MIT OpenCourseWare
http://ocw.mit.edu

6.642 Continuum Electromechanics

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Mid-Term - Solutions 2008

Problem 1

Figure 1: A current sheet at $x=0$ generates a magnetic field for $0<x<d$ between two infinite magnetic permeability regions for $x<0$ and $x>d$.

A current sheet $\operatorname{Re}\left[\hat{K}_{0} e^{-j k z}\right] \bar{i}_{y}$ is placed on the $x=0$ surface of a material with infinite magnetic permeability $(\mu \rightarrow \infty)$ for $x<0$. Another infinite magnetic permeability material extends from $d<x<\infty$. Free space with magnetic permeability μ_{0} extends over the region $0<x<d$.
The magnetic field $\left(H_{x}\right)$ - magnetic scalar potential (χ) relations for the planar layer below

Figure 2: Planar layer used to determine general magnetic field/magnetic scalar potential relationships.
for variables of the form
$\chi(x, z)=\operatorname{Re}\left[\hat{\chi}(x) e^{-j k z}\right]$
are

$$
\left[\begin{array}{c}
\hat{H}_{x}^{\alpha} \\
\hat{H}_{x}^{\beta}
\end{array}\right]=k\left[\begin{array}{cc}
\operatorname{coth} k \Delta & \frac{1}{\sinh k \Delta} \\
\frac{1}{\sinh k \Delta} & \operatorname{coth} k \Delta
\end{array}\right]\left[\begin{array}{c}
\hat{\chi}_{\alpha} \\
\hat{\chi}_{\beta}
\end{array}\right]
$$

Where $\bar{H}(x, z)=-\nabla \chi(x, z)=\operatorname{Re}\left[\left(\hat{H}_{x}(x) \bar{i}_{x}+\hat{H}_{z}(x) \bar{i}_{z}\right) e^{-j k z}\right]$
There is no magnetic field dependence on y .

A
Question: What are the boundary conditions on the magnetic field at the $x=0_{+}$and $x=d_{-}$ surfaces? What are the values of the magnetic scalar potential $\hat{\chi}\left(x=0_{+}\right)$and $\hat{\chi}\left(x=d_{-}\right)$?

Solution:

$$
\begin{aligned}
H_{z}\left(x=0_{+}\right)=-K_{y}=-\operatorname{Re}\left[\hat{K}_{0} e^{-j k z}\right]=-\left.\frac{\partial \chi}{\partial z}\right|_{x=0_{+}} \\
j k \hat{\chi}\left(x=0_{+}\right)=-\hat{K}_{0} \Rightarrow \hat{\chi}\left(x=0_{+}\right)=\frac{-\hat{K}_{0}}{j k}=\frac{j \hat{K}_{0}}{k}
\end{aligned}
$$

$H_{z}\left(x=d_{-}\right)=0 \Rightarrow \hat{\chi}\left(x=d_{-}\right)=0$

B

Question: What are the complex amplitudes of the magnetic field $\bar{H}(x, z)$ at $x=0_{+}$and at $x=d_{-} ?$

Solution:

$$
\begin{aligned}
\hat{H}_{x}\left(x=d_{-}\right) & =k\left[-\operatorname{coth} k d \not \chi^{\prime}\left(x=d_{-}\right)+\frac{1}{\sinh k d} \hat{\chi}\left(x=0_{+}\right)\right] \\
& =\frac{k}{\sinh k d} \frac{j \hat{K}_{0}}{k}=\frac{j \hat{K}_{0}}{\sinh k d} \\
\hat{H}_{z}\left(x=d_{-}\right) & =0 \\
\hat{H}_{z}\left(x=0_{+}\right) & =k\left[-\frac{1}{\sinh k d} \not \hat{\chi}^{0}\left(x=d_{-}\right)+\operatorname{coth} k d \hat{\chi}\left(x=0_{+}\right)\right] \\
& =k \operatorname{coth} k d \frac{j \hat{K}_{0}}{k}=j \hat{K}_{0} \operatorname{coth} k d \\
\hat{H}_{z}\left(x=0_{+}\right) & =-\hat{K}_{0}
\end{aligned}
$$

C
Question: What is the magnetic force per unit area (on a wave length $2 \pi / k$) \bar{F} on the infinite magnetic permeability layer that extends $d<x<\infty$?

