## MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

## Receivers, Antennas, and Signals - 6.661

## Problem 2.1

a) $\quad \mathrm{T}_{\text {up }}=3 \mathrm{e}^{-\tau}+250\left(1-\mathrm{e}^{-\tau}\right)=3 \times 0.6+250 \times 0.4=101.8 \mathrm{~K}$
b) $\quad \mathrm{T}_{30}=3 \mathrm{e}^{-2 \tau}+250\left(1-\mathrm{e}^{-2 \tau}\right)=3 \times(0.6)^{2}+250\left(1-0.6^{2}\right)=161.08 \mathrm{~K}$

## Problem 2.2

a) To count the propagating modes, consider the mode diagram, where the axes represent $f_{x}$ and $f_{y}$ and where $f_{\text {cutoff }}=\left(f_{x}^{2}+f_{y}{ }^{2}\right)^{0.5}$ :

The number N of propagating modes is the total area divided by the area for each mode. Thus $N=2\left(\pi r^{2} / 4\right) /\left(c^{2} / 4 a b\right)$ $\mathrm{N}=2 \pi \mathrm{ab} 10^{24} / \mathrm{c}^{2}$ $=2 \times 3.14 \times 2 \times 10^{-2} \times 10^{-2} 10^{24} /\left(3 \times 10^{8}\right)^{2}$ $=13,956$ modes $($ approximately $)$.

b) Referring to the figure, each mode propagates from its own cutoff frequency ("f" in the figure) up to $10^{12} \mathrm{~Hz}$; thus $\mathrm{B}=\left(10^{12}-\mathrm{f}\right)$. The total thermal power radiated for mode i is then the integral from f to $10^{12}$, or $\mathrm{kTB}_{\mathrm{i}}$ for each mode, where the number density of modes $/ \mathrm{Hz}$ at frequency f is $2(\mathrm{f} \pi / 2) /(\mathrm{c} / 2 \mathrm{~b})(\mathrm{c} / 2 \mathrm{a})$. The factor of 2 corresponds to the fact that mn corresponds to both a TE and a TM mode. Therefore,
$\mathrm{P}=2 \mathrm{kT} \int_{0}^{10 \wedge 12}(\mathrm{f} \pi / 2)\left(10^{12}-\mathrm{f}\right) \mathrm{df} /(\mathrm{c} / 2 \mathrm{~b})(\mathrm{c} / 2 \mathrm{a})$. Therefore,
$\mathrm{P}=\left(4 \mathrm{abkT} \pi / \mathrm{c}^{2}\right) \int_{0}{ }^{10 \wedge 12} \mathrm{f}\left(10^{12}-\mathrm{f}\right) \mathrm{df}=\left.\left(4 \pi \mathrm{abkT} / \mathrm{c}^{2}\right)\left[10^{12} \mathrm{f}^{2} / 2-\mathrm{f}^{3} / 3\right]\right|_{0}{ }^{10 \wedge 12}$
$=\left(4 \pi \mathrm{abkT} / \mathrm{c}^{2}\right) 10^{36} / 6=1.9 \times 10^{-5}$ \{watts $\}$

## Problem 2.3

The figure for $\Phi_{\mathrm{i}}(\mathrm{f})$ shows the two elements that we need to derive, i.e., the DC term $=\overline{\mathrm{i}}^{2}$, and the AC term with a low-frequency value of $\overline{\mathrm{i}}$. The DC term of $\Phi(\mathrm{f})$ is simply the magnitude squared of the DC term of the fourier transform of the impulse train. The DC value of the impulse train $\mathrm{i}(\mathrm{t})$ is $\bar{n} \mathrm{e}=\overline{\mathrm{i}}$, and its square is $\overline{\mathrm{i}}^{2}$.


