamma}{R^{2}}(n-1)(n+2) \hat{\xi}$

F

Question: What is the perturbation radial electric field complex amplitude $\hat{e}_{r}\left(r=R_{-}\right)$in terms of $\hat{\Phi}\left(r=R_{-}\right)$? Using the results of part (C) express $\hat{e}_{r}\left(r=R_{-}\right)$in terms of $\hat{\xi}$.

Solution:
$\hat{e}_{r 1}=-\frac{n}{R} \hat{\Phi}_{1}=-\frac{n Q \hat{\xi}}{4 \pi \epsilon R^{3}}$
G
Question: Find the dispersion relation. Is the spherical droplet stabilized or destabilized by the electric field from the point charge Q ?

Solution:

$\hat{p}_{1}-\hat{p}_{2}-\frac{\gamma}{R^{2}}(n-1)(n+2) \hat{\xi}-T_{r j} n_{j}=0$
$T_{r j} n_{j}=T_{r r} n_{r}+T_{r \theta} n_{\theta}+T_{r \phi} n_{\phi}, n_{r}=1, n_{\theta}=-\frac{1}{R} \frac{\partial \xi}{\partial \theta}, n_{\phi}=-\frac{1}{R \sin \theta} \frac{\partial \xi}{\partial \phi}$

$$
\begin{aligned}
& \left.T_{r r}\right|_{r=R+\xi}=\frac{\epsilon}{2}\left[\left(E_{r}(r=R+\xi)+e_{r}(r=R)\right)^{2}-e^{2}(r=R)-e_{\phi}^{2}(r=R)\right] \\
& =\frac{\epsilon}{2}\left[\left(E_{r}(r=R)+\left.\frac{d E_{r}}{d r}\right|_{r=R} \xi+e_{r}(r=R)\right)^{2}\right] \\
& T_{r r}(r=R+\xi)=\frac{\epsilon}{2}\left[E_{r}^{2}(r=R)+2 E_{r}(r=R)\left[\left.\frac{d E_{r}}{d r}\right|_{r=R} \xi+e_{r}(r=R)\right]\right] \\
& T_{r r}^{\prime}(r=R+\xi)=\epsilon E_{r}(r=R)\left[\left.\frac{d E_{r}}{d r}\right|_{r=R} \xi+e_{r}(r=R)\right] \\
& =\not \subset \frac{Q}{4 \pi \notin R^{2}}\left[-\frac{Q}{2 \pi \epsilon R^{3}} \xi-\frac{n}{R} \Phi_{1}^{\prime}\right] \\
& =-\frac{Q^{2}}{8 \pi^{2} \epsilon R^{5}} \xi-\frac{Q}{4 \pi R^{3}} n \frac{Q}{4 \pi \epsilon R^{2}} \xi \\
& =-\frac{Q^{2}}{8 \pi^{2} \epsilon R^{5}} \xi\left[1+\frac{n}{2}\right] \\
& \left.T_{r \theta} n_{\theta}\right|_{r=R+\xi}=\epsilon E_{r}(r=R+\xi) e_{\theta}(r=R)\left(-\frac{1}{R} \frac{\partial \xi}{\partial \theta}\right) \\
& =0 \quad(\text { Second Order }) \\
& \left.T_{r \phi} n_{\phi}\right|_{r=R+\xi}=\epsilon E_{r}(r=R+\xi) e_{\phi}(r=R)\left(-\frac{1}{R \sin \theta} \frac{\partial \xi}{\partial \phi}\right) \\
& =0 \quad(\text { Second Order }) \\
& \hat{p}_{1}-\hat{p}_{2}-\frac{\gamma}{R^{2}}(n-1)(n+2) \hat{\xi}+\frac{Q^{2} \hat{\xi}}{8 \pi^{2} \epsilon R^{5}}\left(1+\frac{n}{2}\right)=0 \\
& \omega^{2} R\left(\frac{\rho_{1}}{n}+\frac{\rho_{2}}{n+1}\right)=\frac{\gamma}{R^{2}}(n-1)(n+2)-\frac{Q^{2}}{8 \pi^{2} \epsilon R^{5}}\left(1+\frac{n}{2}\right)
\end{aligned}
$$

Electric field destabilizes interface.

H

Question: If (G) is stabilizing, what is the lowest oscillation frequency? If (G) is destabilizing, what is the lowest value of n that is unstable and what is the growth rate of the instability? What value of Q will only have one unstable mode?

Solution:

$n=1$ First unstable mode. $n=2$ and larger are stable if $\frac{4 \gamma}{R^{2}}>\frac{Q^{2}}{8 \pi^{2} \epsilon R^{5}}(2)$ or $Q^{2}<16 \gamma R^{3} \pi^{2} \epsilon$
$|Q|<4 \pi\left[\epsilon \gamma R^{3}\right]^{1 / 2}$