Solution:

i) Put Maxwell Stress Tensor surfaces at $x=d_{-}$at coordinate y and $y+2 \pi / k$ to extend to $x=+\infty$.

$$
\begin{aligned}
& \frac{f_{x}}{\text { area }}=-\left.T_{x x}\right|_{x=d_{-}}=-\left.\left.\frac{\mu_{0}}{2}\left(H_{x}^{2}-H_{y}^{z^{z^{0}}}-H_{z}^{2}\right)^{2}\right|^{0}\right|_{x=d_{-}}=-\left.\frac{\mu_{0}}{2} H_{x}^{2}\right|_{x=d_{-}} \\
& \left\langle\frac{f_{x}}{\text { area }}\right\rangle=-\frac{\mu_{0}}{4}\left|\hat{H}_{x}\left(x=d_{-}\right)\right|^{2}=-\frac{\mu_{0}\left|\hat{K}_{0}\right|^{2}}{4 \sinh ^{2} k d} \\
& \frac{f_{z}}{\text { area }}=-\left.T_{z x}\right|_{x=d_{-}}=-\mu_{0} H_{z}\left(x=d_{-}\right) H_{x}^{0}\left(x=d_{-}\right)=0 \\
& \frac{f_{y}}{\text { area }}=-\left.T_{y x}\right|_{x=d_{-}}=-\mu_{0} H_{y}\left(x=d_{-}\right) H_{x}\left(x=d_{-}\right)=0
\end{aligned}
$$

ii) Alternate Surface at $x=0_{+}$extending to $x=+\infty$.

$$
\begin{aligned}
\frac{f_{x}}{\text { area }} & =-\left.T_{x x}\right|_{x=0_{+}}=-\left.\frac{\mu_{0}}{2}\left(H_{x}^{2}-H_{y}^{2^{2^{1}}}-H_{z}^{2}\right)\right|_{x=0_{+}}=-\left.\frac{\mu_{0}}{2}\left(H_{x}^{2}-H_{z}^{2}\right)\right|_{x=0_{+}} \\
\left\langle\frac{f_{x}}{\text { area }}\right\rangle & =-\left.\frac{\mu_{0}}{4}\left[\left|\hat{H}_{x}\right|^{2}-\left|\hat{H}_{z}\right|^{2}\right]\right|_{x=0_{+}} \\
& =-\frac{\mu_{0}}{4}\left[\operatorname{coth}^{2} k d-1\right]\left|\hat{K}_{0}\right|^{2} \\
& =-\frac{\mu_{0}\left|\hat{K}_{0}\right|^{2}}{4 \sinh ^{2} k d} \\
\frac{f_{z}}{\text { area }} & =-\left.T_{z x}\right|_{x=0_{+}}=-\mu_{0} H_{z}\left(x=0_{+}\right) H_{x}\left(x=0_{+}\right) \\
\frac{\left\langle f_{z}\right\rangle}{\text { area }} & =-\frac{\mu_{0}}{2} \operatorname{Re}\left[\hat{H}_{z}^{*}\left(x=0_{+}\right) \hat{H}_{x}\left(x=0_{+}\right)\right] \\
& =-\frac{\mu_{0}}{2} R e\left[-\hat{K}_{0}^{*} j \hat{K}_{0} \operatorname{coth} k d\right] \\
& =\frac{\mu_{0}}{2}\left|\hat{K}_{0}\right|^{2} \operatorname{coth} k d R e[j]=0 \\
\frac{f_{y}}{\text { area }} & =-\left.T_{y x}\right|_{x=0_{+}}=-\mu_{0} H_{y}\left(x=\hat{0}_{+}\right) H_{x}\left(x=0_{+}\right)=0
\end{aligned}
$$

Problem 2

Figure 3: A perfectly conductiong incompressible liquid partially fills the gap between parallel plate electronics stressed by voltage V_{0}

A perfectly conducting incompressible liquid $(\sigma \rightarrow \infty)$ with mass density ρ partially fills the gap between parallel plate electrodes stressed by voltage V_{0}. The applied voltage lifts the fluid interface between the parallel plate electrodes by a height ξ where $\xi<s$. The upper electrode in free space is at $z=s$. When the applied voltage is zero the fluid interface is located at $z=0$. The region outside the liquid is free space with permittivity ϵ_{0}, mass density of zero $(\rho=0)$, and atmospheric pressure P_{0}. The gravitational acceleration is $\bar{g}=-g \bar{i}_{z}$ and surface tension effects are negligible.

A

Question: What is the electric field for $\xi<z<s$ between the upper electrode at $z=s$ and the perfectly conducting fluid interface at $z=\xi$?

Solution:

$E_{z}=\frac{V_{0}}{s-\xi}$

B

Question: What is the fluid pressure $p\left(\xi_{-}\right)$just below the interface at $z=\xi_{-}$?

