Spectral Measurements

Case A: Bandwidth exceeds that of available amplifiers

1) Extreme bandwidth: use multiple receivers and antennas

2) If signal large compared to detector noise, detect directly or split frequencies and then detect

3) Use passive frequency splitters before amplification or detection

Spectral Measurements

Case C: Bandwidth permits digital spectral analysis 1) If computer resources permit, compute $\left\langle \left| \underline{V}(f) \right|_{N}^{2} \right\rangle_{M}$ (~ Nlog₂ N multiplys per N - point transform : average M spectra) Resolution $\Delta f \ge 2B/N$

2) Or 1-bit (or n-bit) $\phi_N(\tau) \leftrightarrow \Phi_N(f)$ (N samples) (Permits ~×100 more B per cm² silicon) (Reference: Van Vleck and Middleton, *Proc. IEEE*, **54**, (1966)

Examples of Passive Multichannel Filters

1. Circuits

channel-dropping filters 2. Waveguides $Z_o \text{ at } f_1$ filters - λ/4→ f_N ≠ f • • • \downarrow f₂ $\oint \mathbf{f}_3$ f₁ virtual RCVR RCVR short resonant passive cavities at f_f 6 6

Examples of Passive Multichannel Filters

Digital spectral analysis example: autocorrelation

analog signals

Possible analog implementation:

Resolution of autocorrelation analysis

Aliasing in autocorrelation spectrometers

3) Finite averaging time τ adds noise to $\hat{\phi}_{v}(\tau)$, $\hat{\Phi}_{v}(f)$

Autocorrelation of hard-clipped signals

Receivers-I1

Analysis of 1-bit autocorrelation

Let $x(t_1) \triangleq x_1$, $x(t_2) \triangleq x_2$, sgn $x \triangleq \begin{cases} +1 \ x \ge 0 \\ -1 \ x < 0 \end{cases}$ where x_1, x_2 are JGRVZM $\phi_x(\tau) = E[sgn x_1 sgn x_2] =$

$$\int_{-\infty}^{\infty} \operatorname{sgn} x_1 \operatorname{sgn} x_2 \left[\frac{1}{2\pi (1-\rho)^{1/2}} e^{-\frac{x_1^2 - 2\rho x_1 x_2 + x_2^2}{2(1-\rho^2)}} \right] dx_1 dx_2$$

where $\rho(\tau) \stackrel{\Delta}{=} \overline{x_1 x_2} \equiv \phi_V(\tau), \tau = t_2 - t_1$

$$\phi_{\mathbf{X}}(\tau) = 2\int_{0}^{\infty} \int [p(\mathbf{x}_{1}, \mathbf{x}_{2})] d\mathbf{x}_{1} d\mathbf{x}_{2} - 2\int_{-\infty}^{0} \int_{0}^{\infty} p(\mathbf{x}_{1}, \mathbf{x}_{2}) d\mathbf{x}_{1} d\mathbf{x}_{2}$$
$$= 4\int_{0}^{\infty} \int p(\mathbf{x}_{1}, \mathbf{x}_{2}) d\mathbf{x}_{1} d\mathbf{x}_{2} - 1 \quad \left\{ \text{Note} : 2\int_{0}^{\infty} \int +2\int_{-\infty}^{0} \int = 1 \right\}$$

Power spectrum for 1-bit signal

Change variables

 $x_1 = r \cos \theta$ $x_2 = r \sin \theta$ $dx_1 dx_2 = r dr d\theta$

$$\phi_{X}(\tau) = 4 \int_{0}^{\pi/2} d\theta \int_{0}^{\infty} d\left(\frac{r^{2}}{2}\right) \frac{1}{2\pi(1-\rho^{2})^{1/2}} e^{-\left(r^{2}/2\right)\left(\frac{1-\rho\sin 2\theta}{1-\rho^{2}}\right)} - 1$$

$$=4\int_{0}^{\pi/2}d\theta \frac{(1-\rho^{2})^{1/2}}{2\pi(1-\rho\sin 2\theta)}-1$$

Power spectrum for 1-bit signal

$$=4\int_{0}^{\pi/2} d\theta \frac{(1-\rho^{2})^{1/2}}{2\pi(1-\rho\sin 2\theta)} - 1 \qquad \text{Let } \phi \triangleq 2\theta$$

$$\phi_{X}(\tau) = 4 \frac{(1-\rho)^{1/2}}{4\pi} \int_{0}^{\pi} \frac{1}{1-\rho \sin \phi} d\phi - 1 = 4 \left\{ \frac{1}{2\pi} \left(\frac{\pi}{2} + \sin^{-1} \rho \right) \right\} - 1$$

$$\hat{\phi}_{v}(\tau) \equiv \hat{\rho} = \sin\left(\frac{\pi}{2}\hat{\phi}_{x}(\tau)\right)$$