The AC terms follows from $\Phi_{i}(\mathrm{f}) \leftrightarrow \phi_{\mathrm{i}}(\tau)=\mathrm{E}[\mathrm{i}(\mathrm{t}) \mathrm{i}(\mathrm{t}-\tau)]$ The current $\mathrm{i}(\mathrm{t})$ is a poisson-distributed train of brief current pulses each with time integral $=e$, where $e$ is the charge on an electron. The expectation E has two parts, one for pulses being multiplied by themselves, and one for the product of independent pulse pairs; the second part corresponds to DC and has already been evaluated. The non-DC part of $\phi(\tau)$ is $n \phi^{\prime}(\tau)$, where $\phi^{\prime}(\tau)$ corresponds to a single pulse. But the fourier transform $\underline{I}(f)$ of a single pulse $\mathrm{i}(\mathrm{t})$ of area e is a $\sim \mathrm{DC}$ signal of value e that extends to an upper frequency limit $\sim 1 / \delta$, where $\delta$ is the nominal duration [seconds] of the pulse. The corresponding energy density spectrum for such a single pulse has a low-frequency value of $\mathrm{e}^{2}$ that extends to $1 / \delta \mathrm{Hz}$, and its fourier transform is $\phi^{\prime}(\tau)$. Therefore the low-frequency value of $\Phi_{\mathrm{i}}(\mathrm{f})$ is the fourier transform of $\bar{n} \phi^{\prime}(\tau)$, or $\bar{n} \mathrm{e}^{2}=\overline{\mathrm{i}} \mathrm{e}$. Q.E.D.

## Problem 2.4



The derivation in the text and Figure 2.2-4 must be altered; only the new values of $\Phi_{\mathrm{d}}(\mathrm{f})$ near $\mathrm{f}=0$ are of interest, where:

$$
\phi_{\mathrm{d}}(\tau)=\overline{\mathrm{v}_{\mathrm{i}}^{2}(\mathrm{t})} \overline{\mathrm{v}_{\mathrm{i}}^{2}(\mathrm{t}-\tau)}+2 \overline{\mathrm{v}_{\mathrm{i}}(\mathrm{t}) \mathrm{v}_{\mathrm{i}}(\mathrm{t}-\tau)}{ }^{2}=\phi_{\mathrm{i}}^{2}(0)+2 \phi_{\mathrm{i}}^{2}(\tau)
$$

Since: $\phi_{i}(0)=\overline{v_{i}^{2}(t)}=\int_{-\infty}^{\infty} \Phi_{i}(f) d f=k T_{e f f} B(1+0.75)$ (see figure above),
the impulse at the origin of $\Phi_{\mathrm{d}}(\mathrm{f})$ becomes $\left(1.75 \mathrm{kT}_{\text {eff }} B\right)^{2} \mathrm{u}_{\mathrm{o}}(\mathrm{f})$ while the AC part near zero frequency has value $2 \Phi(\mathrm{f}) * \Phi(\mathrm{f})$ for $\mathrm{f} \cong 0$. Referring to the figure above for $\Phi(\mathrm{f})$, we find that the AC part near $\mathrm{f}=0$ is $2\left([2 \mathrm{~B} / 4]\left[2 \mathrm{kT} \mathrm{eff}^{2}\right]^{2}+[6 \mathrm{~B} / 4][\mathrm{kT} \mathrm{eff} / 2]^{2}\right)=[19 \mathrm{~B} / 4][\mathrm{kT} \mathrm{eff}]^{2}$.

The DC power $\mathrm{P}_{\mathrm{DC}}$ emerging from the output filter is:

$$
\begin{equation*}
\Phi_{o_{D C}}(f)=\left(1.75 k T_{e f f} B\right)^{2}(A \tau)^{2} u_{o}(f) \tag{2.2.10}
\end{equation*}
$$

The variance $\mathrm{P}_{\mathrm{AC}}$ of the fluctuating component of the output voltage is $\Phi_{\mathrm{dAC}}(0)$ :

$$
\mathrm{P}_{\mathrm{AC}}=\int_{-\infty}{ }^{\infty} \Phi_{\mathrm{oAC}}(\mathrm{f}) \mathrm{df} \cong[19 \mathrm{~B} / 4]\left[\mathrm{k} T_{\mathrm{eff}}\right]^{2} \int_{-\infty}^{\infty}|\mathrm{H}(\mathrm{f})|^{2} \mathrm{df}=[19 \mathrm{~B} / 4]\left[\mathrm{k} \mathrm{eff}_{\mathrm{ef}}\right]^{2} \mathrm{~A}^{2} \tau
$$