Solution:

$P\left(\xi_{-}\right)-P_{0}+T_{z z}=0$
$T_{z z}=\frac{\epsilon_{0}}{2} E_{z}^{2}=\frac{\epsilon_{0}}{2}\left(\frac{V_{0}}{s-\xi}\right)^{2}$
$P\left(\xi_{-}\right)=P_{0}-\frac{\epsilon_{0}}{2}\left(\frac{V_{0}}{s-\xi}\right)^{2}$

C
Question: Find an expression that relates liquid rise $\xi(\xi<s)$ to voltage V_{0} and other given parameters.
Solution:

Applying Bernoulli's law at $z=\xi$ and $z=0$ interfaces within the perfectly conducting fluid where $\bar{f}_{\text {ext }}=-\nabla \mathcal{E}=0 \Rightarrow \mathcal{E}=0$
$P\left(\xi_{-}\right)+\rho g \xi=P_{0}=P_{0}-\frac{\epsilon_{0}}{2}\left(\frac{V_{0}}{s-\xi}\right)^{2}+\rho g \xi$
$\rho g \xi=\frac{\epsilon_{0}}{2}\left(\frac{V_{0}}{s-\xi}\right)^{2}$
$\xi(s-\xi)^{2}=\frac{\epsilon_{0}}{2 \rho g} V_{0}^{2}$

D
Question: At what voltage is $\xi=\frac{s}{2}$?

Solution:

For $\xi=\frac{s}{2}$
$V_{0}^{2}=\frac{2 \rho g}{\epsilon_{0}}\left(\frac{s}{2}\right)^{3}=\frac{\rho g s^{3}}{4 \epsilon_{0}}$
$V_{0}=\frac{1}{2}\left[\frac{\rho g s^{3}}{\epsilon_{0}}\right]^{1 / 2}$

Problem 3

Figure 4: An inviscid incompressible z directed uniform flow from infinity is incident on a sphere of radius R.

An inviscid incompressible liquid with mass density ρ has uniform irrotational flow $(\nabla \times \bar{\nu}=0)$. The flow at $r=\infty$ is uniform and z directed

$$
\bar{\nu}=V_{0} \overline{i_{z}}=V_{0}\left[\overline{i_{r}} \cos \theta-\overline{i_{\theta}} \sin \theta\right]
$$

The flow is incident on a solid sphere of radius R. The inviscid liquid can flow along the sphere so that $\nu_{\theta}\left(r=R_{+}\right) \neq 0$ but cannot penetrate the surface so that $\nu_{r}\left(r=R_{+}\right)=0$. Because the irrotational flow has $\nabla \times \bar{\nu}=0$, a velocity scalar potential Φ can be defined, $\bar{\nu}=-\nabla \Phi$. Because the fluid is also incompressible, $\nabla \bullet \bar{\nu}=0$, the velocity scalar potential for $r>R$ obeys Laplace's equation, $\nabla^{2} \Phi=0$ where $\Phi(r, \theta)$ does not
depend on angle ϕ. The flow does not vary with time and gravity effects are negligible.

A
Question: What are the boundary conditions on the velocity scalar potential at $r=R_{+}$and at $r=\infty$?
Solution:
$v_{r}\left(r=R_{+}\right)=-\left.\frac{\partial \Phi}{\partial r}\right|_{r=R}=0$
$\bar{v}(r \rightarrow \infty)=V_{0} \overline{i_{z}}=V_{0}\left(\overline{i_{r}} \cos \theta-\overline{i_{\theta}} \sin \theta\right)=-\frac{\partial \Phi}{\partial z} \overline{i_{z}}$
$\Phi=-V_{0} z=-V_{0} r \cos \theta$

B
Question: Solve for the velocity scalar potential $\Phi(r, \theta)$.
Solution:
$\Phi(r, \theta)=\left(A r+\frac{B}{r^{2}}\right) \cos \theta \quad r>R$
$\Phi(r \Rightarrow \infty, \theta)=-V_{0} r \cos \theta=A r \cos \theta$
$A=-V_{0}$
$\left.\frac{\partial \Phi}{\partial r}\right|_{r=R}=0=\left(A-\frac{2 B}{R^{3}}\right) \cos \theta$
$B=\frac{A R^{3}}{2}=-\frac{V_{0} R^{3}}{2}$
$\Phi(r, \theta)=-V_{0}\left(r+\frac{R^{3}}{2 r^{2}}\right) \cos \theta \quad r>R$

C

Question: Solve for the velocity field $\bar{\nu}(r, \theta)$ for $r>R$.

