Noise in Cascaded Amplifiers

Noise in multiple cascade amplifiers

By extension:
$$F_{1,2,3} = F_{1+2} + \frac{F_3 - 1}{G_1 G_2}$$
 $F_{1+2} = F_1 + \frac{F_2 - 1}{G_1}$

In general,

$$F_{1,2,...} = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 G_2} + \dots$$
 cascade noise formula

Note:

The better choice is not obvious. $F_{1,2}$ also depends on interstage impedance mismatches and gain of the first amplifier, not just on F_1

Noise in superheterodyne receivers

Noise in superheterodyne receivers

3)
$$F_{mixer} \triangleq \frac{S_1/N_1}{S_2/N_2} = \frac{S_1/kT_o}{(S_1/L_c)/t_rkT_o} = L_c t_r$$

4)
$$F_{mixer+i.f. amp.} = F_{mixer} + \frac{F_{i.f.} - 1}{G_{mixer}}$$

= $L_c t_r + L_c (F_{i.f.} - 1) = L_c (F_{i.f.} + t_r - 1)$

e.g.
$$F_{mixer+i.f.amp.} \cong 2 - 8(\sim 3 - 9 dB)$$

Basic receiver types-Amplification

Basic receiver types-Combinors

Multiplication (correlation) receiver

N-way combiner, N ≷ M

Passive Multiport Networks

Passive Multiport Networks

5) "Magic tee"

Port 1 orthogonal to Port 2 Port 3 orthogonal to Port 4 All 4 ports can be matched

6) Frequency converter

Linear Passive N-port Networks

Define exchangeable power = $\begin{cases} |a_i|^2 \text{ toward port } i \\ |b_i|^2 \text{ from port } i (W \text{ or } WHz^{-1}) \end{cases}$

Net power entering port "i" = $|\underline{a}_i|^2 - |\underline{b}_i|^2$

Scattering matrix equation: $\overline{b} = \overline{Sa}$

Note:

- 1) The scattering matrix \overline{S} is defined only when the n-port is imbedded in a network
- 2) The phases of a_i and b_i can be defined as some linear combinations of those for voltage and current

e.g.
$$\underline{a}_{i} = \underline{V}_{+} \sqrt{Y_{o}/2} = (\underline{V} + Z_{o}\underline{I}) / \sqrt{8Z_{o}}$$
, $\underline{b}_{i} = (\underline{V} - Z_{o}\underline{I}) / \sqrt{8Z_{o}}$

Gain definition for N-port networks

"Transducer gain"

$$\mathsf{G}_{\mathsf{T}kj} \underline{\Delta} \left| \underline{\mathsf{b}}_{k} \right|^{2} / \left| \underline{\mathsf{a}}_{j} \right|^{2} = \left| \overline{\underline{\mathsf{S}}}_{kj} \right|^{2} = \mathsf{P}_{\mathsf{D}k} / \mathsf{P}_{\mathsf{A}j}$$

"Exchangeable gain" (~"available gain")

 $G_{E_{kj}} \triangleq \frac{P_{E_k}}{P_{E_j}} = \frac{?}{|\underline{a}_j|^2}$ Note: available power out $\ge |b_k|^2$ due to possible port-k mismatch

 $\left|\frac{\left|\underline{S}_{kj}\right|^{2}}{1-\left|\underline{S}_{kj}\right|^{2}}=G_{E_{kj}}$

i.e. fractional power absorbed (FPA) = $\frac{\left|\underline{a}_{k}\right|^{2} - \left|\underline{b}_{k}\right|^{2}}{\left|\underline{a}_{k}\right|^{2}} = 1 - \left|\underline{S}_{kk}\right|^{2}$

But FPA = fractional power emitted, if reciprocity applies. Therefore available power from port K = $|\underline{b}_k|^2 / (1 - |\underline{S}_{kk}|^2)$

Therefore
$$G_{E_{kj}} = \left[\left| \underline{b}_k \right|^2 \right] / \left(1 - \left| \underline{S}_{kk} \right|^2 \right) / \left| \underline{a}_j \right|^2 =$$