Where
$$\hat{\phi}_{X}(\tau) = \langle (\text{sgn v}(t))(\text{sgn v}(t - \tau)) \rangle_{T}$$

Note : $\hat{\rho}$ has bias $p(a)$
if b not exact $p(a)$
 0
 b_{0}
 b_{0}

(see Burns & Yao, *Radio Sci.,* **4**(5) p. 431 (1969))

Spectral response & sensitivity: autocorrelation receiver

$$\sigma(f)_{rms} \cong \frac{\alpha\beta T_{eff}}{\sqrt{\tau\Delta f}} \sqrt{1 - \frac{\Delta f}{B}}; \quad \beta \cong 1.6$$

$$\land channel bandwidth$$

(S. Weinreb empirical result, MIT EE PhD thesis, 1963)

15

Spectral response & sensitivity: autocorrelation receiver

 \therefore N_s = 2 τ_M B = 2 NT B (T = 1/2B at nyquist rate) = N(# taps)

In practice: raised cosine widens Δf by 1/0.6 \cong 1.7, so N_s \cong N/1.7

Receivers – Gain and Noise Figure

Types of "power" Delivered Available Exchangeable

 $v(t) \triangleq R_e \left\{ \underline{V} e^{j\omega t} \right\} = Re \left\{ \underline{V} \right\} \cos \omega t + Im \left\{ \underline{V} \right\} \sin \omega t$

$$P_{\text{delivered}} \stackrel{\Delta}{=} \frac{1}{2} R_{e} \left\{ \underline{V} I^{*} \right\} (\Delta P_{D})$$
$$P_{\text{available}} \stackrel{\Delta}{=} \max P_{D}, \text{ i.e., if } \underline{Z}_{L} = \underline{Z}_{d}^{*}$$

Delivered and Available Power

Definition of Gain

Note:
$$G_A, G_E$$
 don't depend on \underline{Z}_L
do depend on \underline{Z}_g (via P_{E2})

Definition: Signal-to-Noise Ratio (SNR)

First define:

 $WH_z^{-1} \left\{ \begin{array}{ll} N_1 = & exchangeable \ noise \ power \ spectrum \ @ \ Port \ 1 \\ N_2 = & same, \ at \ 2 \\ S_1 = & exchangeable \ signal \ power \ spectrum \ @ \ Port \ 1 \\ S_2 = & same, \ at \ 2 \end{array} \right.$

Define
$$SNR_1 \triangleq S_1/N_1$$
; $SNR_2 \triangleq S_2/N_2$

Definition: Noise Figure F

$$F \stackrel{\Delta}{=} \frac{SNR_1}{SNR_2} \equiv \frac{S_1/N_1}{S_2/N_2}, \text{ where } N_1 \stackrel{\Delta}{=} kT_0, T_0 \stackrel{\Delta}{=} 290 \text{ K}$$

[Ref. Proc. IRE, 57(7), p.52 (7/1957); Proc. IEEE, p.436 (3/1963)]

 $S_2 = G_E S_1$ (see definition of G_E)

 $N_2 = G_E N_1 + N_{2T}$ "transducer noise"

$$\therefore F = \frac{S_1/N_1}{GS_1/(GN_1 + N_{2T})} = 1 + \frac{N_{2T}}{N_1G} \qquad (\text{let } G \triangleq G_E)$$

$$\therefore \underbrace{F-1}_{P-1} = \frac{N_{2T}}{N_1G} \stackrel{\Delta}{=} \frac{kT_RG}{kT_0G} = \frac{T_R}{T_0}^{\frac{1}{2}} \text{ "receiver noise temperature"}$$

Receiver Noise Example

"Excess noise" corresponds to "receiver noise temperature T_R "

> Examples:
> $$\begin{split} T_R &= 0^{\circ} K \implies F = 1 + \frac{T_R}{T_0} = 1 \quad (F = 0 \text{ dB}) \\ T_R &= 290^{\circ} K \implies F = 2 \qquad (F = 3 \text{ dB}) \\ T_R &= 1500^{\circ} K \implies F \cong 6 \qquad (F \sim = 7.5 \text{ dB}) \end{split}$$