Solution:

$$
\begin{aligned}
\bar{v}=-\nabla \Phi & =-\left[\frac{\partial \Phi}{\partial r} \overline{i_{r}}+\frac{1}{r} \frac{\partial \Phi}{\partial \theta} \overline{i_{\theta}}\right] \\
& =V_{0}\left[\left(1-\frac{R^{3}}{r^{3}}\right) \cos \theta \overline{i_{r}}-\left(1+\frac{R^{3}}{2 r^{3}}\right) \sin \theta \overline{i_{\theta}}\right] \quad r>R
\end{aligned}
$$

D
Question: What is the magnitude of the velocity $|\bar{\nu}(r, \theta)|$?

Solution:

$|\bar{v}|=\left|V_{0}\right|\left[\left(1-\frac{R^{3}}{r^{3}}\right)^{2} \cos ^{2} \theta \overline{i_{r}}+\left(1+\frac{R^{3}}{2 r^{3}}\right)^{2} \sin ^{2} \theta \overline{i_{\theta}}\right]^{1 / 2}$

E
Question: If the pressure at $r=R_{+}$and $\theta=0$ is P_{0}, what is the pressure at $r=R_{+}, \theta=\pi / 2$?
Solution:
$\overline{P+\frac{1}{2} \rho|\bar{v}|^{2}}=$ constant
$P\left(R_{+}, \theta=0\right)+\frac{1}{2} \rho|\bar{v}(R, \theta=0)|^{2}=P_{0}+\frac{1}{2}(0)^{2}=P_{0}=$ constant
$P\left(R_{+}, \theta=\frac{\pi}{2}\right)+\frac{1}{2} \rho\left|V_{0}\right|^{2}\left(\frac{3}{2}\right)^{2}=P_{0}$
$P\left(R_{+}, \theta=\frac{\pi}{2}\right)=P_{0}-\frac{9}{8} \rho\left|V_{0}\right|^{2}$

F

Question: What is the equation for the velocity streamlines?

Solution:

$$
\begin{gathered}
\frac{d r}{r d \theta}=\frac{v_{r}}{v_{\theta}}=\frac{Y_{0}\left(1-\frac{R^{3}}{r^{3}}\right) \cos \theta}{-Y_{0}\left(1+\frac{R^{3}}{2 r^{3}}\right) \sin \theta} \\
\frac{\left(1+\frac{R^{3}}{r^{3}}\right) d r}{r\left(1-\frac{R^{3}}{r^{3}}\right)}=\frac{-\cos \theta d \theta}{\sin \theta} \\
\frac{1}{2} \ln \left[r^{2}\left(1-\frac{R^{3}}{r^{3}}\right)\right]=-\ln [\sin \theta]+\text { costant } \\
\ln \left[\sin ^{2} \theta\left(r^{2}\left(1-\frac{R^{3}}{r^{3}}\right)\right)\right]=\text { constant } \\
\sin ^{2}\left(\frac{r^{2}}{R^{2}}-\frac{R}{r}\right)=C
\end{gathered}
$$

G

Question: For the velocity streamline that passes through the point $x=0, y=y_{0}, z=0$ equivalent to $r=y_{0}, \theta=\frac{\pi}{2}, \phi=\frac{\pi}{2}$, for what value of y does the streamline pass through when $x=0$ and $z=-\infty$, equivalent to $r=\infty, \theta=\pi, \phi=\frac{\pi}{2}$? Find y when $y_{0}=R$ and when $y_{0}=2 R$.
Solution:
For $\left(r=y_{0}, \theta=\frac{\pi}{2}, \phi=\frac{\pi}{2}\right), C=\left(\frac{y_{0}}{R}\right)^{2}-\frac{R}{y_{0}}$
For $\left(r=\infty, \theta=\pi, \phi=\frac{\pi}{2}\right), \frac{r^{2} \sin ^{2} \theta}{R^{2}}=C=\left({\frac{y_{0}}{R}}^{2}\right)-\frac{R}{y_{0}}$
$y=\left.r \sin \theta \sin \phi\right|_{\theta=\pi, \phi=\frac{\pi}{2}, r=\infty}=r \sin \theta$
$y^{2}=y_{0}^{2}-R^{3} / y_{0} \Rightarrow y=\left[y_{0}^{2}-R^{3} / y_{0}\right]^{1 / 2}$
For $y_{0}=2 R, \quad y^{2}=4 R^{2}-\frac{R^{3}}{2 R}=3.5 R^{2}$
$y=\sqrt{3.5} R \approx 1.871 R$
For $y_{0}=R, \quad y^{2}=R^{2}-R^{3} / R=0 \Rightarrow y=0 \sum_{2}^{1}$