Constraints on N-port networks

Lossless passive networks
$$\Rightarrow \sum_{i=1}^{N} |\underline{a}_i|^2 = \sum_{i=1}^{N} |\underline{b}_i|^2$$

Reciprocity
$$\Rightarrow \overline{S} = \overline{S}^t$$

Example of constrained N-port networks

Example of constrained N-port networks

Therefore
$$\overline{S}^{t^*}\overline{S} = i = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
; if the container is lossless

$$\overline{S} = \begin{bmatrix} 0 & 0 & \alpha \\ 0 & 0 & \alpha \\ \alpha & \alpha & \beta \end{bmatrix}$$
Test: $\overline{S}^{t^*}\overline{S} = \begin{bmatrix} |\alpha|^2 & |\alpha|^2 & \alpha^*\beta \\ |\alpha|^2 & |\alpha|^2 & \alpha^*\beta \\ |\alpha\beta^* & \alpha\beta^* & 2|\alpha|^2 + |\beta|^2 \end{bmatrix}$

Therefore constraints (8-14) and (8-15) cannot be satisfied simultaneously for this system

Ideal matched 2-input-port combiners are impossible

Another N-port network example

Can we match all 3 ports simultaneously?

(Note: \underline{S} is defined only when imbedded in network)

For 3 matched ports:
$$\overline{\underline{S}} = \begin{bmatrix} 0 & \underline{\alpha} & \underline{\beta} \\ \underline{\alpha} & 0 & \underline{\gamma} \\ \underline{\beta} & \underline{\gamma} & 0 \end{bmatrix}$$

Does $\underline{\overline{S}}^{t^*} \underline{\overline{S}} = \overline{I}$? (lossless passive constraint)

Matched 3-port example

For 3 matched ports: $\overline{S} = \begin{bmatrix} 0 & \underline{\alpha} & \underline{\beta} \\ \underline{\alpha} & 0 & \underline{\gamma} \\ \beta & \gamma & 0 \end{bmatrix}$

Does $\overline{\underline{S}}^{t^*} \overline{\underline{S}} = \overline{I}$? (lossless passive constraint)

$$\overline{\underline{S}}^{t^{*}}\overline{\underline{S}} = \begin{bmatrix} |\underline{\alpha}|^{2} + |\underline{\beta}|^{2} & \underline{\beta}^{*}\underline{\gamma} & \underline{\alpha}^{*}\underline{\gamma} \\ \underline{\beta}\underline{\gamma}^{*} & |\underline{\alpha}|^{2} + |\underline{\gamma}|^{2} & \underline{\alpha}^{*}\underline{\beta} \\ \underline{\alpha}\underline{\gamma}^{*} & \underline{\alpha}\underline{\beta}^{*} & |\underline{\beta}|^{2} + |\underline{\gamma}|^{2} \end{bmatrix} \stackrel{?}{=} \overline{\mathbf{I}}$$

If $\underline{\beta}^* \underline{\gamma} = \underline{\alpha}^* \underline{\gamma} = \underline{\alpha}^* \underline{\beta} = 0$, then 2 of (α, β, γ) and at least one diagonal element of $\overline{\underline{S}}^{t^*} \overline{\underline{S}} = 0$

Therefore not possible to match all 3 ports simultaneously

Lossless passive reciprocal symmetric 4-port network

Ports 1, 2 are isolated; also 3, 4

symmetry axis, all ports matched

We can show $\Delta \phi$ for $(1 \rightarrow 3)$ versus $(1 \rightarrow 4)$ paths is unique using losslessness, reciprocity, and symmetry