Therefore Equation (2.2.13) becomes:
$\Delta \mathrm{T}_{\mathrm{rms}}=\mathrm{P}_{\mathrm{AC}}{ }^{0.5} /\left(\partial \mathrm{P}_{\mathrm{DC}}{ }^{0.5} / \partial \mathrm{T}_{\mathrm{A}}\right)=[19 \mathrm{~B} \tau / 4]^{0.5}\left[\mathrm{kT}_{\text {eff }} \mathrm{A} \tau^{0.5} /(1.75 \mathrm{kBA} \tau)=1.25 \mathrm{~T}_{\text {eff }} /(\mathrm{B} \tau)^{0.5} \mathrm{~K}\right.$

## Problem 2.5

$$
\begin{aligned}
& \Delta \mathrm{T}_{\text {rms }}=\left(\text { variance of integrator output } \mathrm{v}_{\mathrm{o}}\right)^{0.5} /\left(\mathrm{M}<\mathrm{V}_{\mathrm{o}}>/ \mathrm{MT}_{\mathrm{A}}\right) \\
& \sigma_{0}^{2}=2 B \tau \sigma_{d}^{2}=\text { variance of integrator output } v_{o} \\
& \sigma_{\mathrm{d}}{ }^{2}=\left\langle\left(\mathrm{v}_{\mathrm{i}}^{2}-\left\langle\mathrm{v}_{\mathrm{i}}^{4}\right\rangle\right)^{2}\right\rangle=\left\langle\mathrm{v}_{\mathrm{i}}^{8}\right\rangle-2\left\langle\mathrm{v}_{\mathrm{i}}^{4}\right\rangle^{2}+\left\langle\mathrm{v}_{\mathrm{i}}^{4}\right\rangle^{2}=\left\langle\mathrm{v}_{\mathrm{i}}^{8}\right\rangle-\left\langle\mathrm{v}_{\mathrm{i}}^{4}\right\rangle^{2} \\
& \text { Let }\left\langle v_{i}^{2}\right\rangle=a T_{\text {eff }}\left\langle x^{2}\right\rangle \text { where }\left\langle x^{2}\right\rangle=1 \text { and }\left\langle x^{n}\right\rangle=(n-1)(n-3) \ldots 1 \text { for } n \text { even; then } \\
& \left.\sigma_{\mathrm{d}}^{2}=\left(\mathrm{aT}_{\text {eff }}\right)^{4}\left(<\mathrm{v}_{\mathrm{i}}^{8}\right\rangle-\left\langle\mathrm{v}_{\mathrm{i}}^{4}\right\rangle^{2}\right)=\left(\mathrm{aT}_{\text {eff }}\right)^{4}(105-9)=96\left(\mathrm{aT}_{\text {eff }}\right)^{4} \\
& <\mathrm{V}_{0}>=2 \mathrm{~B} \tau<\mathrm{v}_{\mathrm{i}}^{4}>=2 \mathrm{~B} \tau \mathrm{~T}_{\text {eff }}{ }^{2} \mathrm{a}^{2}<\mathrm{x}^{4}>\text { and } \mathrm{T}_{\text {eff }}=\mathrm{T}_{\mathrm{A}}+\mathrm{T}_{\mathrm{R}}, \mathrm{~T}_{\text {eff }}{ }^{2}=\mathrm{T}_{\mathrm{A}}^{2}+2 \mathrm{~T}_{\mathrm{A}} \mathrm{~T}_{\mathrm{R}}+\mathrm{T}_{\mathrm{R}}{ }^{2} \\
& \mathrm{M}<\mathrm{v}_{0}>/ \mathrm{MT}_{\mathrm{A}}=6 \mathrm{~B} \tau \mathrm{a}^{2}\left(2 \mathrm{~T}_{\mathrm{A}}+2 \mathrm{~T}_{\mathrm{R}}\right)=12 \mathrm{~B} \tau \mathrm{~T}_{\text {eff }} \mathrm{a}^{2} \text {, so } \\
& \Delta \mathrm{T}_{\mathrm{rms}}=\sigma_{0} /\left(\mathrm{M}<\mathrm{v}_{0}>/ \mathrm{MT}_{\mathrm{A}}\right)=2 \mathrm{~B} \tau 96\left(\mathrm{aT}_{\text {eff }}\right)^{4} /\left(12 \mathrm{~B} \tau \mathrm{~T}_{\text {eff }} \mathrm{a}^{2}\right)=(4 / 3)^{0.5} \mathrm{~T}_{\text {eff }} /(\mathrm{B} \tau)^{0.5} \text { Q.E.D. }
\end{aligned}
$$