Mixer Noise Figure Using 4-port Model

$$\begin{split} T_{R} &= T_{SSB} = (F - 1)T_{o} = T_{o}(L_{c}t_{r} - 1) & \text{signal} \bigcirc (1) (4) & \text{output} \\ \text{for single sideband (SSB) operation} & \text{image} \bigcirc (2) (3) & \text{internal} \\ \text{for single sideband (SSB) operation} & \text{image} \bigcirc (2) (3) & \text{internal} \\ \text{for single sideband (SSB) operation} & \text{image} \bigcirc (2) (3) & \text{internal} \\ \text{for single sideband (SSB) operation} & \text{image} \bigcirc (2) (3) & \text{internal} \\ \text{for single sideband (SSB) operation} & \text{image} \bigcirc (2) (3) & \text{internal} \\ \text{for single sideband (SSB) operation} & \text{image} \bigcirc (2) (3) & \text{internal} \\ \text{for single sideband (SSB) operation} & \text{image} \bigcirc (2) (3) & \text{internal} \\ \text{for single sideband (SSB) operation} & \text{image} \bigcirc (2) (3) & \text{internal} \\ \text{for single sideband (SSB) operation} & \text{image} \bigcirc (2) (3) & \text{internal} \\ \text{for single sideband (SSB) operation} & \text{image} \bigcirc (2) (3) & \text{internal} \\ \text{for single sideband (SSB) operation} & \text{image} \bigcirc (2) (3) & \text{internal} \\ \text{for single sideband (SSB) operation} & \text{image} \bigcirc (2) (3) & \text{internal} \\ \text{for single sideband (SSB) operation} & \text{image} \bigcirc (2) (3) & \text{internal} \\ \text{for single sideband (SSB) operation} & \text{image} \bigcirc (2) (3) & \text{internal} \\ \text{for single sideband (SSB) operation} & \text{internal} \\ \text{for single signal in port 1, S_{kj} is a scattering matrix element]} \\ \text{Simplifying, F_{SSB} = 1 + \frac{T_2 |S_{42}|^2}{T_0 |S_{41}|^2} + \frac{T_3 |S_{43}|^2}{T_0 |S_{41}|^2} = 1 + \frac{T_{SSB}}{T_0} \\ \text{Therefore} \quad T_{SSB} = T_2 \frac{|S_{42}|^2}{|S_{41}|^2} + T_3 \frac{|S_{43}|^2}{|S_{41}|^2} \\ \text{For simplifying, F_{SSB} = T_2 \frac{|S_{42}|^2}{|S_{41}|^2} + T_3 \frac{|S_{43}|^2}{|S_{41}|^2} \\ \text{For simplifying, F_{SSB} = T_2 \frac{|S_{42}|^2}{|S_{41}|^2} + T_3 \frac{|S_{43}|^2}{|S_{41}|^2} \\ \text{For simplifying, F_{SSB} = T_2 \frac{|S_{42}|^2}{|S_{41}|^2} + T_3 \frac{|S_{43}|^2}{|S_{41}|^2} \\ \text{For simplifying, F_{SSB} = T_2 \frac{|S_{42}|^2}{|S_{41}|^2} + T_3 \frac{|S_{43}|^2}{|S_{41}|^2} \\ \text{For simplifying, F_{SSB} = T_3 \frac{|S_{43}|^2}{|S_{41}|^2} \\ \text{For simplifying, F_{SSB} = T_3 \frac{|S_{43}|^2}{|S_{41}|^2} \\ \text{For simplifying, F_{SSB} = T_3 \frac{|S_{43}|^2}{|S_{4$$

Double-sideband Receiver

Therefore
$$T_{SSB} = T_2 \frac{|S_{42}|^2}{|S_{41}|^2} + T_3 \frac{|S_{43}|^2}{|S_{41}|^2}$$
 signal $\stackrel{\frown}{\longrightarrow}$ 1 4 $\stackrel{\frown}{\longrightarrow}$ output 2 3
image $\stackrel{\frown}{\longrightarrow}$ 2 3
both ports 1 and 2 are signal, so

$$S_4 = kT_0 \left(\left| S_{41} \right|^2 + \left| S_{42} \right|^2 \right) / \left(1 - \left| S_{44} \right|^2 \right)$$

It follows that

$$T_{DSB} = T_3 |S_{43}|^2 / \left[|S_{41}|^2 + |S_{42}|^2 \right]$$

Often suggested: $F_{SSB} \cong 2F_{DSB}$

Double-sideband Receiver

Therefore
$$T_{SSB} = T_2 \frac{|S_{42}|^2}{|S_{41}|^2} + T_3 \frac{|S_{43}|^2}{|S_{41}|^2} \stackrel{\text{signal}}{\text{image}} \stackrel{(1)}{=} \stackrel{(1)}{=}$$